生物多样性 ›› 2013, Vol. 21 ›› Issue (3): 278-287.doi: 10.3724/SP.J.1003.2013.10012

• • 上一篇    下一篇

海南岛热带低地雨林群落水平植物功能性状与环境因子相关性随演替阶段的变化

卜文圣1, 臧润国1, *(), 丁易1, 张俊艳1, 阮云泽2   

  1. 1 中国林业科学研究院森林生态环境与保护研究所; 国家林业局森林生态环境重点实验室, 北京 100091
    2 海南大学农学院, 海口 570228
  • 收稿日期:2013-01-09 接受日期:2013-04-03 出版日期:2013-05-20
  • 通讯作者: 臧润国 E-mail:zangrung@caf.ac.cn
  • 基金项目:
    “十二五”科技支撑项目(2012BAD22B0103);中央级公益性科研院所基本科研业务费专项资金(CAFRIFEEP201103)

Relationships between plant functional traits at the community level and environmental factors during succession in a tropical lowland rainforest on Hainan Island, South China

Wensheng Bu1, Runguo Zang1, *(), Yi Ding1, Junyan Zhang1, Yunze Ruan2   

  1. 1 Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry; Key Laboratory of Forest Ecology and Environment of State Forestry Administration, Beijing 100091
    2 College of Agriculture, Hainan University, Haikou 570228
  • Received:2013-01-09 Accepted:2013-04-03 Online:2013-05-20
  • Contact: Zang Runguo E-mail:zangrung@caf.ac.cn

以功能性状为基础的方法可以用来探讨植物群落中功能性状如何响应环境并揭示植物生态策略的潜在驱动力, 但有关功能性状与环境因子之间的关系随植物群落演替变化的研究仍然匮乏。作者以海南岛热带低地雨林刀耕火种弃耕后处于不同演替阶段的次生林(包括弃耕后恢复15年、30年及60年的次生林)和老龄林为对象, 通过群落学调查和对木本植物的功能性状及样地环境因子的测定, 分析了群落水平植物功能性状与环境因子关系随演替阶段的变化规律。结果表明, 随着演替的进行, 林冠开阔度、土壤养分、比叶面积、叶片氮含量、叶片磷含量和叶片总有机碳含量逐渐降低, 叶片干物质含量、木材密度、潜在最大高度逐渐升高, 而土壤水分和叶片钾含量变化不大。多元逐步回归分析表明, 影响群落水平植物功能性状的主要环境因子随演替阶段而发生显著的变化, 在15年、30年和60年的次生林及老龄林中, 对群落水平植物功能性状影响最大的环境因子依次为土壤有机质和pH值、林冠开阔度和土壤总磷含量、土壤总钾和有效磷含量, 以及土壤有机质含量和磷含量。同一功能性状在不同演替阶段受到不同环境因子的控制, 同时各功能性状又能够对不同演替阶段所处的特殊环境产生一定的适应性。

关键词: 热带低地雨林, 植物功能性状, 次生演替, 刀耕火种, 环境因子

We explored how plant functional traits respond to environmental factors and examined the underlying mechanism driving the ecological strategies of plant species in a community. Experiments were conducted at four randomly selected tropical lowland rainforests at different successional stages:15-, 30- and 60-year-old secondary forests and one old-growth forest, each in the Bawangling Nature Reserve of Hainan Island. A total of 200 plots (20 m×20 m) were sampled. Individuals of tree and shrub species with diameter at breast height (DBH) ≥1 cm were identified and both their functional traits and the environmental factors in each plot were measured. ANOVA showed that canopy openness, level of soil nutrients, specific leaf area, and content of total organic carbon, nitrogen and phosphorus within the leaf decreased at the community level during the successional process. Meanwhile, leaf dry matter content, wood density and potential maximum height increased. However, soil water content and leaf potassium content, changed non-significantly. Multiple regression analysis demonstrated that environmental factors driving functional traits at the community level varied during the successional process. The key environmental factors were soil organic matter and pH value in the 15-year-old secondary forest; canopy openness and soil total phosphorus content in the 30-year-old secondary forest; available phosphorus and total potassium content of the soil in the 60-year-old secondary forest; and soil phosphorus content and organic matter content in the old-growth forest. Our results indicate that at different successional stages, the same functional traits respond to different environmental factors, enabling adaptation to specific environmental conditions.

Key words: tropical lowland rainforest, plant functional traits, secondary succession, shifting cultivation, environmental factors

表1

海南岛热带低地雨林各演替阶段的样地基本信息(括号内的数值为均值)"

演替阶段 海拔 凹凸度 坡度 干扰类型
Stages Elevation Convex Slope Disturbance type
15年次生林 15-year-old secondary forest 419-520(467) -7到7(0) 5-27.3(14.1) 刀耕火种 Shifting cultivation
30年次生林 30-year-old secondary forest 514-576(545) -10到12(0.2) 9-38.6(23.5) 刀耕火种 Shifting cultivation
60年次生林 60-year-old secondary forest 474-515(498) -14到9(-0.1) 8-39.2(19.4) 刀耕火种 Shifting cultivation
老龄林 Old-growth forest (OG) 550-650(598) -18到14(-1) 7-39.5(27.0) 未干扰 No disturbance

图1

海南岛霸王岭不同演替阶段低地雨林环境因子的变异。不同的字母表示差异显著(P<0.05)。"

图2

海南岛霸王岭不同演替阶段低地雨林植物功能性状的变异。不同的字母表示差异显著(P<0.05)。"

表2

不同演替阶段功能性状和环境因子的多元逐步回归结果(环境变量的数值为通径系数, R2为决定系数, AIC为赤池信息准则, 其余简写变量的含义同图1和图2)。"

阶段 性状 环境变量 Environmental variables 回归方程参数 Parameters
Stage Trait CO BD pH SOM TP TK AN AP R2 AIC P
15年次生林 15-year-old secondary forest (15yr)
SLA 0.47 0.12 154.6 0.0145
LDMC
WD 0.18 0.17 37.5 0.0029
Hmax
LNC 0.30 0.15 97.4 0.0064
LPC
LKC 0.38 -0.20 0.27 101.2 0.0005
LCC -0.41 0.21 107.2 0.0009
30年次生林 30-year-old secondary forest (30yr)
SLA -0.63 0.45 0.34 138.9 <0.0001
LDMC -0.30 0.15 87.1 0.005
WD -0.32 0.15 56.3 0.0057
Hmax 0.67 -0.30 0.35 117.6 <0.0001
LNC 0.35 0.28 0.16 104.2 0.0154
LPC 0.75 -0.19 0.22 0.41 106.3 <0.0001
LKC -0.90 0.33 0.39 142.0 <0.0001
LCC 0.74 -0.40 0.39 127.4 <0.0001
60年次生林 60-year-old secondary forest (60yr)
SLA 0.71 0.60 92.5 <0.0001
LDMC -0.53 -0.40 0.65 91.5 <0.0001
WD -0.28 -0.40 0.62 52.2 <0.0001
Hmax -0.48 -0.60 0.56 117.2 <0.0001
LNC 0.37 0.48 0.67 72.1 <0.0001
LPC 0.11 0.19 0.63 -26.3 <0.0001
LKC -0.29 0.70 0.37 125.9 <0.0001
LCC -0.13 0.37 0.49 54.7 <0.0001
老龄林 Old-growth forest (OG)
SLA -0.28 0.29 0.41 59.0 <0.0001
LDMC -0.23 0.32 0.21 80.6 0.035
WD -0.26 -0.44 0.32 52.0 0.0001
Hmax 0.59 0.14 90.8 0.0079
LNC -0.72 0.18 140.7 0.0022
LPC -0.24 0.21 19.8 0.0008
LKC 0.68 0.17 137.6 0.0029
LCC 0.47 0.62 0.31 100.5 0.0002
1 Aerts R, Chapin III FS (1999) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns.Advances in Ecological Research, 30, 1-67.
2 Baribault TW, Kobe RK, Finley AO (2012) Tropical tree growth is correlated with soil phosphorus, potassium, and calcium, though not for legumes.Ecological Monographs, 82, 189-203.
3 Chazdon RL (2003) Tropical forest recovery: legacies of human impact and natural disturbances.Perspectives in Plant Ecology, Evolution and Systematics, 6, 51-71.
4 Cleveland CC, Townsend AR, Taylor P, Alvarez-Clare S, Bustamante MMC, Chuyong G, Dobrowski SZ, Grierson P, Harms KE, Houlton BZ, Marklein A, Parton W, Porder S, Reed SC, Sierra CA, Silver WL, Tanner EVJ, Wieder WR (2011) Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis.Ecology Letters, 14, 939-947.
5 Coomes OT, Takasaki Y, Rhemtulla JM (2011) Land-use poverty traps identified in shifting cultivation systems shape long-term tropical forest cover.Proceedings of the National Academy of Sciences,USA, 108, 13925-13930.
6 Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van Der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide.Australian Journal of Botany, 51, 335-380.
7 Dalle SP, Pulido MT, de Blois S (2011) Balancing shifting cultivation and forest conservation: lessons from a “sustainable landscape” in southeastern Mexico.Ecological Applications, 21, 1557-1572.
8 Dalling JW, Hubbell SP (2002) Seed size, growth rate and gap microsite conditions as determinants of recruitment success for pioneer species.Journal of Ecology, 90, 557-568.
9 De Deyn GB, Cornelissen JHC, Bardgett RD (2008) Plant functional traits and soil carbon sequestration in contrasting biomes.Ecology Letters, 11, 516-531.
10 Ding J (丁佳), Wu Q (吴茜), Yan H (闫慧), Zhang SR (张守仁) (2011) Effects of topographic variations and soil characteristics on plant functional traits in a subtropical evergreen broad-leaved forest.Biodiversity Science(生物多样性), 19, 158-167. (in Chinese with English abstract)
11 Ding Y (丁易), Zang RG (臧润国) (2011) Vegetation recovery dynamics of tropical lowland rain forest in Bawangling of Hainan Island, South China.Chinese Journal of Plant Ecology(植物生态学报), 35, 577-586. (in Chinese with English abstract)
12 Ding Y, Zang R, Liu S, He F, Letcher SG (2012) Recovery of woody plant diversity in tropical rain forests in southern China after logging and shifting cultivation.Biological Conservation, 145, 225-233.
13 Fortunel C, Garnier E, Joffre R, Kazakou E, Quested H, Grigulis K, Lavorel S, Ansquer P, Castro H, Cruz P, Doležal J, Eriksson O, Freitas H, Golodets C, Jouany C, Kigel J, Kleyer M, Lehsten V, Lepš J, Meier T, Pakeman R, Papadimitriou M, Papanastasis VP, Quétier F, Robson M, Sternberg M, Theau JP, Thébault A, Zarovali M (2009) Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe.Ecology, 90, 598-611.
14 Garnier E, Cortez J, Billès G, Navas M-L, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint J-P (2004) Plant functional markers capture ecosystem properties during secondary succession.Ecology, 85, 2630-2637.
15 Huston M, Smith T (1987) Plant succession: life history and competition.The American Naturalist, 130, 168-198.
16 Jiang GM (蒋高明) (1995) The impact of global increasing of CO2 on plants.Chinese Bulletin of Botany(植物学通报), 12(4), 1-7. (in Chinese)
17 Keddy PA (1992) Assembly and response rules: two goals for predictive community ecology.Journal of Vegetation Science, 3, 157-164.
18 Laliberté E, Shipley B, Norton DA, Scott D (2012) Which plant traits determine abundance under long-term shifts in soil resource availability and grazing intensity? Journal of Ecology, 100, 662-677.
19 Lohbeck M, Poorter L, Paz H, Pla L, van Breugel M, Martínez-Ramos M, Bongers F (2012) Functional diversity changes during tropical forest succession.Perspectives in Plant Ecology, Evolution and Systematics, 14, 89-96.
20 Long W, Zang R, Ding Y (2011) Air temperature and soil phosphorus availability correlate with trait differences between two types of tropical cloud forests.Flora: Morphology, Distribution, Functional Ecology of Plants, 206, 896-903.
21 Meier CL, Bowman WD (2010) Chemical composition and diversity influence non-additive effects of litter mixtures on soil carbon and nitrogen cycling: implications for plant species loss.Soil Biology and Biochemistry, 42, 1447-1454.
22 Nishimua T, Suzuki E, Kohyama T, Tsuyuzaki S (2007) Mortality and growth of trees in peat-swamp and heath forests in Central Kalimantan after severe drought.Plant Ecology, 188, 165-177.
23 Ordoñez JC, van Bodegom PM, Witte JM, Wright IJ, Reich PB, Aerts R (2009) A global study of relationships between leaf traits, climate and soil measures of nutrient fertility.Global Ecology and Biogeography, 18, 137-149.
24 Orwin KH, Buckland SM, Johnson D, Turner BL, Smart S, Oakley S, Bardgett RD (2010) Linkages of plant traits to soil properties and the functioning of temperate grassland.Journal of Ecology, 98, 1074-1083.
25 R Development Core Team (2011) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria.
26 Raevel V, Violle C, Munoz F (2012) Mechanisms of ecological succession: insights from plant functional strategies.Oikos, 121, 1761-1770.
27 Read L, Lawrence D (2003) Litter nutrient dynamics during succession in dry tropical forests of the Yucatan: regional and seasonal effects.Ecosystems, 6, 747-761.
28 Schleuter D, Daufresne M, Massol F, Argillier C (2010) A user’s guide to functional diversity indices.Ecological Monographs, 80, 469-484.
29 Schmidt MW, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-Knabner I, Lehmann J, Manning DA, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property.Nature, 478, 49-56.
30 Suding KN, Lavorel S, Chapin FS, Cornelissen JHC, Díaz S, Garnier E, Goldberg D, Hooper DU, Jackson ST, Navas M-L (2008) Scaling environmental change through the community-level: a trait-based response-and-effect frame- work for plants.Global Change Biology, 14, 1125-1140.
31 Tahmasebi Kohyani P, Bossuyt B, Bonte D, Hoffmann M (2008) Importance of grazing and soil acidity for plant community composition and trait characterisation in coastal dune grasslands.Applied Vegetation Science, 11, 179-186.
32 Tilman D (1988) Plant Strategies and the Dynamics and Structure of Plant Communities. Princeton University Press, Princeton.
33 Tripler CE, Kaushal SS, Likens GE, Todd Walter M (2006) Patterns in potassium dynamics in forest ecosystems.Ecology Letters, 9, 451-466.
34 Vile D, Shipley B, Garnier E (2006) A structural equation model to integrate changes in functional strategies during old-field succession.Ecology, 87, 504-517.
35 Villéger S, Mason NWH, Mouillot D (2008) New multidimensional functional indices for a multifaceted framework in functional ecology.Ecology, 89, 2290-2301.
36 Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional!Oikos, 116, 882-892.
37 Walker LR, Del Moral R (2003) Primary Succession and Ecosystem Rehabilitation. Cambridge University Press, London.
38 Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species.Annual Review of Ecology and Systematics, 33, 125-159.
39 Whitmore T, Burslem D, Newbery D, Prins H, Brown N. (1998) Major Disturbances in Tropical Rainforests. Blackwell Science Ltd, Oxford.
40 Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Pooter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum.Nature, 428, 821-827.
41 Wright SJ, Yavitt JB, Wurzburger N, Turner BL, Tanner EVJ, Sayer EJ, Santiago LS, Kaspari M, Hedin LO, Harms KE, Garcia MN, Corre MD (2011) Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest.Ecology, 92, 1616-1625.
42 Yao TT (尧婷婷), Meng TT (孟婷婷), Ni J (倪健), Yan S (阎顺), Feng XH (冯晓华), Wang GH (王国宏) (2010) Leaf functional trait variation and its relationship with plant phylogenic background and the climate in Xinjiang Junggar Basin, NW China.Biodiversity Science(生物多样性), 18, 188-197. (in Chinese with English abstract)
43 Zang RG (臧润国), Ding Y (丁易), Zhang ZD (张志东), Deng FY (邓福英), Mao PL (毛培利) (2010) Ecological Basis of Conservation and Restoration for the Major Functional Groups in Tropical Natural Forests on Hainan Island (海南岛热带天然林主要功能群保护与恢复的生态学基础). Science Press, Beijing. (in Chinese)
44 Zhang WR (张万儒), Yang GC (杨光澄), Tu XN (屠星南) (1999) The Forestry Industry Standard of the People’s Republic of China: Determination of Forest Soil (中国林业行业标准: 森林土壤测定方法). China Standard Press, Beijing. (in Chinese)
[1] 赵丹丹, 马红媛, 李阳, 魏继平, 王志春. (2019) 水分和养分添加对羊草功能性状和地上生物量的影响. 植物生态学报, 43(6): 501-511.
[2] 杨文高, 字洪标, 陈科宇, 阿的鲁骥, 胡雷, 王鑫, 王根绪, 王长庭. (2019) 青海森林生态系统中灌木层和土壤生态化学计量特征. 植物生态学报, 43(4): 352-364.
[3] 程毅康, 张辉, 王旭, 龙文兴, 李超, 方燕山, 符明期, 朱孔新. (2019) 功能多样性和谱系多样性对热带云雾林群落构建的影响. 植物生态学报, 43(3): 217-226.
[4] 蒋日进,张琳琳,徐开达,李鹏飞,肖祎,樊紫薇. (2019) 浙江中南部近岸海域游泳动物功能群特征与多样性. 生物多样性, 27(12): 1330-1338.
[5] 高思涵, 葛珏希, 周李奕, 朱宝琳, 葛星宇, 李凯, 倪健. (2018) 测定森林树木叶面积的最适叶片数是多少?. 植物生态学报, 42(9): 917-925.
[6] 吴初平, 韩文娟, 江波, 刘博文, 袁位高, 沈爱华, 黄玉洁, 朱锦茹. (2018) 浙江定海次生林内物种丰富度与生物量和生产力关系的环境依赖性. 生物多样性, 26(6): 545-553.
[7] 陶夏秋, 崔绍朋, 蒋志刚, 初红军, 李娜, 杨道德, 李春旺. (2018) 新疆阿勒泰地区爬行动物区系及多样性海拔分布格局. 生物多样性, 26(6): 578-589.
[8] 程汉亭,李勤奋,刘景坤,严廷良,张俏燕,王进闯. (2018) 橡胶林下益智光合特性的季节动态变化. 植物生态学报, 42(5): 585-594.
[9] 岑宇, 王成栋, 张震, 任侠, 刘美珍, 杨帆. (2018) 河北省天然草地生物量和碳密度空间分布格局. 植物生态学报, 42(3): 265-276.
[10] 王宏亮, 郭思义, 王棚涛, 宋纯鹏. (2018) 植物气孔发育机制研究进展. 植物学报, 53(2): 164-174.
[11] 张振振, 赵平, 赵秀华, 张锦秀, 朱丽薇, 欧阳磊, 张笑颜. (2018) 环境因子对常绿阔叶树种脱耦联系数及冠层气孔导度估算的影响. 植物生态学报, 42(12): 1179-1191.
[12] 杨国栋, 季芯悦, 陈林, 钟育谦, 翟飞飞, 伊贤贵, 王贤荣. (2018) 基于SOM的野生秤锤树群落的空间分布和环境解释. 生物多样性, 26(12): 1268-1276.
[13] 殷秀琴, 陶岩, 王海霞, 马辰, 寇新昌, 许还, 崔东. (2018) 我国东北森林土壤动物生态学研究现状与展望. 生物多样性, 26(10): 1083-1090.
[14] 彭丹晓, 鲁丽敏, 陈之端. (2017) 区域生命之树及其在植物区系研究中的应用. 生物多样性, 25(2): 156-162.
[15] 李家湘, 徐文婷, 熊高明, 王杨, 赵常明, 卢志军, 李跃林, 谢宗强. (2017) 中国南方灌丛优势木本植物叶的氮、磷含量及其影响因素. 植物生态学报, 41(1): 31-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed