生物多样性 ›› 2019, Vol. 27 ›› Issue (5): 491-504.doi: 10.17520/biods.2018233

• 综述 • 上一篇    下一篇

基于环境DNA-宏条形码技术的水生生态系统入侵生物的早期监测与预警

李晗溪1, 2, 黄雪娜1, 李世国1, 2, 战爱斌1, 2, *()   

  1. 1 中国科学院生态环境研究中心环境生物技术重点实验室, 北京 100085
    2 中国科学院大学资源与环境学院, 北京 100049
  • 收稿日期:2018-09-04 接受日期:2019-05-07 出版日期:2019-05-20
  • 通讯作者: 战爱斌 E-mail:azhan@rcees.ac.cn
  • 基金项目:
    国家自然科学基金优秀青年科学基金(31622011)

Environmental DNA (eDNA)-metabarcoding-based early monitoring and warning for invasive species in aquatic ecosystems

Li Hanxi1, 2, Huang Xuena1, Li Shiguo1, 2, Zhan Aibin1, 2, *()   

  1. 1 Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085
    2 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049
  • Received:2018-09-04 Accepted:2019-05-07 Online:2019-05-20
  • Contact: Zhan Aibin E-mail:azhan@rcees.ac.cn

外来生物入侵是继生境破坏后造成生物多样性丧失的第二大威胁因素, 已对入侵地的生态安全、经济和社会发展及人类健康等造成严重负面影响, 成为21世纪五大全球性环境问题之一。作为水产养殖、航运和水生宠物交易大国, 我国水生生态系统的生物入侵问题尤为严重。研究表明, 系统地构建并应用早期监测预警技术是防控水生生态系统生物入侵最有效的途径。和陆生生物相比, 水生生物群落的物种繁多、群落结构复杂、生物形体微小且在入侵初期群体规模极小、隐匿于水下、可用于物种鉴定的外部形态缺乏, 使得在水生生态系统中构建并应用早期监测和预警体系在技术层面更具挑战。随着高通量测序技术的快速发展, 环境DNA-宏条形码技术成为构建水生生态系统入侵生物早期监测与预警技术的首选。本文主要综述了基于环境DNA-宏条形码技术的水生生态系统入侵生物的早期监测与预警技术方法; 解析了环境DNA-宏条形码监测系统的应用现状、技术优势; 着重探讨了影响监测结果准确性的I型和II型错误及其产生原因, 并为避免两类错误提供了可行的优化/改进方案; 最后对该方法在水生入侵生物监测中的应用前景进行了展望。

关键词: 生物入侵, DNA-宏条形码, 生物多样性, 水生生态系统, 早期监测与预警, I型错误, II型错误

Biological invasion is a major threat to multiple ecosystems across the globe, causing severe damages to ecological integrity, loss of biodiversity, economic and social development and even human health. With the rapid development in aquaculture, shipping and aquarium and ornamental trades in the past several decades, China has become one of the countries most influenced by invasive species. Studies have clearly shown that the development and application of robust early monitoring and warning is one of the most effective ways to prevent and possibly control invasive species in aquatic ecosystems. Compared to terrestrial ecosystems, there remain several technical difficulties for developing early monitoring and warning in aquatic habitats. The technical challenges are mainly due to several features of aquatic biological communities such as high biodiversity and complex structure, a large number of microscopic species, extremely low population density and lack of available taxonomic keys for species identification. With the rapid development of high-throughput sequencing techniques, environmental DNA (eDNA)-metabarcoding has become the top priority method for developing the early monitoring and warning programs in aquatic ecosystems. In this review, we aim to synthesize the research progress on eDNA-metabarcoding and its application to early monitoring and warning of invasive species in aquatic ecosystems. In addition, we briefly discuss the technological advantages of eDNA-metabarcoding for the early monitoring and warning programs. Finally, we propose research perspectives for solutions to technical issues for false positive and false negative errors in the eDNA-metabarcoding process.

Key words: biological invasion, DNA metabarcoding, biodiversity, aquatic ecosystems, early monitoring and warning, type I error, type II error

Table 1

Application examples of environmental DNA-metabarcoding in aquatic ecosytema"

图1

基于环境DNA-宏条形码技术的水生入侵生物早期监测与预警技术现存的主要问题及可能的解决方案"

[1] Avó AP, Daniell TJ, Neilson R, Oliveira S, Branco J, Adão H ( 2017) DNA barcoding and morphological identification of benthic nematodes assemblages of estuarine intertidal sediments: Advances in molecular tools for biodiversity assessment. Frontiers in Marine Science, 4, 66.
[2] Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P, Kauserud H ( 2010) ITS as an environmental DNA barcode for fungi: An in silico approach reveals potential PCR biases. BMC Microbiology, 10, 189.
[3] Brannock PM, Ortmann AC, Moss AG, Halanych KM ( 2016) Metabarcoding reveals environmental factors influencing spatiotemporal variation in pelagic microeukaryotes. Molecular Ecology, 25, 3593-3604.
[4] Bråte J, Logares R, Berney C, Ree DK, Klaveness D, Jakobsen KS, Tabrizi KS ( 2010) Freshwater Perkinsea and marine- freshwater colonizations revealed by Pyrosequencing and phylogeny of environmental rDNA. The ISME Journal, 4, 1144-1153.
[5] Briski E, Cristescu ME, Bailey SA, MacIsaac HJ ( 2011) Use of DNA barcoding to detect invertebrate invasive species from diapausing eggs. Biological Invasions, 13, 1325-1340.
[6] Boessenkool S, Epp LS, Haile J, Bellemain E ( 2012) Blocking human contaminant DNA during PCR allows amplification of rare mammal species from sedimentary ancient DNA. Molecular Ecology, 21, 1806-1815.
[7] Bourlat SJ, Borja A, Gilbert J, Taylor MI, Davies N, Weisberg SB, Griffith JF, Lettieri J, Field D, Benzie J, Glpckner FO, Rodríguez-Ezpeleta N, Faith DP, Bean TP, Obst M ( 2013) Genomics in marine monitoring: New opportunities for assessing marine health status. Marine Pollution Bulletin, 74, 19-31.
[8] Bucklin A, Ortman BD, Jennings RM, Nigro LM, Sweetman CJ, Copley NJ, Suttonb T, Wiebec PH ( 2010) A “Rosetta Stone” for metazoan zooplankton: DNA barcode analysis of species diversity of the Sargasso Sea (Northwest Atlantic Ocean). Deep-Sea Research Part II: Topical Studies in Oceanography, 57, 2234-2247.
[9] Carlsen T, Aas AB, Lindner D, Vrålstad T, Chumacher T, Kauserud H ( 2012) Don’t make a mistake: Is tag switching an overlooked source of error in amplicon Pyrosequencing studies? Fungal Ecology, 5, 747-749.
[10] Chen L, Wu L, Liu Y, Xu HG ( 2016) Application of environmental DNA metabarcoding in ecology. Acta Ecologica Sinica, 36, 4573-4582. (in Chinese with English abstract)
[ 陈炼, 吴琳, 刘燕, 徐海根 ( 2016) 环境DNA metabarcoding及其在生态学研究中的应用. 生态学报, 36, 4573-4582.]
[11] Chen Y, Sun C, Zhan A ( 2017) Biological invasions in aquatic ecosystems in China. Aquatic Ecosystem Health & Management, 10, 402-412.
[12] Chen YY, Gao YC, Peng H, Xiong W, Li SG, Zhan AB ( 2018) Community structure of benthic macroinvertebrates and water quality assessment in the Songhua River. Journal of Biosafety, 27(2), 95-104. (in Chinese with English abstract)
[ 陈义永, 高养春, 彭衡, 熊薇, 李世国, 战爱斌 ( 2018) 松花江流域大型底栖动物群落结构与水质评价. 生物安全学报, 27(2), 95-104.]
[13] Cheung MK, Au CH, Chu KH ( 2010) Composition and genetic diversity of picoeukaryotes in subtropical coastal waters as revealed by 454 Pyrosequencing. The ISME Journal, 4, 1053-1059.
[14] Darling JA, Mahon AR ( 2011) From molecules to management: Adopting DNA-based methods for monitoring biological invasions in aquatic environments. Environmental Research, 111, 978-988.
[15] Davey ML, Kauserud H, Ohlson M ( 2014) Forestry impacts on the hidden fungal biodiversity associated with bryophytes. FEMS Microbiology Ecology, 90, 313-325.
[16] Deagle BE, Jarman SN, Coissac E, Pompanon F, Taberlet P ( 2014) DNA metabarcoding and the cytochrome C oxidase subunit I marker: Not a perfect match. Biology Letters, 10, 20140562.
[17] Dudgeon D, Arthington AH, Gessner MO ( 2006) Freshwater biodiversity: Importance, threats, status and conservation challenges. Biological Reviews, 81, 163-182.
[18] Emily AB, Frederic JJ, Zhan A, Hugh JM, Melania EC ( 2016) Detection of aquatic invaders using metabarcoding reveals a high number of non-indigenous species in Canadian ports. Diversity and Distributions, 22, 1045-1059.
[19] Egan SP, Grey E, Olds B ( 2015) Rapid molecular detection of invasive species in ballast and harbor water by integrating environmental DNA and light transmission sectroscopy. Environmental Science & Technology, 49, 4113-4121.
[20] Elbrecht V, Taberlet P, Dejean T, Valentini A, Usseglio- Polatera P, Beisel JN, Coissac E, Boyer F, Leese F ( 2016) Testing the potential of a ribosomal 16S marker for DNA metabarcoding of insects. PeerJ, 4, e1966.
[21] Engelbrektson A, Kunin V, Wrighton K, Zvenigorodsky N, Chen F, Ochman H, Hugenholtz P ( 2010) Experimental factors affecting PCR-based estimates of microbial species richness and evenness. The ISME Journal, 4, 642-647.
[22] Ficetola GF, Miaud C, Pompanon F, Taberlet P ( 2008) Species detection using environmental DNA from water samples. Biology Letters, 4, 423-425.
[23] Ficetola GF, Pansu J, Bonin A, Coissac E, Giguet-Covex C, De Barba M, Gielly L, Lopes CM, Boyer F, Pompanon F, Rayé G, Taberlet P ( 2015) Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data. Molecular Ecology Resources, 15, 543-556.
[24] Galand PE, Casamayor EO, Kirchman DL ( 2009) Unique archaeal assemblages in the Arctic Ocean unveiled by massively parallel tag sequencing. The ISME Journal, 3, 860-869.
[25] Goldberg CS, Sepulveda A, Ray A, Baumgardt J, Waits LP ( 2013) Environmental DNA as a new method for early detection of New Zealand mudsnails (Potamopyrgus antipodarum). Freshwater Science, 32, 792-800.
doi: 10.1899/13-046.1
[26] Hao YB, Zhang AJ, Liu JD, Gu ZM ( 2018) Application of environmental DNA technology in the study of fish resources. Biotechnology Bulletin, 34(12), 56-62. (in Chinese with English abstract)
[ 郝雅宾, 张爱菊, 刘金殿, 顾志敏 ( 2018) 环境DNA技术在鱼类资源研究中的应用. 生物技术通报, 34(12), 56-62.]
[27] Hajibabaei M, Shokralla S, Zhou X ( 2011) Environmental barcoding: A next-generation sequencing approach for biomonitoring applications using river benthos. PLoS ONE, 6, e17497.
[28] Hambler C, Henderson PA, Speight MR ( 2011) Extinction rates, extinction-prone habitats, and indicator groups in Britain and at larger scales. Biological Conservation, 144, 713-721.
[29] Holland RA, Darwall WRT, Smith KG ( 2012) Conservation priorities for freshwater biodiversity: The key biodiversity area approach refined and tested for continental Africa. Biological Conservation, 148, 167-179.
[30] Jerde CL, Mahon AR, Chadderton WL, Lodge DM ( 2011) ‘‘Sight-unseen’’ detection of rare aquatic species using environmental DNA. Conservation Letters, 4, 150-157.
doi: 10.1111/conl.2011.4.issue-2
[31] Jiang W, Wang QJ, Deng J ( 2016) Protocol optimization of eDNA analysis workflow for detecting Hucho bleekeri. Chinese Journal of Applied Ecology, 27, 2372-2378. (in Chinese with English abstract)
[ 姜维, 王启军, 邓捷 ( 2016) 以川陕哲罗鲑为目标物种的水样环境DNA分析流程的优化. 应用生态学报, 27, 2372-2378.]
[32] Ju RT, Li H, Shih CJ, Li B ( 2012) Progress of biological invasions research in China over the last decade. Biodiversity Science, 20, 581-611. (in Chinese with English abstract)
[ 鞠瑞亭, 李慧, 石正人, 李博 ( 2012) 近十年中国生物入侵研究进展. 生物多样性, 20, 581-611.]
[33] Kanagawa T ( 2003) Bias and artifacts in multitemplate polymerase chain reactions (PCR). Journal of Bioscience and Bioengieering, 96, 317-323.
[34] Kauserud H, Kumar S, Brysting AK, Norden J, Carlsen T ( 2012) High consistency between replicate 454 Pyrosequencing analyses of ectomycorrhizal plant root samples. Mycorrhiza, 22, 309-315.
[35] Kelly RP, Port JA, Yamahara KM, Crowder LB ( 2014) Using environmental DNA to census marine fishes in a large mesocosm. PLoS ONE, 9, e86175.
[36] Keskin E, Atar HH ( 2013) DNA barcoding commercially important fish species of Turkey. Molecular Ecology Resources, 13, 788-797.
[37] Kunin V, Engelbrektson A, Ochman H, Hugenholtz P ( 2010) Wrinkles in the rare biosphere: Pyrosequencing errors can lead to artificial inflation of diversity estimates. Environmental Microbiology, 12, 118-123.
[38] Lang DD, Tang M, Zhou X ( 2018) Qualitative and quantitative molecular construction of plant-pollinator network: Application and prospective. Biodiversity Science, 26, 445-456. (in Chinese with English abstract)
[ 郎丹丹, 唐敏, 周欣 ( 2018) 传粉网络构建的定性定量分子研究: 应用与展望. 生物多样性, 26, 445-456.]
[39] Leray M, Yang JY, Meyer CP, Mills SC, Agudelo N ( 2013) A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: Application for characterizing coral reef fish gut contents. Frontiers in Zoology, 10, 34.
[40] Levy-Booth DJ, Campbell RG, Gulden RH, Hart MM, Powell JR ( 2007) Cycling of extracellular DNA in the soil environment. Soil Biology and Biochemistry, 39, 2977-2991.
[41] Li FL, Yang JH, Yang YN, Zhang XW ( 2018) Using environmental DNA metabarcoding to monitor the changes and health status of aquatic ecosystems. Environmental Monitoring in China, 34(6), 37-46. (in Chinese with English abstract)
[ 李飞龙, 杨江华, 杨雅楠, 张效伟 ( 2018) 环境DNA宏条形码监测水生态系统变化与健康状态. 中国环境监测, 34(6), 37-46.]
[42] Li Q, Wu JG, Kou XJ ( 2013) Applications of camera trap in wildlife population ecology. Chinese Journal of Applied Ecology, 24, 947-955. (in Chinese with English abstract)
[ 李勤, 邬建国, 寇晓军 ( 2013) 相机陷阱在野生动物种群生态学中的应用. 应用生态学报, 24, 947-955.]
[43] Lin Y, Gao Z, Zhan A ( 2015) Introduction and use of non-native species for aquaculture in China: Status, risks and management solutions. Reviews Aquaculture, 7, 28-58.
[44] Liu FM, Miu JL, Zheng Z, Wang YB ( 2007) Present situation, hazards and prevention and control measures of marine invasive alien species into China. Coastal Engineering, 26(4), 49-57. (in Chinese with English abstract)
[ 刘芳明, 缪锦来, 郑洲, 王以斌 ( 2007) 中国外来海洋生物入侵的现状、危害及其防治对策. 海岸工程, 26(4), 49-57.]
[45] Lockwood JL, Hoopes MF, Marchetti MP ( 2013) Invasion Ecology, 2nd edn. Blackwell Scientific Publications, Chichester, West Sussex.
[46] MacKenzie DIM, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA ( 2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology, 83, 2248-2255.
[47] Ma HJ, Stewart K, Ma LM, Ren WW, Zhao JF ( 2016) Environmental DNA and its application in protecting aquatic ecosystem. Chinese Journal of Ecology, 35, 516-523. (in Chinese with English abstract)
[ 马鸿娟, Stewart K, 马利民, 任文伟, 赵建夫 ( 2016) 环境DNA及其在水生生态系统保护中的应用. 生态学杂志, 35, 516-523.]
[48] McDonald LL ( 2004) Sampling rare populations. In: Sampling Rare or Elusive Species: Concepts, Designs, and Techniques for Estimating Population Parameters (ed. Thompson WL), pp. 11-42.Island Press,New York.
[49] Odelberg SJ, Weiss RB, Hata A, White R ( 1995) Template- switching during DNA synthesis by Therms aquaticus DNA polymerase. Nucleic Acids Research, 23, 2049-2057.
doi: 10.1093/nar/23.11.2049
[50] Pagenkopp LKM, Fleischer RC, Carney KJ, Holzer KK, Ruiz GM ( 2016) Amplicon-based Pyrosequencing reveals high diversity of protistan parasites in ships’ ballast water: Implications for biogeography and infectious diseases. Microbiology Ecology, 71, 530-542.
[51] Pietramellara G ( 2009) Extracellular DNA in soil and sediment: Fate and ecological relevance. Biology and Fertility of Soils, 45, 219-235.
[52] Polz MF, Cavanaugh CM ( 1998) Bias in template-to-product ratios in multitemplate PCR. Applied and Environmental Microbiology, 64, 3724-3730.
[53] Prosser JI ( 2010) Replicate or lie. Environmental Microbiology, 12, 1806-1810.
doi: 10.1111/j.1462-2920.2010.02201.x
[54] Pysek P, Richardson DM ( 2010) Invasive species, environmental change and management, and health. Annual Review of Environment and Resources, 35, 25-55.
[55] Rees HC, Maddison BC, Middleditch DJ ( 2014) The detection of aquatic animal species using environmental DNA: A review of eDNA as a survey tool in ecology. Journal of Applied Ecology, 51, 1450-1459.
[56] Saunders GW ( 2005) Applying DNA barcoding to red macroalgae: A preliminary appraisal holds promise for future applications. Philosophical Transactions of the Royal Society B: Biological Sciences, 360, 1879-1888.
[57] Schmieder R, Edwards R ( 2011) Fast identification and removal of sequence contamination from genomic and metagenomic datasets. PLoS ONE, 6, e17288.
[58] Shan XJ, Li M, Wang WJ ( 2018) Application of environmental DNA technology in aquatic ecosystem. Progress in Fishery Sciences, 39(3), 23-29. (in Chinese with English abstract)
[ 单秀娟, 李苗, 王伟继 ( 2018) 环境DNA (eDNA)技术在水生生态系统中的应用研究进展. 渔业科学进展, 39(3), 23-29.]
[59] Shi XL, Lepère C, Scanlan DJ, Vaulot D ( 2011) Plastid 16S rRNA gene diversity among eukaryotic picophytoplankton sorted by flow cytometry from the South Pacific Ocean. PLoS ONE, 6, e18979.
[60] Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ ( 2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proceedings of the National Academy of Sciences, USA, 103, 12115-12120.
doi: 10.1073/pnas.0605127103
[61] Song JW, Small MJ, Casman EA ( 2017) Making sense of the noise: The effect of hydrology on silver carp eDNA detection in the Chicago area waterway system. Science of the Total Environment, 605, 713-720.
[62] Sun C, Zhao Y, Li H, Dong Y, MacIsaac HJ, Zhan A ( 2015) Unreliable quantitation of species abundance based on high- throughput sequencing data of zooplankton communities. Aquatic Biology, 24, 9-15.
[63] Suzuki MT, Giovannoni SJ ( 1996) Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Applied and Environmental Microbiology, 62, 625-630.
[64] Taberlet P, Coissac E, Hajibabaei M ( 2012) Environmental DNA. Molecular Ecology, 21, 1789-1793.
doi: 10.1111/j.1365-294X.2012.05542.x
[65] Takahara T, Minamoto T, Yamanaka H, Doi H, Kawabata Z (2012) Estimation of fish biomass using environmental DNA. PLoS ONE, 7, e35868.
[66] Tang CQ, Leasi F, Obertegger U, Kieneke A, Barraclough TG, Fontaneto D ( 2012) The widely used small subunit 18S rDNA molecule greatly underestimates true diversity in biodiversity surveys of the meiofauna. Proceedings of the National Academy of Sciences, USA, 109, 16208-16212.
[67] Tang M, Yi TS, Wang X, Tan MH, Zhou X ( 2013) The application of metabarcoding technology in identification of plant species diversity. Plant Diversity and Resources, 35, 769-773. (in Chinese with English abstract)
[ 唐敏, 伊廷双, 王欣, 谭美华, 周欣 ( 2013) Metabarcoding技术在植物鉴定和多样性研究中的应用. 植物分类与资源学报, 35, 769-773.]
[68] Tedersoo L, Nilsson RH, Abarenkov K, Jairus T, Sadam A, Saar I ( 2010) 454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytologist, 188, 291-301.
[69] Thomsen PF, Møller PR, Sigsgaard EE, Knudsen SW, Jørgensen OA, Willerslev E ( 2016) Environmental DNA from seawater samples correlate with trawl catches of Subarctic, deepwater fishes. PLoS ONE, 11, e0165252.
[70] Tréguier A, Paillisson J, Dejean T ( 2014) Environmental DNA surveillance for invertebrate species: Advantages and technical limitations to detect invasive crayfish (Procambarus clarkii) in freshwater ponds. Journal of Applied Ecology, 51, 871-879.
doi: 10.1111/1365-2664.12262
[71] Valentini A, Taberlet P, Miaud C, Civade R, Herder J, Thomsen PF, Bellemain E, Besnard A, Coissac E, Boyer F, Gaboriaud C, Jean P, Poulet N, Roset N, Copp GH, Geniez P, Pont D, Argillier C, Baudoin JM, Peroux T, Crivelli AJ, Olivier A, Acqueberge M, Le Brun M, Møller PR, Willerslev E, Dejean T ( 2016) Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Molecular Ecology, 25, 929-942.
[72] Veach AM, Dodds WK, Jumpponen A ( 2015) Woody plant encroachment, and its removal, impact bacterial and fungal communities across stream and terrestrial habitats in a tallgrass prairie ecosystem. FEMS Microbiology Ecology, 91, fiv109.
[73] Wan FH, Guo JY, Zhang F ( 2009) Research on Biological Invasions in China. Science Press, Beijing. (in Chinese)
[ 万方浩, 郭建英, 张峰 ( 2009) 中国生物入侵研究. 科学出版社, 北京.]
[74] Wan YQ, Guo WB, Wu J, Li L, Xu HG ( 2017) Site occupancy model: Principles and research progress. Journal of Ecology and Rural Environment, 33, 673-679. (in Chinese with English abstract)
[ 万雅琼, 郭伟波, 吴军, 李莉, 徐海根 ( 2017) 物种占域模型的基本原理及其研究进展. 生态与农村环境学报, 33, 673-679.]
[75] Wang ZH, Chen JF, Yang YF ( 2010) Control and management of harmful algal bloom species introduced by ballast water. Marine Environmental Science, 29, 920-922. (in Chinese with English abstract)
[ 王朝晖, 陈菊芳, 杨宇峰 ( 2010) 船舶压舱水引起的有害赤潮藻类生态入侵及其控制管理. 海洋环境科学, 29, 920-922.]
[76] Weber AAT, Pawlowski J ( 2013) Can abundance of protists be inferred from sequence data: A case study of foraminifera. PLoS ONE, 8, e56739.
[77] Wu B, Zhao Q, Liu HM, Liu ZH, Sun XJ, Sun C, Zhou LQ, Yang AG ( 2018) Comparative analysis of different DNA barcoding methods for Veneroida classification and identification. Journal of Fishery Sciences of China, 25, 880-890. (in Chinese with English abstract)
[ 吴彪, 赵庆, 刘寒苗, 刘志鸿, 孙秀俊, 孙超, 周丽青, 杨爱国 ( 2018) 不同DNA条形码基因在帘蛤目贝类分类鉴定中的比较分析. 中国水产科学, 25, 880-890.]
[78] Wu YS, Tang YK, Li JL, Liu K, Li HX, Wang Q, Yu JH, Xu P ( 2019) The application of environmental DNA in the monitoring of the Yangtze finless porpoise, Neophocaena phocaenoides asaeorientalis. Journal of Fishery Sciences of China, 26(1), 126-134. (in Chinese with English abstract)
[ 吴昀晟, 唐永凯, 李建林, 刘凯, 李红霞, 王钦, 俞菊华, 徐跑 ( 2019) 环境DNA在长江江豚监测中的应用. 中国水产科学, 26(1), 126-134.]
[79] Xiong W, Li H, Zhan A ( 2016) Early detection of invasive species in marine ecosystems using high-throughput sequencing: Technical challenges and possible solutions. Marine Biology, 163, 139.
[80] Xu N, Chang JB ( 2016) Preliminary study on fish species detection in the middle and lower Yangtze River using environmental DNA. Journal of Hydroecology, 37(5), 49-55. (in Chinese with English abstract)
[ 徐念, 常剑波 ( 2016) 长江中下游干流环境DNA样本鱼类物种检测的初步研究. 水生态学杂志, 37(5), 49-55.]
[81] Yang JH ( 2017) Adaptive Strategies of Clonal Plants Growing in Heterogeneous Environments. PhD dissertation, Nanjing University, Nanjing. (in Chinese with English abstract)
[ 杨江华 ( 2017) 太湖流域浮游动物物种多样性与环境污染群落生态效应研究.博士学位论文, 南京大学, 南京.]
[82] Yoon TH, Kang HE, Kang CK, Lee SH, Ahn DH, Park H, Kim HW ( 2016) Development of a cost-effective metabarcoding strategy for analysis of the marine phytoplankton community. PeerJ, 4, e2.
[83] Zaiko A, Martinez JL, Schmidtpetersen J ( 2015a) Metabarcoding approach for the ballast water surveillance — An advantageous solution or an awkward challenge? Marine Pollution Bulletin, 92, 25-34.
[84] Zaiko A, Samuiloviene A, Ardura A, Garcia-Vazquez E (2015b) Metabarcoding approach for nonindigenous species surveillance in marine coastal waters. Marine Pollution Bulletin, 100, 53-59.
[85] Zhan A, Hulák M, Sylvester F, Huang X, Adebayo AA, Abbott CL, Adamowicz SJ, Heath DD, Cristescu ME, Maclsaac HJ ( 2013) High sensitivity of 454 Pyrosequencing for detection of rare species in aquatic communities. Methods in Ecology and Evolution, 4, 558-565.
[86] Zhan A, Bailey SA, Heath DD, Maclsaac HJ ( 2014 a) Performance comparison of genetic markers for high-throughput sequencing-based biodiversity assessment in complex communities. Molecular Ecology Resources, 14, 1049-1059.
[87] Zhan A, Xiong W, He S, Maclsaac HJ ( 2014 b) Influence of artifact removal on rare species recovery in natural complex communities using high-throughput sequencing. PLoS ONE, 9, e96928.
[88] Zhan A, He EA, Brown FJJ, Chain TW, Therriault CL, Abbott DD, Heath ME, Maclsaac Cristescu HJ ( 2014 c) Reproducibility of Pyrosequencing data for biodiversity assessment in complex communities. Methods in Ecology and Evolution, 5, 881-890.
[89] Zhan A, Maclsaac HJ ( 2015) Rare biosphere exploration using high-throughput sequencing: Research progress and perspectives. Conservation Genetics, 16, 513-522.
[90] Zhan A, Ni P, Xiong W, Chen Y, Lin Y, Huang X ( 2017) Biological invasions in aquatic ecosystems in China. Aquatic Ecosystem Health & Management, 10, 402-412.
[91] Zhou J, Wu L, Deng Y, Zhi X, Jiang Y, Tu Q, Xie J, Van Nostrand JD, He Z, Yang Y ( 2011) Reproducibility and quantitation of amplicon sequencing-based detection. The ISME Journal, 5, 1303-1313.
[92] Zhou X, Li Y, Liu S, Yang Q, Su X, Zhou L, Tang M, Fu R, Li J, Huang Q ( 2013) Ultradeep sequencing enables high- fidelity recovery of biodiversity for bulk arthropod samples without PCR amplification. GigaScience, 2(1), 4.
doi: 10.1186/2047-217X-2-4
[1] 曹宁, 薛达元. 论壮族传统文化对生物多样性的保护: 以广西靖西市为例[J]. 生物多样性, 2019, 27(7): 728-734.
[2] 杨云卉, 白可喻, Devra Jarvis, 龙春林. 西双版纳黄瓜农家品种及其传统知识[J]. 生物多样性, 2019, 27(7): 743-748.
[3] 孙蓓蓓, 俞存根, 刘惠, 颜文超, 张文俊, 戴冬旭. 南麂列岛东侧海域春秋季虾蟹类生物多样性[J]. 生物多样性, 2019, 27(7): 787-795.
[4] 丁陆彬, 马楠, 王国萍, 何思源, 闵庆文. 生物多样性相关传统知识研究热点与前沿的可视化分析[J]. 生物多样性, 2019, 27(7): 716-727.
[5] 孔嘉鑫, 张昭臣, 张健. 基于多源遥感数据的植物物种分类与识别: 研究进展与展望[J]. 生物多样性, 2019, 27(7): 796-812.
[6] 张渊媛. 生物多样性相关传统知识的国际保护及中国应对策略[J]. 生物多样性, 2019, 27(7): 708-715.
[7] 桂旭君, 练琚愉, 张入匀, 李艳朋, 沈浩, 倪云龙, 叶万辉. 鼎湖山南亚热带常绿阔叶林群落垂直结构及其物种多样性特征[J]. 生物多样性, 2019, 27(6): 619-629.
[8] 张晓玲, 李亦超, 王芸芸, 蔡宏宇, 曾辉, 王志恒. 未来气候变化对不同国家茶适宜分布区的影响[J]. 生物多样性, 2019, 27(6): 595-606.
[9] 刘艳, 杨钰爽. 生物多样性保护优先区对重庆苔藓植物多样性保护的重要性[J]. 生物多样性, 2019, 27(6): 677-682.
[10] 邢圆, 吴小平, 欧阳珊, 张君倩, 徐靖, 银森录, 谢志才. 赣江水系大型底栖动物多样性与受胁因子初探[J]. 生物多样性, 2019, 27(6): 648-657.
[11] 邵昕宁, 宋大昭, 黄巧雯, 李晟, 姚蒙. 基于粪便DNA及宏条形码技术的食肉动物快速调查及食性分析[J]. 生物多样性, 2019, 27(5): 543-556.
[12] 余文生, 郭耀霖, 江佳佳, 孙可可, 鞠瑞亭. 土著昆虫素毒蛾在本地植物芦苇与入侵植物互花米草上的生活史[J]. 生物多样性, 2019, 27(4): 433-438.
[13] 朱柏菁, 薛敬荣, 夏蓉, 靳苗苗, 吴攸, 田善义, 陈小云, 刘满强, 胡锋. 不同土壤线虫功能团对水稻生长及地上部植食者的影响[J]. 生物多样性, 2019, 27(4): 409-418.
[14] 马燕婕, 何浩鹏, 沈文静, 刘标, 薛堃. 转基因玉米对田间节肢动物群落多样性的影响[J]. 生物多样性, 2019, 27(4): 419-432.
[15] 赵阳,温源远. 《生物多样性公约》企业与生物多样性全球平台的发展情况及对中国的政策建议[J]. 生物多样性, 2019, 27(3): 339-346.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed