生物多样性 ›› 2018, Vol. 26 ›› Issue (6): 535-544.doi: 10.17520/biods.2018056

• 研究报告 • 上一篇    下一篇

鼎湖山南亚热带常绿阔叶林不同树种存活对邻体组成的响应差异

马钦洪1, 2, 3, 李艳朋1, 2, 3, 练琚愉1, 2, 叶万辉1, 2, *()   

  1. 1 中国科学院华南植物园退化生态系统植被恢复与管理重点实验室, 广州 510650
    2 中国科学院华南植物园广东省应用植物学重点实验室, 广州 510650
    3 中国科学院大学, 北京 100049
  • 收稿日期:2018-02-12 接受日期:2018-04-02 出版日期:2018-06-20
  • 通讯作者: 叶万辉 E-mail:why@scbg.ac.cn
  • 作者简介:

    # 共同第一作者

  • 基金项目:
    国家自然科学基金(41371078)、中国科学院B类先导科技专项培育项目(XDPB0203)和中国森林生物多样性监测网络建设项目

Difference in survival response of tree species to neighborhood crowding in a lower subtropical evergreen broad-leaved forest of Dinghushan

Qinhong Ma1, 2, 3, Yanpeng Li1, 2, 3, Juyu Lian1, 2, Wanhui Ye1, 2, *()   

  1. 1 Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650
    2 Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650
    3 University of Chinese Academy of Sciences, Beijing 100049
  • Received:2018-02-12 Accepted:2018-04-02 Online:2018-06-20
  • Contact: Ye Wanhui E-mail:why@scbg.ac.cn
  • About author:

    # Co-first authors

理解群落结构和动态的主导机制是生态学研究的基本目标之一。群落内树种的存活受到其邻近树木的显著影响。为探究不同树种的存活对邻体组成的响应差异, 本研究基于鼎湖山南亚热带阔叶林20 ha森林动态监测样地中常见的90个树种的存活监测数据和功能性状数据, 建立了一系列关于邻体效应的树种存活模型。结果表明: 约58%的树种存活对邻体组成有敏感的响应, 共存树种间的功能性状差异影响着50%的树种存活动态。不同树种对邻体组成的响应差异与其耐阴性相关, 耐阴能力较弱的树种更倾向于表现出对邻体的敏感性。低比叶面积、高叶干物质含量、木材密度和最大胸径意味着较强的耐阴能力, 与光资源利用策略有关的生态位分化可能是邻域尺度上物种共存的原因。本研究为量化邻体间的相互作用和解释局域群落的物种共存提供了新的视角。

关键词: 邻体组成, 存活响应, 性状差异, 功能性状, 耐阴性

Identifying the mechanisms that drive community structure and dynamics is one of the most fundamental goals in ecology. The local neighborhood in which trees grow significantly influences species survival. In order to understand the mechanisms underlying the various survival responses to neighborhood crowding among species, we compared the survival responses of focal tree species through modeling tree survival in terms of neighborhood effects. These effects were quantified in different ways, based on the survival monitoring and functional trait data of 90 species commonly observed in a lower tropical evergreen broad-leaved forest 20-ha plot in the Dinghu Mountains. We found that among all species tested, 58% showed sensitivity to neighborhood effects and that the survival response of 50% were mediated by functional trait differences among co-occurring species. Shade tolerance of species is associated with species sensitivity to its neighborhood as species with lower shade tolerance are intended to be sensitive to their neighbors. Lower specific leaf area, higher leaf dry matter content, wood density and maximum diameter at breast height indicate higher shade tolerance. Niche difference associated with light acquisition strategies may underlie species coexistence at the neighborhood scale. Our study provides new insights into quantifying neighborhood interaction and species coexistence at the local neighborhood scale.

Key words: neighborhood crowding, survival response, trait difference, functional trait, shade tolerance

表1

功能性状在PCA分析中各主成分(PC)的载荷值"

功能性状 Functional trait PC1 PC2 PC3 PC4
比叶面积 Specific leaf area 0.582 -0.062 0.088 0.237
叶干物质含量
Leaf dry matter content
-0.367 0.489 -0.059 -0.178
叶面积 Leaf area 0.289 -0.378 -0.558 -0.337
叶片厚度 Leaf thickness -0.366 -0.512 -0.273 -0.282
叶绿素含量
Chlorophyll concentration
-0.339 -0.324 -0.177 0.816
木材密度 Wood density -0.422 -0.201 0.367 -0.196
最大胸径 Maximum
diameter at breast height
-0.126 0.455 -0.66 0.121
累计解释量
Cumulative interpretation (%)
33.2 56.6 71.7 82.1

表2

90个目标树种对存活候选模型的选择"

模型 Model 合计
Total
绝对差异
Absolute difference
等级差异
Hierarchical difference
基本模型 Basic model 38 NA NA
邻体等价模型 Neighbour equivalence model 7 NA NA
同种密度效应模型 Onspecific density effect model 5 NA NA
基于性状差异的模型
Models based on trait
difference
比叶面积 Specific leaf area 6 6 0
叶干物质含量 Leaf dry matter content 9 8 1
叶面积 Leaf area 8 6 2
叶片厚度 Leaf thickness 1 0 1
叶绿素含量 Chlorophyll concentration 6 5 1
木材密度 Wood density 3 0 3
最大胸径 Maximum diameter at breast height 4 4 0
PCA轴1 PCA axis 1 1 NA NA
PCA轴1-4 PCA axes 1-4 2 NA NA
总计 Total 90 29 8

图1

对邻体组成的存活响应表现出不同敏感性的两组树种的多度分布, 其中黑色代表对邻体组成敏感的种组S, 灰色代表对邻体组成不敏感的种组IS, 虚线表示种组内物种多度的中位数。多度数据在分析前进行了对数转换。"

图2

对邻体组成的响应表现出不同敏感性的树种的耐阴性指数, IS和S分别表示对邻体不敏感和敏感的种组。"

图3

树种耐阴性和功能性状之间的关系, A-G依次是比叶面积、叶干物质含量、叶面积、叶片厚度、叶绿素含量、木材密度和最大胸径, 其中比叶面积、叶面积和最大胸径在分析前进行了对数转换。虚线表示耐阴性指数随性状值的变化趋势。"

[1] Adler PB, Fajardo A, Kleinhesselink AR, Kraft NJ (2013) Trait-based tests of coexistence mechanisms. Ecology Letters, 16, 1294-1306.
[2] Bernard-Verdier M, Navas M, Vellend M, Violle C, Fayolle A, Garnier E (2012) Community assembly along a soil depth gradient: Contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland. Journal of Ecology, 100, 1422-1433.
[3] Cadotte MW, Tucker CM (2017) Should environmental filtering be abandoned? Trends in Ecology & Evolution, 32, 429-437.
[4] Canham CD, Papaik MJ, Uriarte M, McWilliams WH, Jenkins JC, Twery MJ (2006) Neighborhood analyses of canopy tree competition along environmental gradients in new England forests. Ecological Applications, 16, 540-554.
[5] Chen YX, Wright SJ, Muller-Landau HC, Hubbell SP, Wang YF, Yu SX (2016) Positive effects of neighborhood complementarity on tree growth in a Neotropical forest. Ecology, 97, 776-785.
[6] Comita LS, Muller-Landau HC, Aguilar S, Hubbell SP (2010) Asymmetric density dependence shapes species abundances in a tropical tree community. Science, 329, 330-332.
[7] Comita LS, Hubbell SP (2009) Local neighborhood and species’ shade tolerance influence survival in a diverse seedling bank. Ecology, 90, 328-334.
[8] Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380.
[9] Díaz S, Kattge J, Cornelissen JH, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Prentice IC, Garnier E, Bonisch G, Westoby M, Poorter H, Reich PB, Moles AT, Dickie J, Gillison AN, Zanne AE, Chave J, Wright SJ, Sheremet’ev SN, Jactel H, Baraloto C, Cerabolini B, Pierce S, Shipley B, Kirkup D, Casanoves F, Joswig JS, Gunther A, Falczuk V, Ruger N, Mahecha MD, Gorne LD (2016) The global spectrum of plant form and function. Nature, 529, 167-171.
[10] Fortunel C, Valencia R, Wright SJ, Garwood NC, Kraft NJB (2016) Functional trait differences influence neighborhood interactions in a hyperdiverse Amazonian forest. Ecology Letters, 19, 1062-1070.
[11] Gravel D, Canham CD, Beaudet M, Messier C (2010) Shade tolerance, canopy gaps and mechanisims of coexistence of forest trees. Oikos, 119, 475-484.
[12] Han BC, Umaña MN, Mi XC, Liu XJ, Chen L, Wang YQ, Liang Y, Wei W, Ma KP (2017) The role of transcriptomes linked with responses to light environment on seedling mortality in a subtropical forest, China. Journal of Ecology, 105, 592-601.
[13] He FL, Duncan RP (2000) Density-dependent effects on tree survival in an old-growth Douglas fir forest. Journal of Ecology, 88, 676-688.
[14] HilleRisLambers J, Adler PB, Harpole WS, Levine JM, Mayfield MM (2012) Rethinking community assembly through the lens of coexistence theory. Annual Review of Ecology, Evolution, and Systematics, 43, 227-248.
[15] HilleRisLambers J, Clark JS, Beckage B (2002) Density-dependent mortality and the latitudinal gradient in species diversity. Nature, 417, 732-735.
[16] Hubbell SP, Ahumada JA, Condit R, Foster RB (2001) Local neighborhood effects on long-term survival of individual trees in a neotropical forest. Ecological Research, 16, 859-875.
[17] Johnson DJ, Bourg NA, Howe R, McShea WJ, Wolf A, Clay K (2014) Conspecific negative density-dependent mortality and the structure of temperate forests. Ecology, 95, 2493-2503.
[18] Kobe RK, Vriesendorp CF (2011) Conspecific density dependence in seedlings varies with species shade tolerance in a wet tropical forest. Ecology Letters, 14, 503-510.
[19] Kraft NJB, Ackerly DD (2010) Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecological Monographs, 80, 401-422.
[20] Kraft NJB, Adler PB, Godoy O, James EC, Fuller S, Levine JM, Fox J (2015) Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology, 29, 592-599.
[21] Kraft NJB, Valencia R, Ackerly DD (2008) Functional traits and niche-based tree community assembly in an Amazonian forest. Science, 322, 580-582.
[22] Kunstler G, Falster D, Coomes DA, Hui F, Kooyman RM, Laughlin DC, Poorter L, Vanderwel M, Vieilledent G, Wright SJ, Aiba M, Baraloto C, Caspersen J, Cornelissen JH, Gourlet-Fleury S, Hanewinkel M, Herault B, Kattge J, Kurokawa H, Onoda Y, Penuelas J, Poorter H, Uriarte M, Richardson S, Ruiz-Benito P, Sun IF, Stahl G, Swenson NG, Thompson J, Westerlund B, Wirth C, Zavala MA, Zeng H, Zimmerman JK, Zimmermann NE, Westoby M (2016) Plant functional traits have globally consistent effects on competition. Nature, 529, 204-207.
[23] Kunstler G, Lavergne S, Courbaud B, Thuiller W, Vieilledent G, Zimmermann NE, Kattge J, Coomes DA (2012) Competitive interactions between forest trees are driven by species’ trait hierarchy, not phylogenetic or functional similarity: Implications for forest community assembly. Ecology Letters, 15, 831-840.
[24] Lasky JR, Uriarte M, Boukili VK, Chazdon RL (2014) Trait- mediated assembly processes predict successional changes in community diversity of tropical forests. Proceedings of the National Academy of Sciences, USA, 111, 5616-5621.
[25] Lasky JR, Bachelot B, Muscarella R, Schwartz N, Forero-Montaña J, Nytch CJ, Swenson NG, Thompson J, Zimmerman JK, Uriarte M (2015) Ontogenetic shifts in trait-mediated mechanisms of plant community assembly. Ecology, 96, 2157-2169.
[26] Ma L, Chen C, Shen Y, Wu LF, Huang ZL, Cao HL (2014) Determinants of tree survival at local scale in a sub-tropical forest. Ecological Research, 29, 69-80.
[27] Mayfield MM, Levine JM (2010) Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters, 13, 1085-1093.
[28] McCarthy-Neumann S, Kobe R (2008) Tolerance of soil pathogens co-varies with shade tolerance across species of tropical tree seedlings. Ecology, 89, 1883-1892.
[29] McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends in Ecology & Evolution, 21, 178-185.
[30] Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, de Vos AC, Buchmann N, Funes G, Quétier F, Hodgson JG, Thompson K, Morgan HD, ter Steege H, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC (2013) New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167.
[31] Peters HA (2003) Neighbour-regulated mortality: The influence of positive and negative density dependence on tree populations in species-rich tropical forests. Ecology Letters, 6, 757-765.
[32] Poorter L, Wright SJ, Paz H, Ackerly DD, Condit R, Ibarra-Manriques G, Harms KE, Licona JC, Martinez- Ramos M, Mazer SJ, Muller-Landau HC, Pena-Claros M, Webb CO, Wright IJ (2008) Are functional traits good predictors of demographic rates? Evidence from five Neotropical forests. Ecology, 89, 1908-1920.
[33] R Core Team (2018) R: A Language and Environment for Statistical Computing.R foundation for statistical computing, Vienna, Austria.. (accessed on 2018-03-12)
[34] Shen Y, Santiago LS, Ma L, Lin GJ, Lian JY, Cao HL, Ye WH (2013) Forest dynamics of a subtropical monsoon forest in Dinghushan, China: Recruitment, mortality and the pace of community change. Journal of Tropical Ecology, 29, 131-145.
[35] Shen Y, Santiago LS, Shen H, Ma L, Lian JY, Cao HL, Lu HP, Ye WH (2014) Determinants of change in subtropical tree diameter growth with ontogenetic stage. Oecologia, 175, 1315-1324.
[36] Spasojevic MJ, Suding KN (2012) Inferring community assembly mechanisms from functional diversity patterns: The importance of multiple assembly processes. Journal of Ecology, 100, 652-661.
[37] Stoll P, Newbery DM (2005) Evidence of species-specific neighborhood effects in the dipterocarpaceae of a Bornean rain forest. Ecology, 86, 3048-3062.
[38] Uriarte M, Canham CD, Thompson J, Zimmerman JK (2004a) A neighborhood analysis of tree growth and survival in a hurricane-driven tropical forest. Ecological Monographs, 74, 591-614.
[39] Uriarte M, Condit R, Canham CD, Hubbell SP (2004b) A spatially explicit model of sapling growth in a tropical forest: Does the identity of neighbours matter? Journal of Ecology, 92, 348-360.
[40] Uriarte M, Swenson NG, Chazdon RL, Comita LS, Kress WJ, Erickson D, Forero-Montana J, Zimmerman JK, Thompson J (2010) Trait similarity, shared ancestry and the structure of neighborhood interactions in a subtropical wet forest: Implications for community assembly. Ecology Letters, 13, 1503-1514.
[41] Valladares F, Niinemets U (2008) Shade tolerance, a key plant feature of complex nature and consequences. Annual Review of Ecology, Evolution, and Systematics, 39, 237-257.
[42] Wang XG, Comita LS, Hao ZQ, Davies SJ, Ye J, Lin F, Yuan ZQ (2012) Local-scale drivers of tree survival in a temperate forest. PLoS ONE, 7, 10.
[43] Wiegand T, Uriarte M, Kraft NJB, Shen GC, Wang XG, He FL (2017) Spatially explicit metrics of species diversity, functional diversity, and phylogenetic diversity: Insights into plant community assembly processes. Annual Review of Ecology, Evolution, and Systematics, 48, 329-351.
[44] Wright SJ (2002) Plant diversity in tropical forests: A review of mechanisms of species coexistence. Oecologia, 130, 1-14.
[45] Wright SJ, Kitajima K, Kraft NJB, Reich PB, Wright IJ, Bunker DE, Condit R, Dalling JW, Davies SJ, Díaz S, Engelbrecht BMJ, Harms KE, Hubbell SP, Marks CO, Ruiz-Jaen MC, Salvador CM, Zanne AE (2010) Functional traits and the growth-mortality trade-off in tropical trees. Ecology, 91, 3664-3674.
[46] Wright SJ, Muller-Landau HC, Condit R, Hubbell SP (2003) Gap-dependent recruitment, realized vital rates, and size distributions of tropical trees. Ecology, 84, 3174-3185.
[47] Ye WH, Cao HL, Huang ZL, Lian JY, Wang ZG, Li L, Wei SG, Wang ZM (2008) Community structure of a 20 hm2 lower subtropical evergreen broadleaved forest plot in Dinghushan, China. Journal of Plant Ecology (Chinese Version), 32, 274-286. (in Chinese with English abstract)
[叶万辉, 曹洪麟, 黄忠良, 练琚愉, 王志高, 李林, 魏识广, 王章明 (2008) 鼎湖山南亚热带常绿阔叶林20公顷样地群落特征研究. 植物生态学报, 32, 274-286.]
[48] Zambrano J, Marchand P, Swenson NG (2017) Local neighborhood and regional climatic contexts interact to explain tree performance. Proceedings of the Royal Society B: Biological Sciences, 284, 20170523.
[49] Zhu Y, Hogan JA, Cai HY, Xun YH, Jiang F, Jin GZ (2017) Biotic and abiotic drivers of the tree growth and mortality trade-off in an old-growth temperate forest. Forest Ecology and Management, 404, 354-360.
[1] 王世彤,徐耀粘,杨腾,魏新增,江明喜. (2020) 微生境对黄梅秤锤树野生种群叶片功能性状的影响. 生物多样性, 28(3): 277-288.
[2] 陈俊,姚兰,艾训儒,朱江,吴漫玲,黄小,陈思艺,王进,朱强. (2020) 基于功能性状的水杉原生母树种群生境适应策略. 生物多样性, 28(3): 296-302.
[3] 丁威,王玉冰,向官海,迟永刚,鲁顺保,郑淑霞. (2020) 小叶锦鸡儿灌丛化对典型草原群落结构与生态系统功能的影响. 植物生态学报, 44(1): 33-43.
[4] 王玉冰,孙毅寒,丁威,张恩涛,李文怀,迟永刚,郑淑霞. (2020) 长期氮添加对典型草原植物多样性与初级生产力的影响及途径. 植物生态学报, 44(1): 22-32.
[5] 符义稳, 田大栓, 汪金松, 牛书丽, 赵垦田. (2019) 内蒙古和青藏高原草原植物叶片与根系氮利用效率空间格局及影响因素. 植物生态学报, 43(7): 566-575.
[6] 顾菡娇, 张参参, 汪金松, 施雪文, 夏瑞雪, 刘斌, 陈伏生, 卜文圣. (2019) 中国竹类植物基本形态学功能性状的比较. 生物多样性, 27(6): 585-594.
[7] 赵丹丹, 马红媛, 李阳, 魏继平, 王志春. (2019) 水分和养分添加对羊草功能性状和地上生物量的影响. 植物生态学报, 43(6): 501-511.
[8] 谢立红,黄庆阳,曹宏杰,杨帆,王继丰,倪红伟. (2019) 五大连池火山色木槭叶功能性状特征. 生物多样性, 27(3): 286-296.
[9] 郝姝珺, 李晓宇, 侯嫚嫚, 赵秀海. (2019) 长白山温带森林不同演替阶段群落功能性状的空间变化. 植物生态学报, 43(3): 208-216.
[10] 张入匀,李艳朋,倪云龙,桂旭君,练琚愉,叶万辉. (2019) 鼎湖山南亚热带常绿阔叶林叶功能性状沿群落垂直层次的种内变异. 生物多样性, 27(12): 1279-1290.
[11] 何芸雨, 郭水良, 王喆. (2019) 植物功能性状权衡关系的研究进展. 植物生态学报, 43(12): 1021-1035.
[12] 张田田, 王璇, 任海保, 余建平, 金毅, 钱海源, 宋小友, 马克平, 于明坚. (2019) 浙江古田山次生与老龄常绿阔叶林群落特征的比较. 生物多样性, 27(10): 1069-1080.
[13] 梁士楚, 刘润红, 荣春艳, 常斌, 姜勇. (2019) 漓江河岸带植物功能性状变异与关联. 植物生态学报, 43(1): 16-26.
[14] 高思涵, 葛珏希, 周李奕, 朱宝琳, 葛星宇, 李凯, 倪健. (2018) 测定森林树木叶面积的最适叶片数是多少?. 植物生态学报, 42(9): 917-925.
[15] 彭曦, 闫文德, 王凤琪, 王光军, 玉昉永, 赵梅芳. (2018) 基于叶干质量比的杉木比叶面积估算模型的构建. 植物生态学报, 42(2): 209-219.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed