生物多样性 ›› 2018, Vol. 26 ›› Issue (9): 1004-1015.doi: 10.17520/biods.2018042

• 生物编目 • 上一篇    下一篇

布尼亚病毒目新分类概述

唐霜, 沈姝, 史君明, 方耀辉, 王华林, 胡志红, 邓菲*()   

  1. 中国科学院武汉病毒研究所微生物菌毒种保藏中心, 武汉 430071
  • 收稿日期:2018-02-07 接受日期:2018-04-04 出版日期:2018-09-20
  • 通讯作者: 邓菲 E-mail:df@wh.iov.cn
  • 作者简介:

    # 共同第一作者

  • 基金项目:
    科技部国家重点研发计划政府间专项项目(2016YFE0113500)、中国科学院战略生物资源服务网络计划生物遗传资源库保藏能力建设项目(ZSSB-002)、科技基础性工作专项重点项目(2013FY113500)和湖北省科技条件平台建设项目(2017BEC003)

A review and novel classification of Bunyavirales

Shuang Tang, Shu Shen, Junming Shi, Yaohui Fang, Hualin Wang, Zhihong Hu, Fei Deng*()   

  1. Microorganisms & Viruses Culture Collection Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071
  • Received:2018-02-07 Accepted:2018-04-04 Online:2018-09-20
  • Contact: Deng Fei E-mail:df@wh.iov.cn
  • About author:

    # Co-first authors

布尼亚病毒目中许多病毒是新发现的, 而且对人类健康构成威胁或潜在威胁。本文结合国际病毒分类委员会(ICTV) 2017年第十次报告, 针对新列的布尼亚病毒目的最新分类系统, 总结了该类病毒 ICTV 分类的历史变化情况, 对其下属各病毒科的分类、中英文定名、代表种、病毒形态、病毒基因组结构、编码蛋白、病毒主要传播媒介、病毒感染宿主、地理分布、理化特性等进行了介绍, 并且基于病毒基因组的编码RdRp的基因序列对9个科13个属的布尼亚病毒做了系统发育分析。

关键词: 布尼亚病毒目, 分类, ICTV, 变化, 病毒

Most members of the Bunyavirales could infect humans and animals and thus pose great potential threat to public health. According to the 10th Report on Virus Taxonomy released by the International Committee on Taxonomy of Viruses (ICTV, 2017), the taxonomy of Bunyaviruses has been updated. Based on the information of this report, we highlight the taxonomy of the new Bunyavirales and summarize the historical changes of ICTV classification of this virus, including classification, designation, typical species, genomic structures, encoding protein, major vectors and hosts, geographic distribution, and specific viral properties. In addition, based on the viral genome-encoded RdRp gene sequence, a phylogenetic analysis is performed for the all nine families and 13 genera as well as the representative species of Bunyavirales.

Key words: Bunyavirales, taxonomy, ICTV, change, virus

表1

布尼亚病毒分类变化历史简表"

时间Time
Order
变更
Change

Family
变更
Change
属/组
Genus/Group
变更
Change
参考文献
References
1975 未指定Unassigned - 布尼亚病毒科Bunyaviridae 新增 New 布尼亚病毒属 Bunyavirus 新增 New Plenary session vote 12/16 September 1975 in Madrid (MSL #03) *
1981 未指定Unassigned - 布尼亚病毒科Bunyaviridae - 内罗病毒属 Nairovirus 新增 New Plenary session vote 4 August 1981 in Strasbourg (MSL #07) *
乌库病毒属 Uukuvirus 新增 New
白蛉病毒属 Phlebovirus 新增 New
1984 未指定Unassigned - 未指定Unassigned - 水稻条纹病毒组
Rice stripe virus group
新增 New Plenary session vote 5 September 1984 in Sendai (MSL #09) *
1987 未指定Unassigned - 布尼亚病毒科Bunyaviridae - 汉坦病毒属 Hantavirus 新增 New Plenary session vote 12 August 1987 in Edmonton (MSL #10) *
未指定Unassigned 纤细病毒组 Tenuivirus group←水稻条纹病毒组 Rice stripe virus group 重命名
Renamed
1990 未指定Unassigned - 布尼亚病毒科Bunyaviridae - 番茄斑萎病毒属 Tospovirus←番茄斑萎病毒组 Tomato spotted wilt virus group 移动
Moved
Plenary session vote 29 August 1990 in Berlin (MSL #11) *
1991 未指定Unassigned - 布尼亚病毒科Bunyaviridae - 白蛉病毒属 Phlebovirus←乌库病毒属Uukuvirus和白蛉病毒属 Phlebovirus 合并
Merged
Francki et al, 1991
1993 未指定Unassigned - 未指定Unassigned - 纤细病毒属 Tenuivirus←纤细病毒组 Tenuivirus group←水稻条纹病毒组 Rice stripe virus group 重命名Renamed Pringle, 1993*
2002 未指定Unassigned - 布尼亚病毒科Bunyaviridae - 正布尼亚病毒属 Orthobunyavirus
←布尼亚病毒属 Bunyavirus
重命名Renamed Mayo, 2002a, b*
2009 未指定Unassigned - 布尼亚病毒科Bunyaviridae - 伊马拉病毒属 Emaravirus 新增 New Carstens, 2010; King et al, 2011
2016 布尼亚病毒目Bunyavirales 新增
New
费拉病毒科
Feraviridae
新增 New 正费拉病毒属 Orthoferavirus 新增 New EC48, Budapest, Hungary, August 2016; Email ratification 2017 (MSL #31)*
费莫病毒科Fimoviridae 新增 New 伊马拉病毒属 Emaravirus 移动 Moved
汉坦病毒科Hantaviridae 新增 New 正汉坦病毒属 Orthohantavirus
←汉坦病毒属 Hantavirus
重命名, 移动Renamed, moved
米卡多病毒科Jonviridae 新增 New 正米卡多病毒属 Orthojonvirus 新增 New
内罗病毒科Nairoviridae 新增 New 正内罗病毒属 Orthonairovirus
←内罗病毒属 Nairovirus
重命名, 移动 Renamed, moved
泛布尼亚病毒科Peribunyaviridae
←布尼亚病毒科Bunyaviridae
重命名, 移动
Renamed, moved
赫伯病毒属 Herbevirus 新增 New
正布尼亚病毒属 Orthobunyavirus←正布尼亚病毒属 Orthobunyavirus 移动 Moved
幻影病毒科Phasmaviridae 新增 New 正幻影病毒属 Orthophasmavirus 新增 New
白纤病毒科Phenuiviridae 新增 New 格克病毒属 Goukovirus 新增 New
帕西病毒属 Phasivirus 新增 New
白蛉病毒属 Phlebovirus 移动 Moved
纤细病毒属 Tenuivirus←纤细病毒属 Tenuivirus←纤细病毒组Tenuivirus group←水稻条纹病毒组 Rice stripe virus group 移动 Moved
番茄斑萎病毒科Tospoviridae 新增 New 正番茄斑萎病毒属 Orthotospovirus←番茄斑萎病毒属 Tospovirus←番茄斑萎病毒组 Tomato spotted wilt virus group 重命名, 移动
Renamed, moved

图1

布尼亚病毒目的最大相似度进化树。基于布尼亚病毒目各科(属)病毒RNA依赖的RNA聚合酶(RdRp)氨基酸序列构建的进化树, 利用Bootstrap方法对各节点进行1,000次验证, 仅显示各科(属)的主要分支节点的数值。病毒名称的缩写请参见附录2。"

[1] Adkins S (2000) Tomato spotted wilt virus—positive steps towards negative success. Molecular Plant Pathology, 1, 151-157.
[2] Arai S, Nguyen ST, Boldgiv B, Fukui D, Araki K, Dang CN, Ohdachi SD, Nguyen NX, Pham TD, Boldbaatar B, Satoh H, Yoshikawa Y, Morikawa S, Tanaka-Taya K, Yanagihara R, Oishi K (2013) Novel bat-borne hantavirus, Vietnam. Emerging Infectious Diseases, 19, 1159-1161.
[3] Auguste AJ, Carrington CV, Forrester NL, Popov VL, Guzman H, Widen SG, Wood TG, Weaver SC, Tesh RB (2014) Characterization of a novel negevirus and a novel Bunyavirus isolated from Culex (Culex) declarator mosquitoes in Trinidad. Journal of General Virology, 95, 481-485.
[4] Ballinger MJ, Bruenn JA, Hay J, Czechowski D, Taylor DJ (2014) Discovery and evolution of bunyavirids in arctic phantom midges and ancient bunyavirid-like sequences in insect genomes. Journal of Virology, 88, 8783-8794.
[5] Bezerra IC, de Resende R, Pozzer L, Nagata T, Kormelink R, De Avila AC (1999) Increase of tospoviral diversity in Brazil with the identification of two new tospovirus species, one from chrysanthemum and one from zucchini. Phytopathology, 89, 823-830.
[6] Carstens EB (2010) Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2009). Archives of Virology, 155, 133-146.
[7] Chandler JA, Thongsripong P, Green A, Kittayapong P, Wilcox BA, Schroth GP, Kapan DD, Bennett SN (2014) Metagenomic shotgun sequencing of a Bunyavirus in wild-caught Aedes aegypti from Thailand informs the evolutionary and genomic history of the Phleboviruses. Virology, 464-465, 312-319.
[8] Chung HC, Nguyen VG, Goede D, Park CH, Kim AR, Moon HJ, Park SJ, Kim HK, Park BK (2014) Gouleako and Herbert viruses in pigs, Republic of Korea, 2013. Emerging Infectious Diseases, 20, 2072-2075.
[9] Davies FG (1997) Nairobi sheep disease. Parassitologia, 39, 95-98.
[10] Elbeaino T, Digiaro M, Alabdullah A, De Stradis A, Minafra A, Mielke N, Castellano MA, Martelli GP (2009a) A multipartite single-stranded negative-sense RNA virus is the putative agent of fig mosaic disease. Journal of General Virology, 90, 1281-1288.
[11] Elbeaino T, Digiaro M, Martelli GP (2009b) Complete nucleotide sequence of four RNA segments of fig mosaic virus. Archives of Virology, 154, 1719-1727.
[12] Elbeaino T, Digiaro M, Uppala M, Sudini H (2014) Deep sequencing of pigeonpea sterility mosaic virus discloses five RNA segments related to emaraviruses. Virus Research, 188, 27-31.
[13] Elbeaino T, Digiaro M, Uppala M, Sudini H (2015) Addendum to: Deep-sequencing of dsRNAs recovered from mosaic-diseased pigeonpea reveals the presence of a novel emaravirus: Pigeonpea sterility mosaic virus 2. Archives of Virology, 160, 2031.
[14] Elliott RM (2014) Orthobunyaviruses: Recent genetic and structural insights. Nature Reviews Microbiology, 12, 673-685.
[15] Ergonul O (2006) Crimean-Congo haemorrhagic fever. Lancet Infectious Diseases, 6, 203-214.
[16] Ergonul O (2012) Crimean-Congo hemorrhagic fever virus: New outbreaks, new discoveries. Current Opinion in Virology, 2, 215-220.
[17] Fang Y, Wu GH, Tang JQ (2015) Overview of virus infection in Buniaviridae. In: Natural Focus Infection Disease (ed. Tang JQ), pp. 46-57. Science Press, Beijing. (in Chinese)
[方元, 吴光华, 唐家琪 (2015) 布尼亚病毒科病毒感染概述. 见: 自然疫源性疾病(唐家琪主编), 46-57页. 科学出版社, 北京.]
[18] Francki RIB, Fauquet CM, Knudson DL, Brown F (1991) Classification and nomenclature of viruses. Fifth Report of the International Committee on Taxonomy of Viruses Archives of Virology. Archives of Virology, 2, 273-283.
[19] Gerrard SR, Nichol ST (2007) Synthesis, proteolytic processing and complex formation of N-terminally nested precursor proteins of the Rift Valley fever virus glycoproteins. Virology, 357, 124-133.
[20] Golovljova I, Vasilenko V, Mittzenkov V, Prükk T, Seppet E, Vene S, Settergren B, Plyusnin A, Lundkvist A (2007) Characterization of hemorrhagic fever with renal syndrome caused by hantaviruses, Estonia. Emerging Infectious Diseases, 13, 1773-1776.
[21] Guterres A, de Oliveira RC, Fernandes J, de Lemos ER, Schrago CG (2017) New bunya-like viruses: Highlighting their relations. Infection Genetics and Evolution, 49, 164-173.
[22] Hobson-Peters J, Warrilow D, McLean BJ, Watterson D, Colmant AM, van den Hurk AF, Hall-Mendelin S, Hastie ML, Gorman JJ, Harrison JJ, Prow NA, Barnard RT, Allcock R, Johansen CA, Hall RA (2016) Discovery and characterisation of a new insect-specific bunyavirus from Culex mosquitoes captured in northern Australia. Virology, 489, 269-281.
[23] Ishikawa K, Maejima K, Komatsu K, Kitazawa Y, Hashimoto M, Takata D, Yamaji Y, Namba S (2012) Identification and characterization of two novel genomic RNA segments of fig mosaic virus, RNA5 and RNA6. Journal of General Virology, 93, 1612-1619.
[24] Jiang H, Zheng X, Wang L, Du H, Wang P, Bai X (2017) Hantavirus infection: A global zoonotic challenge. Virologica Sinica, 32, 32-43.
[25] Jonsson CB, Figueiredo LT, Vapalahti O (2010) A global perspective on hantavirus ecology, epidemiology, and disease. Clinical Microbiology Reviews, 23, 412-441.
[26] Junglen S (2016) Evolutionary origin of pathogenic arthropod-borne viruses—a case study in the family Bunyaviridae. Current Opinion in Insect Science, 16, 81-86.
[27] Junglen S, Kurth A, Kuehl H, Quan PL, Ellerbrok H, Pauli G, Nitsche A, Nunn C, Rich SM, Lipkin WI, Briese T, Leendertz FH (2009) Examining landscape factors influencing relative distribution of mosquito genera and frequency of virus infection. EcoHealth, 6, 239-249.
[28] Junglen S, Marklewitz M, Zirkel F, Wollny R, Meyer B, Heidemann H, Metzger S, Annan A, Dei D, Leendertz FH, Oppong S, Drosten C (2015) No evidence of Gouléako and Herbert virus infections in pigs, Côte d’Ivoire and Ghana. Emerging Infectious Diseases, 21, 2190.
[29] Khaiboullina SF, Morzunov SP, St Jeor SC (2005) Hantaviruses: Molecular biology, evolution and pathogenesis. Current Molecular Medicine, 5, 773-790.
[30] King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (2011) Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses. Elsevier Academic Press, London.
[31] Korneyeva M, Hotta J, Lebing W, Rosenthal RS, Franks L, Petteway SR Jr (2002) Enveloped virus inactivation by caprylate: A robust alternative to solvent-detergent treatment in plasma derived intermediates. Biologicals, 30, 153-162.
[32] Kuhn JH, Wiley MR, Rodriguez SE, Bào Y, Prieto K, Travassos da Rosa AP, Guzman H, Savji N, Ladner JT, Tesh RB, Wada J, Jahrling PB, Bente DA, Palacios G (2016) Genomic characterization of the genus Nairovirus (Family Bunyaviridae). Viruses, 8, 164.
[33] Laney AG, Keller KE, Martin RR, Tzanetakis IE (2011) A discovery 70 years in the making: Characterization of the Rose rosette virus. Journal of General Virology, 92, 1727-1732.
[34] Lee HW, Lee PW, Johnson KM (1978) Isolation of the etiologic agent of Korean Hemorrhagic fever. Journal of Infectious Diseases, 137, 298-308.
[35] Lefkowitz EJ, Davison AJ, Sabanadzovic S, Siddell SG, Simmonds P (2017) Virus Taxonomy: The Classification and Nomenclature of Viruses, The Online (10th) Report of the ICTV (2017) Authority Files for International Committee on Taxonomy of Viruses. https://talk.ictvonline.org/ictv-reports
/ictv_online_report/.
[36] Li CX, Shi M, Tian JH, Lin XD, Kang YJ, Chen LJ, Qin XC, Xu J, Holmes EC, Zhang YZ (2015) Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses. eLife, 4, e05378.
[37] Marczinke BI, Nichol ST (2002) Nairobi sheep disease virus, an important tick-borne pathogen of sheep and goats in Africa, is also present in Asia. Virology, 303, 146-151.
[38] Marklewitz M, Handrick S, Grasse W, Kurth A, Lukashev A, Drosten C, Ellerbrok H, Leendertz FH, Pauli G, Junglen S (2011) Gouleako virus isolated from West African mosquitoes constitutes a proposed novel genus in the family Bunyaviridae. Journal of Virology, 85, 9227-9234.
[39] Marklewitz M, Zirkel F, Kurth A, Drosten C, Junglen S (2015) Evolutionary and phenotypic analysis of live virus isolates suggests arthropod origin of a pathogenic RNA virus family. Proceedings of the National Academy of Sciences, USA, 112, 7536-7541.
[40] Marklewitz M, Zirkel F, Rwego IB, Heidemann H, Trippner P, Kurth A, Kallies R, Briese T, Lipkin WI, Drosten C, Gillespie TR, Junglen S (2013) Discovery of a unique novel clade of mosquito-associated bunyaviruses. Journal of Virology, 87, 12850-12865.
[41] Mayo MA (2002a) Virus taxonomy—Houston 2002. Archives of Virology, 147, 1071-1076.
[42] Mayo MA (2002b) A summary of taxonomic changes recently approved by ICTV. Archives of Virology, 147, 1655-1656.
[43] McGavin WJ, Mitchell C, Cock PJ, Wright KM, MacFarlane SA (2012) Raspberry leaf blotch virus, a putative new member of the genus Emaravirus, encodes a novel genomic RNA. Journal of General Virology, 93, 430-437.
[44] Mielke N, Muehlbach HP (2007) A novel, multipartite, negative-strand RNA virus is associated with the ringspot disease of European mountain ash (Sorbus aucuparia L.). Journal of General Virology, 88, 1337-1346.
[45] Mir MA, Panganiban AT (2005) The hantavirus nucleocapsid protein recognizes specific features of the viral RNA panhandle and is altered in conformation upon RNA binding. Journal of Virology, 79, 1824-1835.
[46] Oliveira VC, Bartasson L, de Castro ME, Corrêa JR, Ribeiro BM, Resende RO (2011) A silencing suppressor protein (NSs) of a tospovirus enhances baculovirus replication in permissive and semipermissive insect cell lines. Virus Research, 155, 259-267.
[47] Pappu HR, Jones RA, Jain RK (2009) Global status of tospovirus epidemics in diverse cropping systems: Successes achieved and challenges ahead. Virus Research, 141, 219-236.
[48] Pepin M, Bouloy M, Bird BH, Kemp A, Paweska J (2010) Rift Valley fever virus (Bunyaviridae: Phlebovirus): An update on pathogenesis, molecular epidemiology, vectors, diagnostics and prevention. Veterinary Research, 41, 61.
[49] Plyusnin A, Beaty BJ, Elliott RM, Goldbach R, Kormelink R, Lundkvist A, Schmaljohn CS, Tesh RB (2011) Family Bunyaviridae. In: Virus Taxonomy Ninth Report of the International Committee on Taxonomy of Viruses (eds King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ), pp. 725-741. Elsevier/Academic Press, London.
[50] Pringle CR (1993) Virus taxonomy update. Taxonomic decisions ratified at the plenary meeting of the ICTV at the 9th international congress of virology held in Glasgow on the 10th August 1993. Archives of Virology, 133, 491-495.
[51] Scholz S, Baharom F, Rankin G, Maleki KT, Gupta S, Vangeti S, Pourazar J, Discacciati A, Höijer J, Bottai M, Björkström NK, Rasmuson J, Evander M, Blomberg A, Ljunggren HG, Klingström J, Ahlm C, Smed-Sörensen A (2017) Human hantavirus infection elicits pronounced redistribution of mononuclear phagocytes in peripheral blood and airways. PLoS Pathog, 13, 1-24.
[52] Skare JM, Wijkamp I, Denham I, Rezende JA, Kitajima EW, Park JW, Desvoyes B, Rush CM, Michels G, Scholthof KB, Scholthof HB (2006) A new eriophyid mite-borne membrane-enveloped virus-like complex isolated from plants. Virology, 347, 343-353.
[53] Smirnova IP, Shneider YA, Karimova EV (2016) Trichoderma L-lysine-alpha-Oxidase producer strain culture fluid inhibits impatiens necrotic spot virus. Bulletin of Experimental Biology and Medicine, 160, 357-359.
[54] Takeda A, Sugiyama K, Nagano H, Mori M, Kaido M, Mise K, Tsuda S, Okuno T (2002) Identification of a novel RNA silencing suppressor, NSs protein of tomato spotted wilt virus. FEBS Letters, 532, 75-79.
[55] Tatineni S, McMechan AJ, Wosula EN, Wegulo SN, Graybosch RA, French R, Hein GL (2014) An eriophyid mite-transmitted plant virus contains eight genomic RNA segments with unusual heterogeneity in the nucleocapsid protein. Journal of Virology, 88, 11834-11845.
[56] Tokarz R, Williams SH, Sameroff S, Sanchez Leon M, Jain K, Lipkin WI (2014) Virome analysis of Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis ticks reveals novel highly divergent vertebrate and invertebrate viruses. Journal of Virology, 88, 11480-11492.
[57] Walker PJ, Widen SG, Firth C, Blasdell KR, Wood TG, Travassos da Rosa AP, Guzman H, Tesh RB, Vasilakis N (2015) Genomic characterization of Yogue, Kasokero, Issyk-Kul, Keterah, Gossas, and Thiafora viruses: Nairoviruses naturally infecting bats, shrews, and ticks. American Journal of Tropical Medicine and Hygiene, 93, 1041-1051.
[58] Witkowski PT, Drexler JF, Kallies R, Ličková M, Bokorová S, Mananga GD, Szemes T, Leroy EM, Krüger DH, Drosten C, Klempa B (2016) Phylogenetic analysis of a newfound bat-borne hantavirus supports a laurasiatherian host association for ancestral mammalian hantaviruses. Infection Genetics and Evolution, 41, 113-119.
[59] Won S, Ikegami T, Peters CJ, Makino S (2006) NSm and 78-kilodalton proteins of Rift Valley fever virus are nonessential for viral replication in cell culture. Journal of Virology, 80, 8274-8278.
[60] Yu XJ, Tesh RB (2014) The role of mites in the transmission and maintenance of Hantaan virus (Hantavirus: Bunyaviridae). Journal of Infectious Diseases, 210, 1693-1699.
[61] Zhang YZ (2014) Discovery of hantaviruses in bats and insectivores and the evolution of the genus Hantavirus. Virus Research, 187, 15-21.
[62] Zheng YZ, Navarro B, Wang GP, Wang YX, Yang ZK, Xu WX, Zhu CX, Wang LP, Serio FD, Hong N (2017) Actinidia chlorotic ringspot-associated virus: A novel emaravirus infecting kiwifruit plants. Molecular Plant Pathology, 18, 569-581.
[63] Zhu J, Zhang Y, Wu GH (2015) Crimean-Congo hemorrhagic fever. In: Natural Focus Infection Disease (ed. Tang JQ), pp. 108-131. Science Press, Beijing. (in Chinese)
[朱进, 张云, 吴光华 (2015) 克里米亚-刚果出血热. 见: 自然疫源性疾病(唐家琪主编), 108-131页. 科学出版社, 北京.]
[1] 蒋凯文, 潘勃, 田斌. 近年来中国国产豆科的属级分类学变动[J]. 生物多样性, 2019, 27(6): 689-697.
[2] 张晓玲, 李亦超, 王芸芸, 蔡宏宇, 曾辉, 王志恒. 未来气候变化对不同国家茶适宜分布区的影响[J]. 生物多样性, 2019, 27(6): 595-606.
[3] 谢丹,王玉琴,张小霜,吴玉,杨敬元,张代贵. 神农架国家公园植物采集史及模式标本名录[J]. 生物多样性, 2019, 27(2): 211-218.
[4] 涂伟凤,张洋,汤洁,涂玉琴,辛佳佳,姬红利,张南峰,张弢. 印度蔊菜与无瓣蔊菜形态变异特征的比较及分类关系[J]. 生物多样性, 2019, 27(2): 168-176.
[5] 温晓示, 陈彬杭, 张树斌, 徐凯, 叶新宇, 倪伟杰, 王襄平. 不同林龄、树种落叶松人工林径向生长与气候变化的关系[J]. 植物生态学报, 2019, 43(1): 27-36.
[6] 孙孝平,李双,余建平,方彦君,张银龙,曹铭昌. 基于土地利用变化情景的生态系统服务价值评估: 以钱江源国家公园体制试点区为例[J]. 生物多样性, 2019, 27(1): 51-63.
[7] 高趁光, 乔鲜果, 王孜, 陆帅志, 侯东杰, 刘长成, 赵利清, 郭柯. 中国百里香草原的分布、群落特征和分类[J]. 植物生态学报, 2018, 42(9): 971-976.
[8] 刘安榕, 杨腾, 徐炜, 上官子健, 王金洲, 刘慧颖, 时玉, 褚海燕, 贺金生. 青藏高原高寒草地地下生物多样性: 进展、问题与展望[J]. 生物多样性, 2018, 26(9): 972-987.
[9] 葛美玲, 徐勤增, 范士亮, 王宗兴, 张学雷. 中国近海多毛纲底栖类群目与科水平的分类[J]. 生物多样性, 2018, 26(9): 998-1003.
[10] 史林鹭, 贾亦飞, 左奥杰, 马童慧, 雷佳琳, 雷光春, 文力. 基于MODIS EVI时间序列的鄱阳湖湿地植被覆盖和生产力的动态变化[J]. 生物多样性, 2018, 26(8): 828-837.
[11] 王乐, 时晨, 田金炎, 宋晓楠, 贾明明, 李小娟, 刘晓萌, 钟若飞, 殷大萌, 杨杉杉, 郭先仙. 基于多源遥感的红树林监测[J]. 生物多样性, 2018, 26(8): 838-849.
[12] 张宇, 冯刚. 内蒙古昆虫物种多样性分布格局及其机制[J]. 生物多样性, 2018, 26(7): 701-706.
[13] 刘秀嶶, Douglas Chesters, 武春生, 周青松, 朱朝东. 环境变化对中国野生蜜蜂多样性的影响[J]. 生物多样性, 2018, 26(7): 760-765.
[14] 蒋志刚. 论保护地分类与以国家公园为主体的中国保护地建设[J]. 生物多样性, 2018, 26(7): 775-779.
[15] 舒江平, 罗俊杰, 韦宏金, 严岳鸿. 基于模式产地的分子证据澄清南平鳞毛蕨的分类学地位[J]. 植物学报, 2018, 53(6): 793-800.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed