生物多样性 ›› 2019, Vol. 27 ›› Issue (6): 619-629.doi: 10.17520/biods.2019107

• 研究报告 • 上一篇    下一篇

鼎湖山南亚热带常绿阔叶林群落垂直结构及其物种多样性特征

桂旭君1, 2, 3, 练琚愉1, 2, *(), 张入匀1, 2, 3, 李艳朋1, 2, 3, 沈浩1, 2, 倪云龙1, 2, 3, 叶万辉1, 2   

  1. 1 中国科学院华南植物园退化生态系统植被恢复与管理重点实验室, 广州 510650
    2 中国科学院华南植物园广东省应用植物学重点实验室, 广州 510650
    3 中国科学院大学, 北京 100049
  • 收稿日期:2019-03-28 接受日期:2019-05-28 出版日期:2019-06-20
  • 通讯作者: 练琚愉 E-mail:lianjy@scbg.ac.cn
  • 基金项目:
    中国科学院战略性先导科技专项(XDB31030000);国家重点研发计划(2017YFC0505802);中国森林生物多样性监测网络建设项目

Vertical structure and its biodiversity in a subtropical evergreen broad- leaved forest at Dinghushan in Guangdong Province, China

Gui Xujun1, 2, 3, Lian Juyu1, 2, *(), Zhang Ruyun1, 2, 3, Li Yanpeng1, 2, 3, Shen Hao1, 2, Ni Yunlong1, 2, 3, Ye Wanhui1, 2   

  1. 1 Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650
    2 Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650
    3 University of Chinese Academy of Sciences, Beijing 100049
  • Received:2019-03-28 Accepted:2019-05-28 Online:2019-06-20
  • Contact: Lian Juyu E-mail:lianjy@scbg.ac.cn

群落结构在森林生态系统中具有重要作用, 其构建机制一直是森林生态学的研究核心。群落结构不仅包括水平方向上的物种分布格局, 还包括垂直方向上的物种分层结构。本文基于鼎湖山南亚热带常绿阔叶林塔吊样地, 利用林冠塔吊和测高杆精准测量样地内每个个体(胸径大于1 cm)的树高, 并划分群落的垂直层次, 研究了每层的群落多样性特征(α多样性)和林层间的群落多样性变化特征(β多样性)。结果表明: (1)样地群落垂直层次由下至上分为5层: 灌木层、亚冠层、林冠下层、林冠中层和林冠上层。(2)随林层向上, 物种丰富度、多度和Shannon-Wiener指数均下降, Pielou均匀度指数在林冠下层最大。(3)利用POD法计算并分解β多样性, 发现随林层向上, β多样性在灌木层与其他各层间呈递增趋势, 在相邻林层间呈单峰型, 不同林层间的物种组成差异主要由丰富度差异造成。 但在林冠下层与林冠中层间丰富度差异较小, 物种替换组分增大, 可能与林冠下层所处特殊位置有关。(4)各林层内微环境从灌木层向上, 趋于高温、强光照和低空气相对湿度, 但林冠下层平均日光强最低。综上, 鼎湖山南亚热带常绿阔叶林林冠下层可能存在强烈的环境筛选作用, 且光照可能是影响群落垂直结构形成的限制因子。

关键词: 森林结构, 垂直结构, β多样性, β多样性分解, 生物多样性, 分层, 群落构建

Community structure plays a fundamental role in forest ecosystems as one of the basic mechanisms underlying community assembly. Community structure includes both horizontal and vertical structure. We stratified the vertical structure of a lower subtropical evergreen broad-leaved forest at Dinghushan in Guangdong Province, China by surveying each individual with DBH ≥ 1 cm via a canopy crane, and then explored α diversity within each layer, as well as β diversity between layers. We found that: (1) The vertical structure of the forest was stratified into five layers; from bottom to top, the shrub, sub-canopy, lower canopy, middle canopy, and upper canopy correspond to the traditionally defined vertical levels of a forest community. (2) Layer α diversity decreased with height, and the Pielou evenness index was largest in the lower canopy. (3) The β diversity of layers relative to the shrub layer increased with height. Using the POD framework, the differences between layer community compositions were mainly attributed to differences in species richness. However, the lower canopy showed increased species replacement and decreased richness difference relative to the middle canopy layer when compared with other neighbouring layers. (4) Air temperature, light intensity and relative humidity increased with layer height, and the most dramatic change in light occurred in the middle canopy. These microenvironmental features may play an important role in the formation of vertical hierarchy in the forest, with light intensity as the largest factor.

Key words: forest structure, vertical structure, β diversity, β diversity partitioning, biodiversity, stratification, community assembly

图1

最优分类组数判断指标。(a)不同分类情况下的各对象归属和各分类组数对应的ssi (simple structure index)值, 其中左边的图表示每个对象在不同分类情况下的归属, 一种颜色代表一个分类组; 右图展示了不同分类组数对应的ssi值大小。(b)不同分类组数时分成的各类的组内平方和。"

表1

鼎湖山塔吊样地垂直各层概况"

最低树高
Minimum height (m)
最高树高
Maximum height (m)
多度
Abundance
物种丰富度
Species richness
优势种例举(多度, 最大胸径)
Dominant species (abundance, maximum DBH)
灌木层
Shrub
1.4 3.9 1,966 89 银柴
Aporosa dioica (207, 7.3)
黄果厚壳桂
Cryptocarya concinna (251, 4.5)
亚冠层
Sub-canopy
4.0 6.7 1,173 75 鸭脚木
Schefflera octophylla (161, 16.0)
银柴
Aporosa dioica (122, 10.1)
林冠下层
Lower canopy
6.8 11.2 503 56 荷木
Schima superba (54, 39.4)
鸭脚木
Schefflera octophylla (51, 18.8)
林冠中层
Middle canopy
11.3 17.2 271 27 荷木
Schima superba (101, 41.9)
锥栗
Castanopsis chinensis (31, 41.0)
林冠上层
Upper canopy
17.4 27.1 226 17 荷木
Schima superba (111, 66.0)
马尾松
Pinus massoniana (34, 47.1)
总体
Total
- - 4,140 121 荷木
Schima superba (301,49.0)
马尾松
Pinus massoniana (66, 47.1)

表2

鼎湖山塔吊样地灌木层与其他各林层及相邻林层间物种组成比较"

共有种总数量
Generalist (%)
特有种总数量
Specialist (%)
太少未能分类
Too rare to clarify (%)
总计
Total
灌木层和亚冠层 Shrub vs sub-canopy 24 (23.08) 4 (3.98) 76 (73.08) 104
灌木层和林冠下层 Shrub vs lower canopy 17 (16.50) 7 (6.79) 79 (76.70) 103
灌木层和林冠中层 Shrub vs middle canopy 8 (8.42) 11 (11.58) 76 (80.00) 95
灌木层和林冠上层 Shrub vs upper canopy 1 (1.06) 14 (14.89) 79 (84.08) 94
亚冠层和林冠下层 Sub-canopy vs lower canopy 19 (20.43) 3 (3.23) 71 (76.34) 93
林冠下层和林冠中层 Lower canopy vs middle canopy 10 (17.24) 4 (6.89) 44 (75.86) 58
林冠中层和林冠上层 Middle canopy vs upper canopy 5 (21.80) 4 (3.13) 23 (75.00) 32

表3

鼎湖山塔吊样地各林层的α多样性"

林层
Layers
Shannon-Wiener指数
Shannon-Wiener
index
Peliou均匀度指数
Peliou evenness index
灌木层 Shrub 2.556 ± 0.335a 0.910 ± 0.040a
亚冠层 Sub-canopy 2.300 ± 0.529b 0.917 ± 0.033ab
林冠下层 Lower canopy 1.955 ± 0.334c 0.940 ± 0.027ab
林冠中层 Middle canopy 1.440 ± 0.497d 0.925 ± 0.232ab
林冠上层 Upper canopy 1.172 ± 0.519e 0.896 ± 0.275b

图2

鼎湖山塔吊样地各林层基于物种多度数据的β多样性大小(S?rensen相异性指数)与分解结果。(a)以灌木层为参照, 沿林层向上灌木层与其他各林层间β多样性大小和分解组分大小。(b)相邻两林层间的β多样性大小和分解组分大小。S: 灌木层; SC: 亚冠层; LC: 林冠下层; MC: 林冠中层; UC: 林冠上层。"

图3

鼎湖山塔吊样地所有个体树高分布散点图"

[1] Angeler DG ( 2013) Revealing a conservation challenge through partitioned long-term beta diversity: Increasing turnover and decreasing nestedness of boreal lake metacommunities. Diversity and Distributions, 19, 772-781.
doi: 10.1111/ddi.2013.19.issue-7
[2] Ashton PS, Hall P ( 1992) Comparisons of structure among mixed dipterocarp forests of north-western Borneo. Journal of Ecology, 80, 459-481.
doi: 10.2307/2260691
[3] Baselga A ( 2010) Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 19, 134-143.
doi: 10.1111/j.1466-8238.2009.00490.x
[4] Baselga A, Orme CDL ( 2012) Betapart: An R package for the study of beta diversity. Methods in Ecology and Evolution, 3, 808-812.
doi: 10.1111/j.2041-210X.2012.00224.x
[5] Baselga A ( 2013) Separating the two components of abundance-based dissimilarity: Balanced changes in abundance vs. abundance gradients. Methods in Ecology and Evolution, 4, 552-557.
doi: 10.1111/2041-210X.12029
[6] Brown JH ( 2001) Mammals on mountainsides: Elevational patterns of diversity. Global Ecology and Biogeography, 10, 101-109.
doi: 10.1046/j.1466-822x.2001.00228.x
[7] Chazdon RL, Chao A, Colwell RK, Lin SY, Norden N, Letcher SG, Clark DB, Arroyo JP ( 2011) A novel statistical method for classifying habitat generalists and specialists. Ecology, 92, 1332-1343.
doi: 10.1890/10-1345.1
[8] Chen SB, Ouyang ZY, Xu WH, Xiao Y ( 2010) A review of beta diversity studies. Biodiversity Science, 18, 323-335. (in Chinese with English abstract)
[ 陈圣宾, 欧阳志云, 徐卫华, 肖燚 ( 2010) Beta多样性研究进展. 生物多样性, 18, 323-335.]
[9] Condit R ( 1998) Tropical Forest Census Plots: Methods and Results from Barro Colorado Island, Panama and a Comparison with Other Plots. Springer-Verlag, Berlin.
[10] Dolnicar S, Grabler K, Mazanec JA ( 1999) A tale of three cities: Perceptual charting for analyzing destination images. In: Consumer Psychology of Tourism, Hospitality and Leisure (eds Sakai MY, Woodside AG, Crouch GI, Mazanec JA, Oppermann M), pp. 39-62. CAB International, New York.
[11] Fukami T ( 2015) Historical contingency in community assembly: Integrating niches, species pools, and priority effects. Annual Review of Ecology, Evolution and Systematics, 46, 1-23.
doi: 10.1146/annurev-ecolsys-110411-160340
[12] Gillespie TW, Brock J, Wright CW ( 2014) Prospects for quantifying structure, floristic composition and species richness of tropical forests. International Journal of Remote Sensing, 25, 707-715.
[13] Grubb PJ, Lloyd JR, Pennington TD, Whitmore TC ( 1963) A comparison of montane and lowland rain forest in ecuador. I. The forest structure, physiognomy, and floristics. Journal of Ecology, 51, 567-601.
doi: 10.2307/2257748
[14] Hao ZQ, Zhang J, Song B, Ye J, Li B ( 2007) Vertical structure and spatial associations of dominant tree species in an old- growth temperate forest. Forest Ecology and Management, 252, 1-11.
doi: 10.1016/j.foreco.2007.06.026
[15] Harms KE, Condit R, Hubbell SP, Foster RB ( 2001) Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. Journal of Ecology, 89, 947-959.
doi: 10.1111/jec.2001.89.issue-6
[16] Harrison S, Ross SJ, Lawton JH ( 1992) Beta diversity on geographic gradients in Britain. Journal of Animal Ecology, 61, 151-158.
doi: 10.2307/5518
[17] HilleRisLambers J, Adler PB, Harpole WS, Levine JM, Mayfield MM ( 2012) Rethinking community assembly through the lens of coexistence theory. Annual Review of Ecology, Evolution, and Systematics, 43, 227-248.
[18] Huang ZL, Kong GH, Wei P ( 1998) Plant species diversity dynamics in Dinghu Mountain forests. Chinese Biodiversity, 6, 116-121. (in Chinese with English abstract)
[ 黄忠良, 孔国辉, 魏平 ( 1998) 鼎湖山植物物种多样性动态. 生物多样性, 6, 116-121.]
[19] Latham PA, Zuuring HR, Coble DW ( 1998) A method for quantifying vertical forest structure. Forest Ecology and Management, 104, 157-170.
doi: 10.1016/S0378-1127(97)00254-5
[20] Legendre P ( 2014) Interpreting the replacement and richness difference components of beta diversity. Global Ecology and Biogeography, 23, 1324-1334.
doi: 10.1111/geb.12207
[21] Legendre P, De Cáceres M ( 2013) Beta diversity as the variance of community data: Dissimilarity coefficients and partitioning. Ecology Letters, 16, 951-963.
doi: 10.1111/ele.2013.16.issue-8
[22] Lennon JJ, Koleff P, Greenwood J, Gaston KJ ( 2001) The geographical structure of British bird distributions: Diversity, spatial turnover and scale. Journal of Animal Ecology, 70, 966-979.
doi: 10.1046/j.0021-8790.2001.00563.x
[23] Li DZ, Zang RG ( 2004) The research advances on the structure and function of forest canopy, as well as their temporal and spatial changes. World Forestry Research, 17(3), 12-16. (in Chinese with English abstract)
[ 李德志, 臧润国 ( 2004) 森林冠层结构与功能及其时空变化研究进展. 世界林业研究, 17(3), 12-16.]
[24] Li SP, Cadotte MW, Meiners SJ, Pu Z, Fukami T, Jiang L ( 2016) Convergence and divergence in a long-term old-field succession: The importance of spatial scale and species abundance. Ecology Letters, 19, 1101-1109.
doi: 10.1111/ele.12647
[25] Lowman MD, Rinker HB ( 2004) Forest Canopies, 2nd edn. Elsevier Academic Press, San Diego.
[26] Lowman MD, Wittman PK ( 1996) Forest canopies: Methods, hypotheses, and future directions. Annual Review of Ecology and Systematics, 27, 55-81.
doi: 10.1146/annurev.ecolsys.27.1.55
[27] Ma KP, Liu YM ( 1994) Measurement of biotic community diversity. I. α diversity (Part 2). Chinese Biodiversity, 2, 231-239. (in Chinese)
[ 马克平, 刘玉明 ( 1994) 生物群落多样性的测度方法. I. α多样性的测度方法(下). 生物多样性, 2, 231-239.]
[28] McCain CM, Beck J ( 2016) Species turnover in vertebrate communities along elevational gradients is idiosyncratic and unrelated to species richness. Global Ecology and Biogeography, 25, 299-310.
doi: 10.1111/geb.12410
[29] Neto RB ( 1989) Rain-forest canopy remains elusive. Nature, 340, 586.
[30] Perry DR ( 1978) A method of access into the crowns of emergent and canopy trees. Biotropica, 10, 155-157.
doi: 10.2307/2388019
[31] Pielou EC ( 1975) Ecological Diversity. Wiley, New York.
[32] Podani J, Schmera D ( 2011) A new conceptual and methodological framework for exploring and explaining pattern in presence-absence data. Oikos, 120, 1625-1638.
doi: 10.1111/j.1600-0706.2011.19451.x
[33] Rahbek C ( 2005) The role of spatial scale and the perception of large-scale species-richness patterns. Ecology Letters, 8, 224-239.
[34] Ricklefs RE ( 1987) Community diversity: Relative roles of local and regional processes. Science, 235, 167-171.
doi: 10.1126/science.235.4785.167
[35] Rosenzweig ML ( 1995) Species Diversity in Space and Time. Cambridge University Press, Cambridge.
[36] Shen H, Cai JN, Li MJ, Chen Q, Ye WH, Wang ZF, Lian JY, Song L ( 2017) On Chinese forest canopy biodiversity monitoring. Biodiversity Science, 25, 229-236. (in Chinese with English abstract)
[ 沈浩, 蔡佳宁, 李萌姣, 陈青, 叶万辉, 王峥峰, 练琚愉, 宋亮 ( 2017) 中国森林冠层生物多样性监测. 生物多样性, 25, 229-236.]
[37] Si XF, Baselga A, Leprieur F, Song X, Ding P ( 2016) Selective extinction drives taxonomic and functional alpha and beta diversities in island bird assemblages. Journal of Animal Ecology, 85, 409-418.
doi: 10.1111/1365-2656.12478
[38] Si XF, Zhao YH, Chen CW, Ren P, Zeng Y, Wu LB, Ding P ( 2017) Beta-diversity partitioning: Methods, applications and perspectives. Biodiversity Science, 25, 464-480. (in Chinese with English abstract)
[ 斯幸峰, 赵郁豪, 陈传武, 任鹏, 曾頔, 吴玲兵, 丁平 ( 2017) Beta多样性分解: 方法、应用与展望. 生物多样性, 25, 464-480.]
[39] Smith AP ( 1973) Stratification of temperate and tropical forests. The American Naturalist, 107, 671-683.
doi: 10.1086/282866
[40] Sun RY, Li QF, Niu CJ, Lou AR ( 2007) Foundations in Ecology, 2nd edn. Higher Education Press, Beijing. (in Chinese)
[ 孙儒泳, 李庆芬, 牛翠娟, 娄安如 ( 2007) 基础生态学(第二版). 高等教育出版社, 北京.]
[41] Ulrich W, Almeida-Neto M, Gotelli NJ ( 2009) A consumer’s guide to nestedness analysis. Oikos, 118, 3-17.
doi: 10.1111/oik.2009.118.issue-1
[42] Watt AS ( 1924) On the ecology of British beechwoods with special reference to their regeneration. Part II. The development and structure of beech communities on the Sussex Downs. Journal of Ecology, 12, 145-204.
doi: 10.2307/2255242
[43] Whittaker RH ( 1972) Evolution and measurement of species diversity. Taxon, 21, 213-215.
doi: 10.2307/1218190
[44] Williams PH ( 1996) Mapping variations in the strength and breadth of biogeographic transition zones using species turnover. Proceedings of the Royal Society of London B: Biological Sciences, 263, 579-588.
doi: 10.1098/rspb.1996.0087
[45] Wu Y, Liu WY, Song L, Chen X, Lu HZ, Li S, Shi XM ( 2016) Advances in ecological studies of epiphytes using canopy cranes. Chinese Journal of Plant Ecology, 40, 508-522. (in Chinese with English abstract)
[ 吴毅, 刘文耀, 宋亮, 陈曦, 卢华正, 李苏, 石贤萌 ( 2016) 基于林冠塔吊的附生植物生态学研究进展. 植物生态学报, 40, 508-522.]
[46] Yang L, Sun ZY, Tang GL, Lin ZW, Chen YQ, Li Y, Li Y ( 2016) Identifying canopy species of subtropical forest by lightweight unmanned aerial vehicle remote sensing. Tropical Geography, 36, 833-839. (in Chinese with English abstract)
[ 杨龙, 孙中宇, 唐光良, 林志文, 陈燕乔, 黎喻, 李勇 ( 2016) 基于微型无人机遥感的亚热带林冠物种识别. 热带地理, 36, 833-839.]
[47] Ye WH, Cao HL, Huang ZL, Lian JY, Wang ZG, Li L, Wei SG, Wang ZM ( 2008) Community structure of a 20 hm 2 lower subtropical evergreen broadleaved forest plot in Dinghushan, China . Journal of Plant Ecology (Chinese Version), 32, 274-286. (in Chinese with English abstract)
[ 叶万辉, 曹洪麟, 黄忠良, 练琚愉, 王志高, 李林, 魏识广, 王章明 ( 2008) 鼎湖山南亚热带常绿阔叶林20公顷样地群落特征研究. 植物生态学报, 32, 274-286.]
[48] Zhao J, Li J, Liu QH ( 2013) Review of forest vertical structure parameter inversion based on remote sensing technology. Journal of Remote Sensing, 17, 697-716. (in Chinese with English abstract)
[ 赵静, 李静, 柳钦火 ( 2013) 森林垂直结构参数遥感反演综述. 遥感学报, 17, 697-716.]
[49] Zhao MF, Xing KX, Wang YH ( 2017) Patterns and determinants of beta diversity in the understory vegetation layers of montane boreal conifer forest in Luya Mountain. Acta Ecologica Sinica, 37, 3327-3334. (in Chinese with English abstract)
[ 赵鸣飞, 邢开雄, 王宇航 ( 2017) 芦芽山寒温性针叶林冠层下植被beta多样性格局及其成因. 生态学报, 37, 3327-3334.]
[50] Zhao ZM, Guo YQ ( 1993) Principles and Methods of Community Ecology. Scientific and Technical Documents Publishing House, Chongqing. (in Chinese)
[ 赵志模, 郭依泉 ( 1993) 群落生态学原理与方法. 科技文献出版社重庆分社, 重庆.]
[51] Zhuang CY, Huang QL, Ma ZB, Luo F, Zhang Y ( 2014) Review on defining methods for canopy stratification. World Forestry Research, 27(6), 34-40. (in Chinese with English abstract)
[ 庄崇洋, 黄清麟, 马志波, 罗芬, 张寅 ( 2014) 林层划分方法综述. 世界林业研究, 27(6), 34-40.]
[1] 邢圆, 吴小平, 欧阳珊, 张君倩, 徐靖, 银森录, 谢志才. 赣江水系大型底栖动物多样性与受胁因子初探[J]. 生物多样性, 2019, 27(6): 648-657.
[2] 刘艳, 杨钰爽. 生物多样性保护优先区对重庆苔藓植物多样性保护的重要性[J]. 生物多样性, 2019, 27(6): 677-682.
[3] 张晓玲, 李亦超, 王芸芸, 蔡宏宇, 曾辉, 王志恒. 未来气候变化对不同国家茶适宜分布区的影响[J]. 生物多样性, 2019, 27(6): 595-606.
[4] 邵昕宁, 宋大昭, 黄巧雯, 李晟, 姚蒙. 基于粪便DNA及宏条形码技术的食肉动物快速调查及食性分析[J]. 生物多样性, 2019, 27(5): 543-556.
[5] 李晗溪, 黄雪娜, 李世国, 战爱斌. 基于环境DNA-宏条形码技术的水生生态系统入侵生物的早期监测与预警[J]. 生物多样性, 2019, 27(5): 491-504.
[6] 朱柏菁, 薛敬荣, 夏蓉, 靳苗苗, 吴攸, 田善义, 陈小云, 刘满强, 胡锋. 不同土壤线虫功能团对水稻生长及地上部植食者的影响[J]. 生物多样性, 2019, 27(4): 409-418.
[7] 马燕婕, 何浩鹏, 沈文静, 刘标, 薛堃. 转基因玉米对田间节肢动物群落多样性的影响[J]. 生物多样性, 2019, 27(4): 419-432.
[8] 赵阳,温源远. 《生物多样性公约》企业与生物多样性全球平台的发展情况及对中国的政策建议[J]. 生物多样性, 2019, 27(3): 339-346.
[9] 程毅康, 张辉, 王旭, 龙文兴, 李超, 方燕山, 符明期, 朱孔新. 功能多样性和谱系多样性对热带云雾林群落构建的影响[J]. 植物生态学报, 2019, 43(3): 217-226.
[10] 郝姝珺, 李晓宇, 侯嫚嫚, 赵秀海. 长白山温带森林不同演替阶段群落功能性状的空间变化[J]. 植物生态学报, 2019, 43(3): 208-216.
[11] 翁昌露,张田田,巫东豪,陈声文,金毅,任海保,于明坚,罗媛媛. 古田山10种主要森林群落类型的α和β多样性格局及影响因素[J]. 生物多样性, 2019, 27(1): 33-41.
[12] 钱海源,余建平,申小莉,丁平,李晟. 钱江源国家公园体制试点区鸟类多样性与区系组成[J]. 生物多样性, 2019, 27(1): 76-80.
[13] 代云川,薛亚东,张云毅,李迪强. 国家公园生态系统完整性评价研究进展[J]. 生物多样性, 2019, 27(1): 104-113.
[14] 刘安榕, 杨腾, 徐炜, 上官子健, 王金洲, 刘慧颖, 时玉, 褚海燕, 贺金生. 青藏高原高寒草地地下生物多样性: 进展、问题与展望[J]. 生物多样性, 2018, 26(9): 972-987.
[15] 李爱农, 尹高飞, 张正健, 谭剑波, 南希, 马克平, 郭庆华. 基于站点的生物多样性星空地一体化遥感监测[J]. 生物多样性, 2018, 26(8): 819-827.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed