生物多样性 ›› 2019, Vol. 27 ›› Issue (6): 595-606.doi: 10.17520/biods.2019085

• 研究报告 • 上一篇    下一篇

未来气候变化对不同国家茶适宜分布区的影响

张晓玲1, 2, 李亦超2, 王芸芸2, 蔡宏宇2, 曾辉1, *(), 王志恒2, *()   

  1. 1 北京大学城市规划与设计学院, 北京大学深圳研究生院, 广东深圳 518055
    2 北京大学城市与环境学院生态学系, 北京大学生态研究中心, 北京大学地表过程分析与模拟教育部重点实验室, 北京 100871
  • 收稿日期:2019-03-18 接受日期:2019-05-06 出版日期:2019-06-20
  • 通讯作者: 曾辉,王志恒 E-mail:zengh@pkusz.edu.cn;zhiheng.wang@pku.edu.cn
  • 基金项目:
    科技部重点研发计划(2017YFA0605101);国家自然科学基金(31522012);国家自然科学基金(31470564);国家自然科学基金(31621091)

Influence of future climate change in suitable habitats of tea in different countries

Zhang Xiaoling1, 2, Li Yichao2, Wang Yunyun2, Cai Hongyu2, Zeng Hui1, *(), Wang Zhiheng2, *()   

  1. 1 School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055
    2 Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871
  • Received:2019-03-18 Accepted:2019-05-06 Online:2019-06-20
  • Contact: Zeng Hui,Wang Zhiheng E-mail:zengh@pkusz.edu.cn;zhiheng.wang@pku.edu.cn

茶是对气候变化敏感的重要经济作物, 评价全球气候变化对茶分布和生产的影响对相关国家经济发展和茶农的生计至关重要。本研究基于全球858个茶分布点和6个气候因子数据, 利用物种分布模型预测全球茶的潜在适宜分布区及其在2070年的不同温室气体排放情景(RCP2.6和RCP8.5)下的变化。结果表明: 当前茶在五大洲均有适宜分布区, 主要集中在亚洲、非洲和南美洲, 并且最冷季平均温和最暖季降水量主导了茶的分布。预计2070年, 茶的适宜分布区变化在不同的大洲、国家和气候情景间将存在差异。具体来说, 茶的适宜分布区总面积将会减少, 减少的区域主要位于低纬度地区, 而中高纬度地区的适宜分布区将扩张, 由此可能导致茶的适宜分布区向北移动; 重要的产茶国中, 阿根廷、缅甸、越南等茶适宜分布区面积会减少57.8%-95.8%, 而中国和日本的适宜分布面积则会增加2.7%-31.5%。未来全球新增的适宜分布区中, 约有68%的地区土地覆盖类型为自然植被, 因此可能导致新茶树种植园的开垦和自然植被及生物多样性保护产生冲突。

关键词: 气候变化, 茶树种植, 物种分布模型, 生物多样性保护, 土地覆盖

Tea (Camellia sinensis) is an important crop and is sensitive to climate change. Evaluating the impact of climate change on tea distribution and production is not only important for the global economy but also the livelihoods of farmers in many countries. Here we compiled data from 858 global occurrences of C. sinensis and six climatic variables, and used species distribution model (SDM) to predict the current potential distribution and possible range shifts in response to climate change in 2070 under Representative Concentration Pathway 2.6 and 8.5 (RCP2.6 and RCP8.5). The results indicate that the current potential distribution of tea is mainly confined to Asia, Africa and South America, and distribution is limited by mean temperature of coldest quarter (MTCQ) and precipitation of warmest quarter (PWQ). Under future climate change scenarios, by 2070 suitable habitat for tea could significantly shrink at low latitudes, but expand at middle latitudes, leading to a northward shift of the distribution. However, the influence of future climate change on tea distribution differed across regions. The climatically suitable areas in Argentina, Myanmar, and Vietnam are projected to decrease by 57.8%-95.8%, whereas those in China and Japan are projected to increase by 2.7%-31.5%. Moreover, 68% of the new suitable habitat for tea cultivation under future climate change are predicted to lie within areas of natural vegetation cover. Therefore, the establishment of new tea gardens in these areas may lead to conflicts between tea cultivation and conservation of natural vegetation and biodiversity.

Key words: climate change, tea plantation, species distribution model, biodiversity conservation, land cover

表1

7个环境变量的平均重要性"

环境变量
Environmental variables
平均重要性
Mean importance
最冷季平均温 Mean temperature of coldest quarter 0.36
最暖季降水量 Precipitation of warmest quarter 0.27
降水季节性 Precipitation seasonality 0.09
平均气温日较差 Mean diurnal temperature range 0.06
最暖月最高温 Max temperature of warmest month 0.04
最干月降水量 Precipitation of driest month 0.03
土壤酸碱度 Soil pH 0.00

图1

6个气候变量的响应曲线"

图2

用于物种分布模型构建的茶分布点和预测的现在茶潜在分布(世界地图来源于https://www.naturalearthdata.com/down loads/50m-physical-vectors/)"

图3

预测的2070年不同气候情景下茶适宜分布区变化(世界地图来源于https://www.naturalearthdata.com/downloads/50m -physical-vectors/)"

表2

预测2070年不同气候情景下茶适宜分布区的变化(%)"

气候情景
Scenarios
新增的分布区
Gain
丧失的分布区
Loss
适宜分布面积的净变化
Net changes in suitable area
RCP2.6 9.1 18.6 -9.5
RCP8.5 14.2 31.1 -16.9

表3

未来不同气候情景下主要产茶国家的适宜分布区面积变化"

国家
Countries
当前适宜分布区
Current suitable area (km2)
适宜分布面积变化
Changes in suitable area (km2)
适宜分布面积变化比例
Changes in suitable area (%)
产量 (2016年)
Production (t)
RCP2.6 RCP8.5 RCP2.6 RCP8.5
中国 China 2,607,924 69,384 135,088 2.7 5.2 2,414,802
印度 India 315,323 -9,241 -25,162 -2.9 -8.0 1,252,174
肯尼亚 Kenya 17,994 -4,470 -5,834 -24.8 -32.4 473,000
斯里兰卡 Sri Lanka 9,356 -232 -3,323 -2.5 -35.5 349,308
土耳其 Turkey 2,765 654 -1,619 23.7 -58.6 243,000
越南 Vietnam 75,599 -43,657 -55,005 -57.8 -72.8 240,000
印度尼西亚 Indonesia 260,214 -31,551 -94,931 -12.1 -36.5 144,015
缅甸 Myanmar 38,221 -28,938 -35,895 -75.7 -93.9 102,404
阿根廷 Argentina 32,876 -31,085 -31,503 -94.6 -95.8 89,609
日本 Japan 279,395 27,910 87,979 10.0 31.5 80,200

图4

未来气候变化下, 茶适宜分布区面积变化最多的前10个国家。(a)适宜分布区面积减少; (b)适宜分布区面积增加。"

表4

不同未来气候情景下新增茶适宜分布区的来源"

土地覆盖类型
Land cover
新增适宜分布区的来源
Source of newly suitable areas (%)
RCP2.6 RCP8.5
森林 Forest 46.9 41.5
灌木 Shrub 5.4 8.0
草地 Grassland 15.9 19.4
耕地 Farmland 20.0 16.4
建设用地 Urban 0.5 0.3
其他 Others 11.2 14.4
[1] Ahmed S, Stepp JR, Orians C, Griffin T, Matyas C, Robbat A, Cash S, Xue D, Long C, Unachukwu U, Buckley S, Small D, Kennelly E ( 2014) Effects of extreme climate events on tea (Camellia sinensis) functional quality validate indigenous farmer knowledge and sensory preferences in tropical China. PLoS ONE, 9, e109126.
doi: 10.1371/journal.pone.0109126
[2] Allouche O, Tsoar A, Kadmon R ( 2006) Assessing the accuracy of species distribution models: Prevalence, Kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43, 1223-1232.
doi: 10.1111/jpe.2006.43.issue-6
[3] Araújo MB, Peterson AT ( 2012) Uses and misuses of bioclimatic envelope modeling. Ecology, 93, 1527-1539.
doi: 10.1890/11-1930.1
[4] Barbet-Massin M, Jiguet F, Albert CH, Thuiller W ( 2012) Selecting pseudo-absences for species distribution models: How, where and how many? Methods in Ecology and Evolution, 3, 327-338.
doi: 10.1111/j.2041-210X.2011.00172.x
[5] Bartholome E, Belward AS ( 2005) GLC2000: A new approach to global land cover mapping from Earth observation data. International Journal of Remote Sensing, 26, 1959-1977.
doi: 10.1080/01431160412331291297
[6] Campbell BM, Vermeulen SJ, Aggarwal PK, Corner-Dolloff C, Girvetz E, Loboguerrero AM, Ramirez-Villegas J, Rosenstock T, Sebastian L, Thornton PK, Wollenberg E ( 2016) Reducing risks to food security from climate change. Global Food Security, 11, 34-43.
doi: 10.1016/j.gfs.2016.06.002
[7] Carr M ( 1972) The climatic requirements of the tea plant: A review. Experimental Agriculture, 8, 1-14.
doi: 10.1017/S0014479700023449
[8] Chang K, Brattlof M ( 2015) Socio-Economic Implications of Climate Change for Tea Producing Countries. Rome, FAO.
[9] Chen L, Zhou ZX ( 2005) Variations of main quality components of tea genetic resources [Camellia sinensis (l.) O. Kuntze] preserved in the China National Germplasm Tea Repository. Plant Foods for Human Nutrition, 60, 31-35.
doi: 10.1007/s11130-005-2540-1
[10] Chen ZM, Chen L ( 2012) Delicious and healthy tea: An overview. In: Global Tea Breeding. Advanced Topics in Science and Technology in China (eds Chen L, Apostolides Z, Chen ZM), pp. 1-11. Springer, Berlin, Heidelberg.
[11] Cobos ME, Peterson AT, Barve N, Osorio-Olvera L ( 2019) kuenm: An R package for detailed development of ecological niche models using Maxent. PeerJ, 7, e6281.
doi: 10.7717/peerj.6281
[12] Davis AP, Gole TW, Baena S, Moat J ( 2012) The impact of climate change on indigenous Arabica coffee (Coffea arabica): Predicting future trends and identifying priorities. PLoS ONE, 7, e47981.
doi: 10.1371/journal.pone.0047981
[13] De Costa W, Mohotti AJ, Wijeratne MA ( 2007) Ecophysiology of tea. Brazilian Journal of Plant Physiology, 19, 299-332.
doi: 10.1590/S1677-04202007000400005
[14] Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S ( 2013) Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36, 27-46.
doi: 10.1111/j.1600-0587.2012.07348.x
[15] Duncan J, Saikia S, Gupta N, Biggs E ( 2016) Observing climate impacts on tea yield in Assam, India. Applied Geography, 77, 64-71.
doi: 10.1016/j.apgeog.2016.10.004
[16] Eden T ( 1965) Tea Tropical Agriculture Series. Longman, London.
[17] Eitzinger A, Läderach P, Quiroga A, Pantoja A, Gordon J ( 2011 a) Future Climate Scenarios for Kenya’s Tea Growing Areas. International Center for Tropical Agriculture (CIAT), Cali, Colombia.
[18] Eitzinger A, Läderach P, Quiroga A, Pantoja A, Gordon J ( 2011 b) Future Climate Scenarios for Uganda’s Tea Growing Areas. International Center for Tropical Agriculture (CIAT), Cali, Colombia.
[19] Food and Agriculture Organization of the United Nations ( FAO) ( 2016) FAOSTAT Database. http://www.fao.org/ faostat/en/#data. (accessed on 2018-12-24)
[20] Gallien L, Münkemüller T, Albert CH, Boulangeat I, Thuiller W ( 2010) Predicting potential distributions of invasive species: Where to go from here? Diversity and Distributions, 16, 331-342.
doi: 10.1111/j.1472-4642.2010.00652.x
[21] Han W, Li X, Yan P, Zhang L, Ahammed GJ ( 2018) Tea cultivation under changing climatic conditions. In: Global Tea Science (eds Sharma VS, Kumudini GMT), pp. 455-472. Burleigh Dodds Science Publishing Limited, Cambridge.
[22] Hannah L, Roehrdanz PR, Ikegami M, Shepard AV, Shaw MR, Tabor G, Zhi L, Marquet PA, Hijmans RJ ( 2013) Climate change, wine, and conservation. Proceedings of the National Academy of Sciences, USA, 110, 6907-6912.
doi: 10.1073/pnas.1210127110
[23] Huang SB ( 1981) Agrometeorological index for tea growth. Chinese Journal of Agrometeorology, 2(3), 54-58. (in Chinese)
[ 黄寿波 ( 1981) 茶树生长的农业气象指标. 农业气象, 2(3), 54-58.]
[24] Huang SB, Fan XH, Yao GK ( 1993) Microclimate in tea tree crown and its effect on growth, development and biochemical composition of new shoots. Chinese Journal of Applied Ecology, 4, 99-101. (in Chinese with English abstract)
[ 黄寿波, 范兴海, 姚国坤 ( 1993) 丛栽茶树树冠小气候及其对新梢生育和生化成分的影响. 应用生态学报, 4, 99-101.]
[25] Imbach P, Fung E, Hannah L, Navarro-Racines CE, Roubik DW, Ricketts TH, Harvey CA, Donatti CI, Laderach P, Locatelli B, Roehrdanz PR ( 2017) Coupling of pollination services and coffee suitability under climate change. Proceedings of the National Academy of Sciences, USA, 114, 10438-10442.
doi: 10.1073/pnas.1617940114
[26] IPCC( 2013) Climate change 2013: The physical science basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
[27] Jin ZF, Yang D, Yao YP, Li RZ, Wang ZH ( 2016) Assessment on climatic potential productivity of tea in Zhejiang Province. Chinese Journal of Ecology, 35, 1791-1798. (in Chinese with English abstract)
[ 金志凤, 杨栋, 姚益平, 李仁忠, 王治海 ( 2016) 浙江省茶叶气候生产潜力评估. 生态学杂志, 35, 1791-1798.]
[28] Jin ZF, Ye JG, Yang ZQ, Sun R, Hu B, Li RZ ( 2014) Climate suitability for tea growing in Zhejiang Province. Chinese Journal of Applied Ecology, 25, 967-973. (in Chinese with English abstract)
[ 金志凤, 叶建刚, 杨再强, 孙睿, 胡波, 李仁忠 ( 2014) 浙江省茶叶生长的气候适宜性. 应用生态学报, 25, 967-973.]
[29] Larson C ( 2015) Reading the tea leaves for effects of climate change. Science, 348, 953-954.
doi: 10.1126/science.348.6238.953
[30] Li HM, Ma YX, Liu WJ, Liu WJ ( 2012) Soil changes induced by rubber and tea plantation establishment: Comparison with tropical rain forest soil in Xishuangbanna, SW China. Environmental Management, 50, 837-848.
doi: 10.1007/s00267-012-9942-2
[31] Liaw A, Wiener M ( 2002) Classification and regression by randomForest. R News, 2, 18-22.
[32] Lobell DB, Schlenker W, Costa-Roberts J ( 2011) Climate trends and global crop production since 1980. Science, 333, 616-620.
doi: 10.1126/science.1204531
[33] McCullagh P, Nelder JA ( 1989) Generalized Linear Models. CRC Press, Boca Raton, USA.
[34] Mondal TK, Bhattacharya A, Laxmikumaran M, Ahuja PS ( 2004) Recent advances of tea (Camellia sinensis) biotechnology. Plant Cell, Tissue and Organ Culture, 76, 195-254.
doi: 10.1023/B:TICU.0000009254.87882.71
[35] Mukhopadhyay M, Mondal TK ( 2017) Cultivation, Improvement, and Environmental Impacts of Tea. Oxford University Press, Oxford.
[36] Nemec-Boehm RL, Cash SB, Anderson BT, Ahmed S, Griffin TS, Orians CM, Robbat AJ, Stepp RA, Han WY ( 2014) Climate change, the monsoon, and tea yields in China. Agricultural and Applied Economics Association’s 2014 AAEA Annual Meeting, Minnesota.
[37] Nowogrodzki A ( 2019) How climate change might affect tea. Nature, 566, S10.
doi: 10.1038/d41586-019-00399-0
[38] Ochieng J, Kirimi L, Mathenge M ( 2016) Effects of climate variability and change on agricultural production: The case of small scale farmers in Kenya. NJAS-Wageningen Journal of Life Sciences, 77, 71-78.
doi: 10.1016/j.njas.2016.03.005
[39] Ovalle-Rivera O, Laderach P, Bunn C, Obersteiner M, Schroth G ( 2015) Projected shifts in Coffea arabica suitability among major global producing regions due to climate change. PLoS ONE, 10, e0124155.
doi: 10.1371/journal.pone.0124155
[40] Owuor PO, Wachira FN, Ng’etich WK ( 2010) Influence of region of production on relative clonal plain tea quality parameters in Kenya. Food Chemistry, 119, 1168-1174.
doi: 10.1016/j.foodchem.2009.08.032
[41] Parry M, Canziani O, Palutikof J, van der Linden PJ, Hanson CE ( 2007) Climate Change 2007: Impacts, Adaptation and Vulnerability. Cambridge University Press, Cambridge.
[42] Pearson RG, Dawson TP ( 2003) Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Global Ecology and Biogeography, 12, 361-371.
doi: 10.1046/j.1466-822X.2003.00042.x
[43] Peterson AT, Papeş M, Soberón J ( 2008) Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling, 213, 63-72.
doi: 10.1016/j.ecolmodel.2007.11.008
[44] Phillips SJ, Anderson RP, Schapire RE ( 2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259.
doi: 10.1016/j.ecolmodel.2005.03.026
[45] Pineda E, Lobo JM ( 2009) Assessing the accuracy of species distribution models to predict amphibian species richness patterns. Journal of Animal Ecology, 78, 182-190.
doi: 10.1111/jae.2009.78.issue-1
[46] R Core Team ( 2017) R: A Language and Environment for Statistical Computing. https://www.R-project.org/. ( accessed on 2019-01-13)
[47] Schmidhuber J, Tubiello FN ( 2007) Global food security under climate change. Proceedings of the National Academy of Sciences, USA, 104, 19703-19708.
doi: 10.1073/pnas.0701976104
[48] Schroth G, Läderach P, Martinez-Valle AI, Bunn C, Jassogne L ( 2016) Vulnerability to climate change of cocoa in West Africa: Patterns, opportunities and limits to adaptation. Science of the Total Environment, 556, 231-241.
doi: 10.1016/j.scitotenv.2016.03.024
[49] Thuiller W, Lafourcade B, Engler R, Araújo MB ( 2009) BIOMOD—A platform for ensemble forecasting of species distributions. Ecography, 32, 369-373.
doi: 10.1111/eco.2009.32.issue-3
[50] Wijeratne M, Anandacoomaraswamy A, Amarathunga M, Ratnasiri J, Basnayake B, Kalra N ( 2007) Assessment of impact of climate change on productivity of tea (Camellia sinensis L.) plantations in Sri Lanka. Journal of the National Science Foundation of Sri Lanka, 35, 119-126.
doi: 10.4038/jnsfsr.v35i2.3676
[51] Wu TW, Song LC, Li WP, Wang ZZ, Zhang H, Xin XG, Zhang YW, Zhang L, Li JL, Wu FH ( 2014) An overview of BCC climate system model development and application for climate change studies. Journal of Meteorological Research, 28, 34-56.
[52] Yan YJ, Li Y, Wang WJ, He JS, Yang RH, Wu HJ, Wang XL, Jiao L, Tang ZY, Yao YJ ( 2017) Range shifts in response to climate change of Ophiocordyceps sinensis, a fungus endemic to the Tibetan Plateau. Biological Conservation, 206, 143-150.
doi: 10.1016/j.biocon.2016.12.023
[53] Zhu GP, Fan JY, Wang ML, Chen M, Qiao HJ ( 2017) The importance of the shape of receiver operating characteristic (ROC) curve in ecological model evaluation—Case study of Hlyphantria cunea. Journal of Biosafety, 26, 184-190. (in Chinese with English abstract)
[ 朱耿平, 范靖宇, 王梦琳, 陈敏, 乔慧捷 ( 2017) ROC曲线形状在生态位模型评价中的重要性——以美国白蛾为例. 生物安全学报, 26, 184-190.]
[1] 赵阳,温源远. 《生物多样性公约》企业与生物多样性全球平台的发展情况及对中国的政策建议[J]. 生物多样性, 2019, 27(3): 339-346.
[2] 余建平,申云逸,宋小友,陈小南,李晟,申小莉. 钱江源国家公园体制试点区功能分区对黑麂保护的有效性评估[J]. 生物多样性, 2019, 27(1): 5-12.
[3] 温晓示, 陈彬杭, 张树斌, 徐凯, 叶新宇, 倪伟杰, 王襄平. 不同林龄、树种落叶松人工林径向生长与气候变化的关系[J]. 植物生态学报, 2019, 43(1): 27-36.
[4] 刘安榕, 杨腾, 徐炜, 上官子健, 王金洲, 刘慧颖, 时玉, 褚海燕, 贺金生. 青藏高原高寒草地地下生物多样性: 进展、问题与展望[J]. 生物多样性, 2018, 26(9): 972-987.
[5] 刘秀嶶, Douglas Chesters, 武春生, 周青松, 朱朝东. 环境变化对中国野生蜜蜂多样性的影响[J]. 生物多样性, 2018, 26(7): 760-765.
[6] 周彤,曹入尹,王少鹏,陈晋,唐艳鸿. 中国草地和欧洲木本植物返青期对气温和降水变化的响应: 基于生存分析的研究[J]. 植物生态学报, 2018, 42(5): 526-538.
[7] 贾翔宇, 白彬, 张洁清, 黄艺. IPBES评估报告对全球生物多样性保护的影响——以美国传粉者保护政策为例[J]. 生物多样性, 2018, 26(5): 527-534.
[8] 孙元丰, 万宏伟, 赵玉金, 陈世苹, 白永飞. 中国草地生态系统根系周转的空间格局和驱动因子[J]. 植物生态学报, 2018, 42(3): 337-348.
[9] 武启骞, 王传宽. 控雪处理下红松和蒙古栎凋落叶分解动态[J]. 植物生态学报, 2018, 42(2): 153-163.
[10] 武晓宇, 董世魁, 刘世梁, 刘全儒, 韩雨晖, 张晓蕾, 苏旭坤, 赵海迪, 冯憬. 基于MaxEnt模型的三江源区草地濒危保护植物热点区识别[J]. 生物多样性, 2018, 26(2): 138-148.
[11] 乔慧捷, 汪晓意, 王伟, 罗振华, 唐科, 黄燕, 杨胜男, 曹伟伟, 赵新全, 江建平, 胡军华. 从自然保护区到国家公园体制试点: 三江源国家公园环境覆盖的变化及其对两栖爬行类保护的启示[J]. 生物多样性, 2018, 26(2): 202-209.
[12] 吕丽莎, 蔡宏宇, 杨永, 王志恒, 曾辉. 中国裸子植物的物种多样性格局及其影响因子[J]. 生物多样性, 2018, 26(11): 1133-1146.
[13] 赵阳, 温源远, 杨礼荣, 李宏涛. 推动中国企业参与《生物多样性公约》全球伙伴关系的机制建设[J]. 生物多样性, 2018, 26(11): 1249-1254.
[14] 张晓珂, 梁文举, 李琪. 我国土壤线虫生态学研究进展和展望[J]. 生物多样性, 2018, 26(10): 1060-1073.
[15] 张莉, 王根绪, 冉飞, 彭阿辉, 肖瑶, 杨阳, 杨燕. 模拟增温改变川西高山草甸优势植物繁殖物候序列特征[J]. 植物生态学报, 2018, 42(1): 20-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed