生物多样性 ›› 2017, Vol. 25 ›› Issue (6): 621-626.doi: 10.17520/biods.2017117

• 研究报告 • 上一篇    下一篇

铁角蕨科的多倍化与物种多样性形成

常艳芬*()   

  1. 中国科学院西双版纳热带植物园, 云南勐腊 666303
  • 收稿日期:2017-04-13 接受日期:2017-06-28 出版日期:2017-06-20
  • 通讯作者: 常艳芬 E-mail:cyf@xtbg.org.cn
  • 基金项目:
    国家自然科学基金(31500171)和生物标本馆经典分类学青年人才项目(ZSBR-008)

Polyploidy and the formation of species diversity in Aspleniaceae

Yanfen Chang*()   

  1. Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303
  • Received:2017-04-13 Accepted:2017-06-28 Online:2017-06-20
  • Contact: Chang Yanfen E-mail:cyf@xtbg.org.cn

铁角蕨科植物约800种, 广布世界各地, 主产热带和亚热带地区。本文统计了铁角蕨科188种植物的细胞学资料, 发现167种植物具有多倍化现象, 占总种数的88.8%, 表明该类群植物中普遍存在多倍化事件。具有多倍化现象的物种中, 90种只有1种细胞型, 占总种数的47.9%; 77种具有种内多倍性, 即种下存在多个细胞型组合, 占总种数的41.0%。多倍体细胞倍性极其丰富, 有三倍体、四倍体、六倍体、八倍体、十倍体、十二倍体以及十六倍体。本文还对铁角蕨科多倍化现象与其物种多样性形成的关系进行了讨论, 同时对铁角蕨科多倍化研究中存在的问题进行了探讨。

关键词: 蕨类植物, 多倍化, 物种多样性, 网状进化, 无融合生殖

Ferns are considered to have the highest frequency of polyploidy in plants. Based on the published cytological data of 188 species, we analyzed the relationship between polyploidy and the formation of species diversity in the fern family Aspleniaceae, which comprises approximately 800 species. The results show that polyploids, including triploids, tetraploids, hexaploids, octoploids, decaploids, dodecaploids and hexadecaploids, have been documented in the family. Of the 188 Aspleniaceae species with cytological data, 88.8% exhibit polyploidy, 41.0% show intraspecific polyploidy and 47.9% are the result of polyploid speciation. In addition, the diverse ploidy levels suggest that these species have a complex evolutionary history and their taxonomic problems require further study. The perplexity and future directions of study of Aspleniaceae were also discussed.

Key words: Pteridophytes, polyploid, species diversity, reticulation, apomixes

[1] Bellefroid E, Rambe K, Leroux O, Viane R (2010) The base number of ‘loxoscaphoid’ Asplenium species and its implication for cytoevolution in Aspleniaceae. Annals of Botany, 106, 157-171.
[2] Bennert HW, Fischer G (1993) Biosystematics and evolution of the Asplenium trichomanes complex. Webbia, 48, 743-760.
[3] Braithwaite AF (1986) The Asplenium aethiopicum complex in South Africa. Botanical Journal of the Linnean Society, 93, 343-378.
[4] Brysting AK, Mathiesen C, Marcussen T (2011) Challenges in polyploid phylogenetic reconstruction: a case story from the arctic-alpine Cerastium alpinum complex. Taxon, 60, 333-347.
[5] Brysting AK, Oxelman B, Huber KT, Moulton V, Brochmann C (2007) Untangling complex histories of genome mergings in high polyploids. Systematic Biology, 56, 467-476.
[6] Chang YF, Li J, Lu SG, Schneider H (2013) Species diversity and reticulate evolution in the Asplenium normale complex (Aspleniaceae) in China and adjacent areas. Taxon, 62, 673-687.
[7] Cheng X, Murakami N (1998) Cytotaxonomic study of genus Hymenasplenium (Aspleniaceae) in Xishuangbanna, southwestern China. Journal of Plant Research, 111, 495-500.
[8] Cheng X, Zhang SZ (2010) Index to chromosome numbers of Chinese Pteridophyta (1969-2009). Journal of Fairylake Botanic Garden, 9, 1-58.
[9] Dyer RJ, Savolainen V, Schneider H (2012) Apomixis and reticulate evolution in the Asplenium monanthes fern complex. Annals of Botany, 110, 1515-1529.
[10] Ebihara A, Ishikawa H, Matsumoto S, Lin SU, Iwatsuki K, Takamiya M, Watano Y, Ito M (2005) Nuclear DNA, chloroplast DNA, and ploidy analysis clarified biological complexity of the Vandenboschia radicans complex (Hymenophyllaceae) in Japan and adjacent areas. American Journal of Botany, 92, 1535-1547.
[11] Ekrt L, Stech M (2008) A morphometric study and revision of the Asplenium trichomanes group in the Czech Republic. Preslia, 80, 325-347.
[12] Grant V (1981) Plant Speciation, pp. 273-317. Columbia University Press, New York.
[13] Grusz AL (2016) A current perspective on apomixis in ferns. Journal of Systematics and Evolution, 54, 656-665.
[14] Grusz AL, Windham MD, Pryer KM (2009) Deciphering the origins of apomictic polyploids in the Cheilanthes yavapensis complex (Pteridaceae). American Journal of Botany, 96, 1636-1645.
[15] Gu YF, Wei HJ, Wei R, Dai XL, Yan YH (2014) Diplazium × kidoi Sa. Kurata, a newly recorded species of Diplazium (Athyriaceae) from China. Plant Science Journal, 32, 336-339. (in Chinese with English abstract)
[顾钰峰, 韦宏金, 卫然, 戴锡玲, 严岳鸿 (2014) 中国双盖蕨属一新记录种—Diplazium × kidoi Sa. Kurata. 植物科学学报, 32, 336-339.]
[16] Haufler CH (2002) Homospory 2002: an odyssey of progress in pteridophyte genetics and evolutionary biology. BioScience, 52, 1081-1093.
[17] Haufler CH, Hooper EA, Thierrien JP (2000) Modes and mechanisms of speciation in pteridophytes; implications of contrasting patterns in ferns representing temperate and tropical habitats. Plant Species Biology, 15, 223-236.
[18] Hendry AP (2009) Evolutionary biology: speciation. Nature, 458, 162-164.
[19] Hong DY (1990) Plant Cytotaxonomy. Science Press, Beijing. (in Chinese)
[洪德元 (1990) 植物细胞分类学. 科学出版社, 北京.]
[20] Hori K, Tono A, Fujimoto K, Kato J, Ebihara A, Watano Y, Murakami N (2014) Reticulate evolution in the apogamous Dryopteris varia complex (Dryopteridaceae, subg. Erythrovariae, sect. Variae) and its related sexual species in Japan. Journal of Plant Research, 127, 661-684.
[21] Hou X, Wang ZR (2000) A subspecific taxonomic study on Asplenium trichomanes L. from China. Acta Phytotaxonomica Sinica, 38, 242-255. (in Chinese with English abstract)
[侯鑫, 王中仁 (2000) 中国铁角蕨的种下分类学研究. 植物分类学报, 38, 242-255.]
[22] Jackson RC (1976) Evolution and systematic significance of polypolidy. Annual Review of Ecology and Systematics, 7, 209.
[23] Kato M, Nakato N, Cheng X, Iwatsuki K (1992) Cytotaxonomic study of ferns of Yunnan, southwestern China. Journal of Plant Research, 105, 105-124.
[24] Lin YX, Viane R (2012) Aspleniaceae. In: Flora of China (ed. Editorial Committee of Flora of China). Science Press, Beijing & Missouri Botanical Garden Press, St. Louis.
[25] Liu HM, Dyer RJ, Guo ZY, Meng Z, Li JH, Schneider H (2012) The evolutionary dynamics of apomixis in ferns: a case study from polystichoid ferns. Journal of Botany, 2012, .
[26] Lovis JD (1964) The taxonomy of Asplenium trichomanes in Europe. British Fern Gazette, 9, 147-160.
[27] Lovis JD (1977) Evolutionary patterns and processes in ferns. Advances in Botanical Research, 4, 229-415.
[28] Manton I (1959) Cytological information on the ferns of West Tropical Africa. In: The Ferns and Fern Allies of West Tropical Africa (ed. Alston AHG). Grown Agents, London.
[29] Mitui K, Murakami N, Iwatsuki K (1989) Chromosomes and systematics of Asplenium sect. Hymenasplenium (Aspleniaceae). American Journal of Botany, 76, 1689-1697.
[30] Murakami N, Nogami S, Watanabe M, Iwatsuki K (1999) Phylogeny of Aspleniaceae inferred from rbcL nucleotide sequences. American Fern Journal, 89, 232-243.
[31] Nyhus GC (1987) The subspecies of Asplenium trichomanes in Norway. Blyttia, 45, 12-24.
[32] Perrie LR, Brownsey PJ (2005) Insights into the biogeography and polyploid evolution of New Zealand Asplenium from chloroplast DNA sequence data. American Fern Journal, 95, 1-21.
[33] Pinter I, Bakker F, Barrett JA, Cox C, Gibby M, Henderson S, Morgan-Richards M, Rumsey F, Russell S, Trewick S, Schneider H, Vogel J (2002) Phylogenetic and biosystematic relationships in four highly disjunct polyploidy complexes in the subgenera Ceterach and Phyllitis in Asplenium (Aspleniaceae). Organisms, Diversity and Evolution, 2, 299-311.
[34] Rasbach H, Rasbach K, Reichstein T, Bennert HW (1990) Asplenium trichomanes subsp. coriaceifolium, a new subspecies and two new intraspecific hybrids of the A. trichomanes complex (Aspleniaceae, Pteridophyta). I. Nomenclature and typification. Willdenowia, 19, 471-474.
[35] Rasbach H, Rasbach K, Reichstein T, Bennert HW (1991) Asplenium trichomanes subsp. coriaceifolium, a new subspecies and two new intraspecific hybrids of the A. trichomanes complex (Aspleniaceae, Pteridophyta). II. Description and illustrations. With an appendix on pairing behaviour of chromosomes in fern hybrids. Willdenowia, 21, 239-261.
[36] Reichstein T (1981) Hybrids in European Aspleniaceae (Pteridophyta). Botanica Helvetica, 91, 89-139.
[37] Rieseberg LH, Willis JH (2007) Plant speciation. Science, 317, 910-914.
[38] Sang T, Zhong Y (2000) Testing hybridization hypotheses based on incongruent gene trees. Systematic Biology, 49, 422-434.
[39] Schneider H, Navarro-gomez A, Russell SJ, Ansell S, Grundmann M, Vogel J (2013) Exploring the utility of three nuclear regions to reconstruct reticulate evolution in the fern genus Asplenium. Journal of Systematics and Evolution, 51, 142-153.
[40] Schneider H, Russell SJ, Cox CJ, Bakker F, Henderson S, Rumsey F, Barrett J, Gibby M, Vogel JC (2004) Chloroplast phylogeny of asplenioid ferns based on rbcL and trnL-F spacer sequences (Polypodiidae, Aspleniaceae) and its implications for biogeography. Systematic Botany, 29, 260-274.
[41] Shepherd LD, Perrie LR, Brownsey PJ (2008) Low copy nuclear DNA sequences reveal a predominance of allopolyploids in a New Zealand Asplenium fern complex. Molecular Phylogenetics and Evolution, 49, 240-248.
[42] Tigerschiold E (1981) The Asplenium trichomanes complex in East Central Sweden. Nordic Journal of Botany, 1, 12-16.
[43] van den Heede CG, Viane R, Chase MW (2003) Phylogenetic analysis of Asplenium subgenus Ceterach (Pteridophyta: Aspleniaceae) based on plastid and nuclear ribosomal ITS DNA sequences. American Journal of Botany, 90, 481-495.
[44] Vogel JC, Russell SJ, Barrett SA, Gibby M (1996) A noncoding region of chloroplast DNA as a tool to investigate reticulate evolution in European Asplenium. In: Pteridology in Perspective (eds Camus JM, Johns RJ, Gibby M). Royal Botanic Garden, Kew, Richmond.
[45] Wagner WH (1954) Reticulate evolution in the Appalachian Asplenium. Evolution, 8, 103-118.
[46] Wang RX, Lu SG, Deng XC (2007) Cytotaxonomic studies of the Chinese pteridophytes: a review. Acta Phytotaxonomica Sinica, 45, 98-111. (in Chinese with English abstract)
[王任翔, 陆树刚, 邓晰朝 (2007) 中国蕨类植物细胞分类学研究概况. 植物分类学报, 45, 98-111.]
[47] Wang ZR, Zhang F, Hou X (2003) A biosystematic study on Asplenium sarelii complex. Acta Botanica Sinica, 45, 1-14.
[48] Werth CR, Guttman SI, Eshbaugh WH (1985) Recurring origins of allopolyploid species in Asplenium. Science, 228, 731-733.
[49] Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH (2009) The frequency of polyploid speciation in vascular plants. Proceedings of the National Academy of Sciences, USA, 106, 13875-13879.
[50] Wu ZH (1999) Aspleniaceae. In: Flora Reipublicae Popularis Sinicae (ed. Editorial Committee of Flora Reipublicae Popularis Sinicae, Chinese Academy of Sciences), Tomus, 4(2). Science Press, Beijing. (in Chinese)
[吴兆洪 (1999) 铁角蕨科. 见:中国植物志(中国科学院中国植物志编辑委员会编), 4(2). 科学出版社, 北京.]
[51] Yatabe Y, Masuyama S, Darnaedi D, Murakami N (2001) Molecular systematics of the Asplenium nidus complex from Mt. Halimun National Park, Indonesia: evidence for reproductive isolation among three sympatric rbcL sequence types. American Journal of Botany, 88, 1517-1522.
[52] Yatabe Y, Murakami N (2003) Recognition of cryptic species in the Asplenium nidus complex using molecular data—a progress report. Telopea, 10, 487-496.
[53] Yatabe Y, Shonohara W, Matsumoto S, Murakami N (2009) Patterns of hybrid formation among cryptic species of bird-nest fern, Asplenium nidus complex (Aspleniaceae), in West Malesia. Botanical Journal of the Linnean Society, 160, 42-63.
[54] Zhang XC (2012) Lycophytes and Ferns from China. Peking University Press, Beijing. (in Chinese)
[张宪春 (2012) 中国石松类和蕨类植物. 北京大学出版社, 北京.]
[55] Zhang XC, Wei R, Liu HM, He LJ, Wang L, Zhang G (2013) Phylogeny and classification of the extant lycophytes and ferns from China. Chinese Bulletin of Botany, 48, 119-137. (in Chinese with English abstract)
[张宪春, 卫然, 刘红梅, 何丽娟, 王丽, 张钢 (2013) 中国现代石松类和蕨类的系统发育与分类系统. 植物学报, 48, 119-137.]
[56] Zou XH, Ge S (2008) Conflicting gene trees and phylogenomics. Journal of Systematics and Evolution, 46, 795-807. (in Chinese with English abstract)
[邹新慧, 葛颂 (2008) 基因树冲突与系统发育基因组学研究. 植物分类学报, 46, 795-807.]
[1] 刘丹,郭忠玲,崔晓阳,范春楠. (2020) 5种东北红豆杉植物群丛及其物种多样性的比较. 生物多样性, 28(3): 340-349.
[2] 刘振元,孟星亮,李正飞,张君倩,徐靖,银森录,谢志才. (2020) 南洞庭湖区软体动物物种多样性评估及保护对策. 生物多样性, 28(2): 155-165.
[3] 李霞,朱万泽,孙守琴,舒树淼,盛哲良,张军,刘亭,张志才. (2020) 大渡河中游干暖河谷区生境对植物群落分布格局和多样性的影响. 生物多样性, 28(2): 117-127.
[4] 刘旻霞,李全弟,蒋晓轩,夏素娟,南笑宁,张娅娅,李博文. (2020) 甘南亚高寒草甸稀有种对物种多样性和物种多度分布格局的贡献. 生物多样性, 28(2): 107-116.
[5] 王玉冰,孙毅寒,丁威,张恩涛,李文怀,迟永刚,郑淑霞. (2020) 长期氮添加对典型草原植物多样性与初级生产力的影响及途径. 植物生态学报, 44(1): 22-32.
[6] 丁威,王玉冰,向官海,迟永刚,鲁顺保,郑淑霞. (2020) 小叶锦鸡儿灌丛化对典型草原群落结构与生态系统功能的影响. 植物生态学报, 44(1): 33-43.
[7] 秦浩,张殷波,董刚,张峰. (2019) 山西关帝山森林群落物种、谱系和功能多样性海拔格局. 植物生态学报, 43(9): 762-773.
[8] 谭一波,申文辉,付孜,郑威,欧芷阳,谭长强,彭玉华,庞世龙,何琴飞,黄小荣,何峰. (2019) 环境因子对桂西南蚬木林下植被物种多样性变异的解释. 生物多样性, 27(9): 970-983.
[9] 唐丽丽,杨彤,刘鸿雁,康慕谊,王仁卿,张峰,高贤明,岳明,张梅,郑璞帆,石福臣. (2019) 华北地区荆条灌丛分布及物种多样性空间分异 规律. 植物生态学报, 43(9): 825-833.
[10] 陈自宏,王元兵,代永东,陈凯,徐玲,何謦成. (2019) 滇西太保山森林公园子囊菌门虫生真菌物种多样性及其消长动态. 生物多样性, 27(9): 993-1001.
[11] 方文静,蔡琼,朱江玲,吉成均,岳明,郭卫华,张峰,高贤明,唐志尧,方精云. (2019) 华北地区落叶松林的分布、群落结构和物种多样性. 植物生态学报, 43(9): 742-752.
[12] 崔宝凯, 袁海生, 周丽伟, 何双辉, 魏玉莲. (2019) 大小兴安岭针叶树倒木上木腐真菌的物种多样性. 生物多样性, 27(8): 887-895.
[13] 李俊凝, 李通, 魏玉莲. (2019) 丰林国家级自然保护区木腐真菌多样性与寄主倒木的关系. 生物多样性, 27(8): 880-886.
[14] 图力古尔, 王雪珊, 张鹏. (2019) 大小兴安岭地区伞菌和牛肝菌类区系. 生物多样性, 27(8): 867-873.
[15] 焦萌, 李晶, 赵慧峰, 武春生, 张爱兵. (2019) 基于在线数据库的鳞翅目刺蛾科昆虫物种多样性及其全球分布格局. 生物多样性, 27(7): 778-786.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed