生物多样性 ›› 2018, Vol. 26 ›› Issue (7): 655-666.doi: 10.17520/biods.2018060

• 研究报告 • 上一篇    下一篇

停止人为去除植物功能群后的高寒草甸多样性恢复过程与群落构建

孙德鑫, 刘向, 周淑荣*()   

  1. 复旦大学生物多样性与生态工程教育部重点实验室, 上海 200438
  • 收稿日期:2018-02-21 接受日期:2018-04-24 出版日期:2018-07-20
  • 通讯作者: 周淑荣 E-mail:zhshrong@fudan.edu.cn
  • 作者简介:# 共同第一作者
  • 基金项目:
    国家自然科学基金(31770518)

Dynamical changes of diversity and community assembly during recovery from a plant functional group removal experiment in the alpine meadow

Dexin Sun, Xiang Liu, Shurong Zhou*()   

  1. Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Fundan University, Shanghai 200438
  • Received:2018-02-21 Accepted:2018-04-24 Online:2018-07-20
  • Contact: Zhou Shurong E-mail:zhshrong@fudan.edu.cn
  • About author:# Co-first authors

已有大量研究利用功能性状或系统发育来推断群落构建机制, 然而不同过程可能会导致相似的格局。本文基于对甘南高寒草甸植物功能群去除处理后群落恢复过程的跟踪调查, 对比了物种多样性、功能多样性和系统发育多样性的动态变化, 并分析了物种定殖与消失过程对功能多样性和系统发育多样性变化的影响。结果表明: 去除不同数量功能群的群落中: (1)包括物种丰富度(SR)、Shannon-Wiener指数(H°)和Simpson指数(D)在内的传统物种多样性均随时间快速上升并与自然群落趋同, 不同群落的均匀度指数(J)随时间呈增加趋势并趋于相似; 功能多样性(FD)与系统发育多样性(PD)呈现出与物种多样性相似的动态变化趋势, 而平均配对距离(MPD/MPDa、MFD/MFDa)则向中等程度聚集。(2)不同群落的功能群和物种组成在短期内均恢复到与自然群落非常相似的程度。(3)物种定殖与消失过程的功能格局是群落恢复过程中趋同效应的主要驱动力。本研究揭示了高寒草甸植物功能群去除停止后群落短期内快速恢复的过程, 说明在小尺度且周边具有大范围未退化草甸的情况下, 无论物种多样性、功能多样性还是系统发育多样性都具有较快的恢复能力, 同时说明了利用群落系统发育多样性格局来推断群落构建机制的局限性。

关键词: 功能多样性, 系统发育多样性, 物种多样性, 恢复, 高寒草甸

Recently, numerous studies have used functional trait or phylogeny to infer the mechanisms of community assembly. However, different processes may lead to similar patterns of diversity. In an alpine meadow plant community in Gannan, we compared the dynamical changes in species diversity, functional diversity and phylogenetic diversity with experimental removal of plant functional groups. We assessed how colonization and extinction affected diversity dynamics after removing functional groups. We found that for communities receiving removals of different number of functional groups, species richness (SR), Shannon-Wiener index (H°), Simpson index (D), and evenness index (J) rapidly converged to the levels for natural communities. Moreover, functional diversity (FD) and phylogenetic diversity (PD) showed the similar trends as species diversity, while the mean pairwise distances (MPD/MPDa and MFD/MFDa) converged to medium levels. Next, species and functional group compositions recovered to the levels of natural communities within a short period. Finally, we found that functional patterns of species colonization and extinction was the main driver of the community recovery. This study indicates that the diversity of species, functions, and phylogeny of plant communities in alpine meadows can recover quickly from functional group removal at small scales when close to natural alpine meadows.

Key words: functional diversity, phylogenetic diversity, species diversity, recovery, alpine meadow

图1

群落恢复过程中物种多样性(平均数 ± 标准误)变化。图例表示功能群组合: 禾本科与莎草科(A)、菊科(B)、豆科(C)、杂草(D)以及稀有种(X)。"

图2

群落恢复过程中功能多样性(平均数 ± 标准误)变化。图例表示功能群组合: 禾本科与莎草科(A)、菊科(B)、豆科(C)、杂草(D)以及稀有种(X)。"

图3

群落恢复过程中系统发育多样性(平均数 ± 标准误)变化。图例表示功能群组合: 禾本科与莎草科(A)、菊科(B)、豆科(C)、杂草(D)以及稀有种(X)。"

图4

群落恢复过程中不同功能群相对多度变化。图例表示功能群: 禾本科与莎草科(A)、菊科(B)、豆科(C)以及杂草(D)。"

图5

群落恢复过程中群落物种组成的对应分析图"

图6

群落恢复过程中系统发育和功能性状格局(平均数 ± 标准误)。图例表示功能群组合: 禾本科与莎草科(A)、菊科(B)、豆科(C)、杂草(D)以及稀有种(X)。"

图7

消失种/定殖种与保留种平均配对距离/平均配对功能距离标准化效应值与群落初始系统发育多样性/功能多样性之间关系"

[1] Bhaskar R, Dawson TE, Balvanera P (2014) Community assembly and functional diversity along succession post-management. Functional Ecology, 28, 1256-1265.
[2] Brakenhielm S, Liu Q (1998) Long-term effects of clear-felling on vegetation dynamics and species diversity in a boreal pine forest. Biodiversity and Conservation, 7, 207-220.
[3] Cadotte MW (2017) Functional traits explain ecosystem function through opposing mechanisms. Ecology Letters, 20, 989-996.
[4] Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecology Letters, 12, 693-715.
[5] Chase JM (2003) Community assembly: When should history matter? Oecologia, 136, 489-498.
[6] Chazdon RL (2003) Tropical forest recovery: Legacies of human impact and natural disturbances. Perspectives in Plant Ecology,Evolution and Systematics, 6, 51-71.
[7] Che YD, Liu MX, Li LR, Jiao J, Xiao W (2017) Exploring the community assembly of subalpine meadow communities based on functional traits and community phylogeny. Chinese Journal of Plant Ecology, 41, 1157-1167. (in Chinese with English abstract)
[车应弟, 刘旻霞, 李俐蓉, 焦骄, 肖卫 (2017) 基于功能性状及系统发育的亚高寒草甸群落构建. 植物生态学报, 41, 1157-1167.]
[8] Clements FE (1916) Plant Succession: An Analysis of the Development of Vegetation. Carnegie Institution of Washington, Washington, DC.
[9] Connell JH, Slatyer RO (1977) Mechanisms of succession in natural communities and their role in community stability and organization. The American Naturalist, 111, 1119-1144.
[10] Deng L, Shangguan Z, Sweeney S (2015) “Grain for Green” driven land use change and carbon sequestration on the Loess Plateau, China. Scientific Reports, 4, 7039.
[11] Díaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserratmarti G, Grime JP, Zarrinkamar F, Asri Y (2004) The plant traits that drive ecosystems: Evidence from three continents. Journal of Vegetation Science, 15, 295-304.
[12] Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biological Conservation, 61, 1-10.
[13] Flynn DFB, Mirotchnick N, Jain M, Palmer MI, Naeem S (2011) Functional and phylogenetic diversity as predictors of biodiversity-ecosystem function relationships. Ecology, 92, 1573-1581.
[14] Fukami T, Nakajima M (2011) Community assembly: Alternative stable states or alternative transient states? Ecology Letters, 14, 973-984.
[15] Fukami T, Bezemer TM, Mortimer SR, der Putten WH (2005) Species divergence and trait convergence in experimental plant community assembly. Ecology Letters, 8, 1283-1290.
[16] Gleason HA (1927) Further views on the succession-concept. Ecology, 8, 299-326.
[17] Götzenberger L, de Bello F, Bråthen KA, Davison J, Dubuis A, Guisan A, Lepš J, Lindborg R, Moora M, Pärtel M (2012) Ecological assembly rules in plant communities—Approaches, patterns and prospects. Biological Reviews, 87, 111-127.
[18] Guindon S, Dufayard J, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology, 59, 307-321.
[19] Holl KD (1999) Factors limiting tropical rain forest regeneration in abandoned pasture: Seed rain, seed germination, microclimate, and soil. Biotropica, 31, 229-242.
[20] Hooper DU, Vitousek PM (1997) The effects of plant composition and diversity on ecosystem processes. Science, 277, 1302-1305.
[21] Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26, 1463-1464.
[22] Kress WJ, Erickson DL, Swenson NG, Thompson J, Uriarte M, Zimmerman JK (2010) Advances in the use of DNA barcodes to build a community phylogeny for tropical trees in a Puerto Rican forest dynamics plot. PLoS ONE, 5, e15409.
[23] Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R (2007) Clustal W and Clustal X Version 2.0. Bioinformatics, 23, 2947-2948.
[24] Li S, Cadotte MW, Meiners SJ, Hua Z, Jiang L, Shu W (2015) Species colonisation, not competitive exclusion, drives community overdispersion over long-term succession. Ecology Letters, 18, 964-973.
[25] Liu J, Zhang X, Song F, Zhou S, Cadotte MW, Bradshaw CJA (2015) Explaining maximum variation in productivity requires phylogenetic diversity and single functional traits. Ecology, 96, 176-183.
[26] Liu X, Lü S, Sun D, Bradshaw CJA, Zhou S (2017) Species decline under nitrogen fertilization increases community-level competence of fungal diseases. Proceedings of the Royal Society B: Biological Sciences, 284, 20162621.
[27] Luh HK, Pimm SL (1993) The assembly of ecological communities: A minimalis approach. Journal of Animal Ecology, 62, 749-765.
[28] Lü S, Liu X, Venail P, Zhou S (2017) Functional dissimilarity, not phylogenetic relatedness, determines interspecific interactions among plants in the Tibetan alpine meadows. Oikos, 126, 381-388.
[29] Mayfield MM, Levine JM (2010) Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters, 13, 1085-1093.
[30] Miao N, Zhou ZL, Shi ZM, Feng QH (2014) Successional dynamics of community structure and species diversity after clear-cutting of faxon fir (Abies faxoniana) forest stands. Acta Ecologica Sinica, 34, 3661-3671. (in Chinese with English abstract)
[缪宁, 周珠丽, 史作民, 冯秋红 (2014) 岷江冷杉林皆伐后次生群落结构和物种多样性的演替动态. 生态学报, 34, 3661-3671.]
[31] Paradis E, Claude J, Strimmer K (2004) APE: Analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289-290.
[32] Pascarella JB, Aide TM, Serrano MI, Zimmerman JK (2000) Land-use history and forest regeneration in the Cayey Mountains, Puerto Rico. Ecosystems, 3, 217-228.
[33] Peay KG, Belisle M, Fukami T (2012) Phylogenetic relatedness predicts priority effects in nectar yeast communities. Proceedings of the Royal Society of London B: Biological Sciences, 279, 749-758.
[34] Petchey OL, Gaston KJ (2002) Functional diversity (FD), species richness and community composition. Ecology Letters, 5, 402-411.
[35] Pielou EC (1966) Species-diversity and pattern-diversity in the study of ecological succession. Journal of Theoretical Biology, 10, 370-383.
[36] Platt WJ, Connell JH (2003) Natural disturbances and directional replacement of species. Ecological Monographs, 73, 507-522.
[37] Purschke O, Schmid BC, Sykes MT, Poschlod P, Michalski SG, Durka W, Kühn I, Winter M, Prentice HC (2013) Contrasting changes in taxonomic, phylogenetic and functional diversity during a long-term succession: Insights into assembly processes. Journal of Ecology, 101, 857-866.
[38] R Core Team (2017) R: A Language and Environment for Statistical Computing. Vienna, Austria. . (accessed on 2017-11-30)
[39] Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572-1574.
[40] Samuels CL, Drake JA (1997) Divergent perspectives on community convergence. Trends in Ecology & Evolution, 12, 427-432.
[41] Sanderson MJ (2002) Estimating absolute rates of molecular evolution and divergence times: A penalized likelihood approach. Molecular Biology and Evolution, 19, 101-109.
[42] Schliep KP (2011) phangorn: Phylogenetic analysis in R. Bioinformatics, 27, 592-593.
[43] Shannon CE (1948) A mathematical theory of communication. Bell System Technical Journal, 27, 379-423.
[44] Simpson EH (1949) Measurement of diversity. Nature, 163, 688.
[45] Valientebanuet A, Verdu M (2013) Plant facilitation and phylogenetics. Annual Review of Ecology, Evolution, and Systematics, 44, 347-366.
[46] Venail P, Gross K, Oakley TH, Narwani A, Allan E, Flombaum P, Isbell F, Joshi J, Reich PB, Tilman D (2015) Species richness, but not phylogenetic diversity, influences community biomass production and temporal stability in a re-examination of 16 grassland biodiversity studies. Functional Ecology, 29, 615-626.
[47] Walker B, Kinzig A, Langridge J (1999) Plant attribute diversity, resilience, and ecosystem function: The nature and significance of dominant and minor species. Ecosystems, 2, 95-113.
[48] Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annual Review of Ecology, Evolution, and Systematics, 33, 475-505.
[49] Yang YB, Xin XJ, Aide XC, Yang X, Wang SM, Chu CJ, Ren ZW, Wang G (2010) Plant diversity variations in zokor-mound communities along a successional stage in sub-alpine meadow. Acta Prataculturae Sinica, 19(1),14-20 (in Chinese with English abstract)
[杨莹博, 辛小娟, 艾得协措, 杨雪, 王绍美, 储诚进, 任正炜, 王刚 (2010) 鼢鼠土丘植被恢复演替过程中的物种多样性变化. 草业学报, 19(1), 14-20.]
[50] Zhao LY, Gao DD, Xiong BQ, Chen T, Li YQ, Li FR (2017) Relationship between the aboveground biomass and species diversity of sandy communities during the process of restoring succession in the Horqin Sandy Land, China. Acta Ecologica Sinica, 37, 4108-4117. (in Chinese with English abstract)
[赵丽娅, 高丹丹, 熊炳桥, 陈涛, 李艳蔷, 李锋瑞 (2017) 科尔沁沙地恢复演替进程中群落物种多样性与地上生物量的关系. 生态学报, 37, 4108-4117.]
[1] 焦萌, 李晶, 赵慧峰, 武春生, 张爱兵. 基于在线数据库的鳞翅目刺蛾科昆虫物种多样性及其全球分布格局[J]. 生物多样性, 2019, 27(7): 778-786.
[2] 张明明,杨朝辉,王丞,王娇娇,胡灿实,雷孝平,石磊,粟海军,李佳琦. 贵州梵净山国家级自然保护区鸟兽红外相机监测[J]. 生物多样性, 2019, 27(7): 813-818.
[3] 邹安龙, 马素辉, 倪晓凤, 蔡琼, 李修平, 吉成均. 模拟氮沉降对北京东灵山辽东栎群落林下植物物种多样性的影响[J]. 生物多样性, 2019, 27(6): 607-618.
[4] 胡宜峰, 余文华, 岳阳, 黄正澜懿, 李玉春, 吴毅. 海南岛翼手目物种多样性现状与分布预测[J]. 生物多样性, 2019, 27(4): 400-408.
[5] 程毅康, 张辉, 王旭, 龙文兴, 李超, 方燕山, 符明期, 朱孔新. 功能多样性和谱系多样性对热带云雾林群落构建的影响[J]. 植物生态学报, 2019, 43(3): 217-226.
[6] 温纯,金光泽. 功能多样性对典型阔叶红松林生产力的影响[J]. 植物生态学报, 2019, 43(2): 94-106.
[7] 颜文博,吉晟男,帅凌鹰,赵雷刚,朱大鹏,曾治高. 秦岭南坡陕西洋县辖区哺乳动物物种多样性的空间分布格局[J]. 生物多样性, 2019, 27(2): 177-185.
[8] 陈作艺, 许晓静, 朱素英, 翟梦怡, 李扬. 中国沿海洛氏角毛藻复合群的多样性组成及地理分布[J]. 生物多样性, 2019, 27(2): 149-158.
[9] 杨陆飞, 陈琳琳, 李晓静, 周政权, 刘博, 宋博, 李秉钧, 李宝泉. 烟台牟平海洋牧场季节性低氧对大型底栖动物群落的生态效应[J]. 生物多样性, 2019, 27(2): 200-210.
[10] 邹东廷, 王庆刚, 罗奥, 王志恒. 中国蔷薇科植物多样性格局及其资源植物保护现状[J]. 植物生态学报, 2019, 43(1): 1-15.
[11] 王波, 黄勇, 李家堂, 戴强, 王跃招, 杨道德. 西南喀斯特地貌区两栖动物丰富度分布格局与环境因子的关系[J]. 生物多样性, 2018, 26(9): 941-950.
[12] 黄小荣. 广西马尾松林植物功能多样性与生产力的关系[J]. 生物多样性, 2018, 26(7): 690-700.
[13] 张宇, 冯刚. 内蒙古昆虫物种多样性分布格局及其机制[J]. 生物多样性, 2018, 26(7): 701-706.
[14] 陶夏秋, 崔绍朋, 蒋志刚, 初红军, 李娜, 杨道德, 李春旺. 新疆阿勒泰地区爬行动物区系及多样性海拔分布格局[J]. 生物多样性, 2018, 26(6): 578-589.
[15] 田成, 李俊清, 杨旭煜, 余鳞, 袁丹, 黎运喜. 利用红外相机技术对四川王朗国家级自然保护区野生动物物种多样性的初步调查[J]. 生物多样性, 2018, 26(6): 620-626.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed