生物多样性 ›› 2017, Vol. 25 ›› Issue (8): 864-873.doi: 10.17520/biods.2017069

• 综述 • 上一篇    下一篇

风媒传粉的研究方法探讨

朱亚如, 龚燕兵*()   

  1. 武汉大学生命科学学院杂交水稻国家重点实验室 武汉 430072
  • 收稿日期:2017-03-06 接受日期:2017-05-04 出版日期:2017-08-20
  • 通讯作者: 龚燕兵 E-mail:ybgong@whu.edu.cn
  • 作者简介:# 共同第一作者 Co-first authors
  • 基金项目:
    国家自然科学基金(31670228)和湖北省自然科学基金(2011CDA095)

Methods of wind pollination

Yaru Zhu, Yanbing Gong*()   

  1. State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072
  • Received:2017-03-06 Accepted:2017-05-04 Online:2017-08-20
  • Contact: Gong Yanbing E-mail:ybgong@whu.edu.cn

种子植物的花粉传递依赖多样化的传粉媒介, 与动物传粉相比, 风媒传粉往往被认为效率较低而受到较少关注。然而, 绝大部分裸子植物和至少10%的被子植物依赖风媒传粉, 在被子植物中至少发生了65次从动物媒向风媒的传粉转变, 而且同种植物内风媒与虫媒并存的混合传粉机制也已屡见报道。因此, 亟需更加完善的研究方法以揭示生态系统中大量隐藏的风媒传粉现象和机理。本文首先介绍了风媒传粉植物的种类和生境多样性, 以明确风媒传粉的研究范围。在此基础上, 论述了在野外条件下应首选使用花粉捕获法(黏性玻片或空气颗粒取样器)测量空气中的花粉数量; 同时应结合传粉者排除法和套袋、去雄等传粉处理, 确定风媒传粉的生殖贡献大小以及动物传粉、自动自交和无融合生殖并存的可能性。如果野外条件受限, 应采集相关植物组织, 在实验室使用频闪摄影或沉降塔法测量花粉的沉降系数以推测风媒传粉的可能性, 并利用风洞实验和计算机模拟探明不同条件下的风媒传粉效率和空气动力学基础。同时, 应进一步研究影响风媒传粉的生物(风媒传粉综合征)和非生物因素, 以探寻风媒传粉发生的原因和进化生态后果。以上方法并不能相互替代, 研究者应尽量全面使用各类方法以准确描述风媒传粉现象并解释其适应机理。

关键词: 风媒传粉, 种子植物, 花粉, 野外方法, 空气动力学

The transfer of pollen in most seed plants relies on diverse pollination vectors. In comparison with animal pollination (zoophily), wind pollination (anemophily) has long been regarded as an inefficient mode and thus has received relatively little attention. However, the majority of gymnosperm species and over 10% of angiosperm species are wind pollinated, and the evolution of wind pollination from insect-pollinated ancestors has occurred at least 65 times in angiosperms. Furthermore, ambophily, a combination of wind and insect pollination, is also reported frequently. More refined methods are thus seriously needed to explore the existence and mechanisms of wind pollination in diverse ecosystems. In this paper, we explore the scope of anemophily research by describing the species and habitat diversities of wind-pollinated plants. In field experiments, we recommend using pollen traps (sticky slides or airborne particle samplers) to quantify airborne pollen, and conducting pollinator exclusion, bagging, and emasculation treatments to explore the reproductive contribution of anemophily and the possibilities of zoophily, autogamy, and apomixis. In constrained field conditions, researchers can bring relevant plant tissues back to the laboratory for experiments examining aerodynamics, i.e., measuring the settling velocity of pollen using stroboscopic photography or drop towers, calculating the pollination efficiency using wind tunnels, and evaluating the aerodynamics based on computer models in different simulated conditions. Furthermore, the abiotic and biotic factors (wind pollination syndromes) associated with anemophily should also be studied to explore the causes as well as the ecological and evolutionary consequences of wind pollination. The above methods cannot substitute for one another, as researchers should use them as a comprehensive unit when possible to reveal the details and mechanisms of wind pollination.

Key words: wind pollination, seed plants, pollen, field methods, aerodynamics

表1

风媒和虫媒传粉的主要影响因素比对"

风媒传粉 Wind pollination 动物传粉 Animal pollination
非生物因素 Abiotic factors
分布 Distribution 温带 Temperate 热带或温带 Tropical or temperate
最佳风速 Optimum wind speed 低至中等 Low to moderate 零至低 Zero to low
降雨 Precipitation 不频繁 Infrequent 不频繁至频繁 Infrequent to common
湿度 Humidity 低 Low 中至高 Medium to high
生物因素 Biotic factors
周围植被 Surrounding vegetation 开阔 Open 开阔至郁闭 Open to closed
同种密度 Conspecific density 中至高 Moderate to high 低至高 Low to high
开花一致性 Flowering consistency 同步 Synchronous 不同步 Less synchronous
开花数量 Flower number 多 Many 少 A few
花位置 Flower position 离叶较远 Held away from vegetation 无规律 Variable
花类型 Flower type 单性 Unisexual 两性 Hermaphrodite
花被 Perianth 缺失或减小 Absent or reduced 显眼 Showy
花颜色 Floral colour 绿或白 Greenish or whitish 艳丽 Constrasting
花气味 Floral scent 无或退化 Absent or reduced 常有 Often present
蜜腺 Nectaries 缺失或减小 Absent or reduced 具备 Present
柱头 Stigmas 羽状 Feathery 简单 Simple
单花胚珠数 Ovules per flower 一或少 One or few 多 Many
花粉量 Pollen grains number 多 Many 少 Few
花粉大小 Pollen size 变化较小, 一般10-50 μm
Less variable, often 10-50 μm
变化较大, 一般 >60 μm
Highly variable, often >60 μm
花粉黏性 Pollen viscosity 干 Dry 黏 Viscid
花粉表面纹饰 Pollen ornamentation 光滑, 花粉鞘缺失或退化
Smooth with reduced/absent pollenkitt
复杂并具花粉鞘
Often elaborate with pollenkitt

图1

传粉者排除法结合传粉处理检验风媒传粉的技术路线。+表示结籽率> 0, -表示结籽率 = 0。"

[1] Ackerman JD (2000) Abiotic pollen and pollination: ecological, functional, and evolutionary perspectives. Plant Systematics and Evolution, 222, 167-185.
[2] Ackerman JD, Kevan PG (2005) Abiotic pollination. In: Practical Pollination Biology (eds Dafni A, Kevan PG, Husband BC), pp. 435-480. Enviroquest Ltd., Cambridge.
[3] Baker JD, Cruden RW (1991) Thrips-mediated self-pollination of two facultatively xenogamous wetland species. American Journal of Botany, 78, 959-963.
[4] Bawa KS (1990) Plant-pollinator interactions in tropical rain forests. Annual Review of Ecology and Systematics, 21, 399-422.
[5] Bickel AM, Freeman DC (1993) Effects of pollen vector and plant geometry on floral sex ratio in monoecious plants. American Midland Naturalist, 130, 239-247.
[6] Bolinder K, Niklas KJ, Rydin C (2015) Aerodynamics and pollen ultrastructure in Ephedra. American Journal of Botany, 102, 457-470.
[7] Borrell JS (2012) Rapid assessment protocol for pollen settling velocity: implications for habitat fragmentation. Bioscience Horizons, 5, 1-9.
[8] Chen XY (2004) Mating systems. In: Plant Life-History Evolution and Reproductive Ecology (ed. Zhang DY), pp. 258-279. Science Press, Beijing. (in Chinese)
[陈小勇 (2004) 交配系统. 见: 植物生活史进化与繁殖生态学 (张大勇主编), 258-279页. 科学出版社, 北京.]
[9] Cox PA (1991) Abiotic pollination: an evolutionary escape for animal-pollinated angiosperms. Philosophical Transactions of the Royal Society B: Biological Sciences, 333, 217-224.
[10] Cresswell JE, Henning K, Pennel C, Lahoubi M, Patrick MA, Young PG, Tabor GR (2007) Conifer ovulate cones accumulate pollen principally by simple impaction. Proceedings of the National Academy of Sciences, USA, 104, 18141-18144.
[11] Cresswell JE, Krick J, Patrick MA, Lahoubi M (2010) The aerodynamics and efficiency of wind pollination in grasses. Functional Ecology, 24, 706-713.
[12] Cui DL, Man XL, Ma YX, Zhang YS (2008) Study on pollination ecology of Paris verticillata M.-Bieb. Acta Botanica Boreali-Occidentalia Sinica, 28, 298-302. (in Chinese with English abstract)
[崔大练, 满秀玲, 马玉心, 张玉生 (2008) 北重楼传粉生态学研究. 西北植物学报, 28, 298-302.]
[13] Culley TM, Weller SG, Sakai AK (2002) The evolution of wind pollination in angiosperms. Trends in Ecology & Evolution, 17, 361-369.
[14] Dafni A, Dukas R (1986) Insect and wind pollination in Urginea maritima (Liliaceae). Plant Systematics and Evolution, 154, 1-10.
[15] Darwin C (1876) The Effects of Cross and Self Fertilisation in the Vegetable Kingdom. John Murray, London.
[16] Di-Giovanni F, Kevan PG, Nasr ME (1995) The variability in settling velocities of some pollen and spores. Grana, 34, 39-44.
[17] Dodd ME, Silvertown J, Chase MW (1999) Phylogenetic analysis of trait evolution and species diversity variation among angiosperm families. Evolution, 53, 732-744.
[18] Elzinga JA, Atlan A, Biere A, Gigord L, Weis AE, Bernasconi G (2007) Time after time: flowering phenology and biotic interactions. Trends in Ecology & Evolution, 22, 432-439.
[19] Faegri K, van der Pilj L(1979) The Principles of Pollination Ecology, 3rd edn. Pergamon Press, Oxford.
[20] Fang Q, Chen YZ, Huang SQ (2012) Generalist passerine pollination of a winter-flowering fruit tree in central China. Annals of Botany, 109, 379-384.
[21] Forster M, Flenley JR (1993) Pollen purification and fractionation by equilibrium density gradient centrifugation. Palynology, 17, 137-155.
[22] Frenz DA (1999) Comparing pollen and spore counts collected with the Rotorod Sampler and Burkard spore trap. Annals of Allergy, Asthma & Immunology, 83, 341-349.
[23] Friedman J (2011) Gone with the wind: understanding evolutionary transitions between wind and animal pollination in the angiosperms. New Phytologist, 191, 911-913.
[24] Friedman J, Barrett SCH (2009) Wind of change: new insights on the ecology and evolution of pollination and mating in wind-pollinated plants. Annals of Botany, 103, 1515-1527.
[25] Friedman J, Harder LD (2004) Inflorescence architecture and wind pollination in six grass species. Functional Ecology, 18, 851-860.
[26] Gong YB, Huang SQ (2007) On methodology of foraging behavior of pollinating insects. Biodiversity Science, 15, 576-583. (in Chinese with English abstract)
[龚燕兵, 黄双全 (2007) 传粉昆虫行为的研究方法探讨. 生物多样性, 15, 576-583.]
[27] Gong YB, Yang M, Vamosi JC, Yang HM, Mu WX, Li JK, Wan T (2016) Wind or insect pollination? Ambophily in a subtropical gymnosperm Gnetum parvifolium (Gnetales). Plant Species Biology, 31, 272-279.
[28] Guo YH (1994) Pollination biology and the evolution of plants. In: Plant Evolutionary Biology (eds Chen JK, Yang J), pp. 232-280. Wuhan University Press, Wuhan. (in Chinese)
[郭友好 (1994) 传粉生物学与植物的进化. 见: 植物进化生物学 (陈家宽, 杨继主编), 232-280页. 武汉大学出版社, 武汉.]
[29] Hegland SJ, Nielsen A, Lázaro A, Bjerknes AL, Totland Ø (2009) How does climate warming affect plant-pollinator interactions? Ecology Letters, 12, 184-195.
[30] Hirose Y, Osada K (2016) Terminal settling velocity and physical properties of pollen grains in still air. Aerobiologia, 32, 385-394.
[31] Huang SQ (2012) Pollination biology in China in the 21st century: getting a good start. Biodiversity Science, 20, 239-240. (in Chinese)
[黄双全 (2012) 二十一世纪中国传粉生物学的研究: 良好的开端. 生物多样性, 20, 239-240.]
[32] Huang SQ, Guo YH (2000) Advances in pollination biology. Chinese Science Bulletin, 45, 225-237. (in Chinese)
[黄双全, 郭友好 (2000) 传粉生物学的研究进展. 科学通报, 45, 225-237.]
[33] Huang SQ, Xiong YZ, Barrett SCH (2013) Experimental evidence of insect pollination in Juncaceae, a primarily wind-pollinated family. International Journal of Plant Sciences, 174, 1219-1228.
[34] Ickert-Bond SM, Renner SS (2016) The Gnetales: recent insights on their morphology, reproductive biology, chromosome numbers, biogeography, and divergence times. Journal of Systematics and Evolution, 54, 1-16.
[35] Jin B, Zhang L, Lu Y, Wang D, Jiang XX, Zhang M, Wang L (2012) The mechanism of pollination drop withdrawal in Ginkgo biloba L. BMC Plant Biology, 12, 59.
[36] Kato M, Inoue T (1994) Origin of insect pollination. Nature, 368, 195.
[37] Kearns CA, Inouye DW (1993) Techniques for Pollination Biologists. University Press of Colorado, Niwot.
[38] Kono M, Tobe H (2007) Is Cycas revoluta (Cycadaceae) wind- or insect-pollinated? American Journal of Botany, 94, 847-855.
[39] Linder HP (1998) Morphology and the evolution of wind pollination. In: Reproductive Biology in Systematics, Conservation and Economic Botany (eds Owens SJ, Rudall PJ), pp. 123-135. Royal Botanic Gardens, Kew.
[40] Lu XW, Ma RJ, Sun K (2008) Determination of the wind pollination distances and flowering characteristics of Hippophae rhamnoides L. ssp. sinensis Rousi (Elaeagnaceae). Acta Ecologica Sinica, 28, 2518-2525. (in Chinese with English abstract)
[鲁先文, 马瑞君, 孙坤 (2008) 中国沙棘(Hippophae rhamnoides L. ssp. sinensis Rousi)的开花特性及风媒传粉距离的检测. 生态学报, 28, 2518-2525.]
[41] McDonald JE (1962) Collection and washout of airborne pollens and spores by raindrops. Science, 135, 435-437.
[42] Molina RT, Palacios IS, RodrÍguez AFM, Muñoz JT, Corchero AM (2001) Environmental factors affecting airborne pollen concentration in anemophilous species of Plantago. Annals of Botany, 87, 1-8.
[43] Niklas KJ (1984) The motion of windborne pollen grains around conifer ovulate cones: implications on wind pollination. American Journal of Botany, 71, 356-374.
[44] Niklas KJ (1985) The aerodynamics of wind pollination. The Botanical Review, 51, 328-386.
[45] Niklas KJ (1987) Pollen capture and wind-induced movement of compact and diffuse grass panicles: implications for pollination efficiency. American Journal of Botany, 74, 74-89.
[46] Niklas KJ (2015) A biophysical perspective on the pollination biology of Ephedra nevadensis and E. trifurca. The Botanical Review, 81, 28-41.
[47] Niklas KJ, Buchmann SL (1987) Aerodynamics of pollen capture in two sympatric Ephedra species. Evolution, 41, 104-123.
[48] Niklas KJ, Kerchner V (1986) Aerodynamics of Ephedra trifurca. II. Computer modelling of pollination efficiencies. Journal of Mathematical Biology, 24, 1-24.
[49] Niklas KJ, Spatz HC (2012) Plant Physics. University of Chicago Press, Chicago.
[50] Ollerton J, Erenler H, Edwards M, Crockett R (2014) Extinctions of aculeate pollinators in Britain and the role of large-scale agricultural changes. Science, 346, 1360-1362.
[51] Owens JN, Takaso T, Runions CJ (1998) Pollination in conifers. Trends in Plant Science, 3, 479-485.
[52] Peng DL, Zhang ZQ, Niu Y, Yang Y, Song B, Sun H, Li ZM (2012) Advances in the studies of reproductive strategies of alpine plants. Biodiversity Science, 20, 286-299. (in Chinese with English abstract)
[彭德力, 张志强, 牛洋, 杨扬, 宋波, 孙航, 李志敏 (2012) 高山植物繁殖策略的研究进展. 生物多样性, 20, 286-299.]
[53] Regal PJ (1982) Pollination by wind and animals: ecology of geographic patterns. Annual Review of Ecology and Systematics, 13, 497-524.
[54] Sacchi CF, Price PW (1988) Pollination of the arroyo willow, Salix lasiolepis: role of insects and wind. American Journal of Botany, 75, 1387-1393.
[55] Tekleva M (2016) Pollen morphology and ultrastructure of several Gnetum species: an electron microscopic study. Plant Systematics and Evolution, 302, 291-303.
[56] Vamosi JC, Knight TM, Steets JA, Mazer SJ, Burd M, Ashman TL (2006) Pollination decays in biodiversity hotspots. Proceedings of the National Academy of Sciences, USA, 103, 956-961.
[57] Wang LL, Zhang C, Yang ML, Zhang GP, Zhang ZQ, Yang YP, Duan YW (2016) Intensified wind pollination mediated by pollen dimorphism after range expansion in an ambophilous biennial Aconitum gymnandrum. Ecology and Evolution, 7, 541-549.
[58] Wang Q, Li CL, Yang SY, Huang R, Chen FL (1997) Pollination biology of Cycas panzhihuaensis L. Zhou et S. Y. Yang. Acta Botanica Sinica, 39, 156-163. (in Chinese with English abstract)
[王乾, 李朝銮, 杨思源, 黄荣, 陈发林 (1997) 攀枝花苏铁传粉生物学研究. 植物学报, 39, 156-163.]
[59] Wang XQ, Ran JH (2014) Evolution and biogeography of gymnosperms. Molecular Phylogenetics and Evolution, 75, 24-40.
[60] Wetschnig W, Depisch B (1999) Pollination biology of Welwitschia mirabilis HOOK. f. (Welwitschiaceae, Gnetopsida). Phyton, 39, 167-183.
[61] Whitehead DR (1969) Wind pollination in the angiosperms: evolutionary and environmental considerations. Evolution, 23, 28-35.
[62] Wodehouse RP (1935) Pollen Grains: Their Structure, Identification and Significance in Science and Medicine. McGraw- Hill, New York.
[63] Zhang DY (2004) Plant Life-History Evolution and Reproductive Ecology. Science Press, Beijing. (in Chinese)
[张大勇 (2004) 植物生活史进化与繁殖生态学. 科学出版社, 北京.]
[64] Zhu JY, Zhang LF, Shen P, Ren BQ, Liang Y, Chen ZD (2014) Wind pollination characteristics of styles in Betulaceae. Chinese Bulletin of Botany, 49, 524-538. (in Chinese with English abstract)
[朱俊义, 张力凡, 沈鹏, 任保青, 梁宇, 陈之端 (2014) 桦木科植物花柱适应风媒传粉的特征. 植物学报, 49, 524-538.]
[1] 唐敏, 邹怡, 苏秦之, 周欣. 洞察景观环境影响蜜蜂之新视角: 肠道微生物[J]. 生物多样性, 2019, 27(5): 516-525.
[2] 土艳丽,王力平,王喜龙,王林林,段元文. 利用昆虫携带的花粉初探西藏入侵植物印加孔雀草在当地传粉网络中的地位[J]. 生物多样性, 2019, 27(3): 306-313.
[3] 杨浩,刘晨,王志飞,胡秀丽,王台. 作物花粉高温应答机制研究进展[J]. 植物学报, 2019, 54(2): 157-167.
[4] 王晓月,朱鑫鑫,杨娟,刘云静,汤晓辛. 梅花个体内花柱长度的变异及其对繁殖成功的影响[J]. 生物多样性, 2019, 27(2): 159-167.
[5] 郎丹丹, 唐敏, 周欣. 传粉网络构建的定性定量分子研究: 应用与展望[J]. 生物多样性, 2018, 26(5): 445-456.
[6] 吉乃提汗·马木提, 成小军, 谭敦炎. 荒漠短命植物异喙菊的小花异形性及繁殖特性[J]. 生物多样性, 2018, 26(5): 498-509.
[7] 刘魏, 童永鳌, 白洁. 水稻雄配子体发育过程中tRNA片段的生物信息学分析[J]. 植物学报, 2018, 53(5): 625-633.
[8] 朱华. 探讨海南岛生物地理起源上有意义的一些种子植物科和属[J]. 生物多样性, 2017, 25(8): 816-822.
[9] 蒋裕良, 李先琨, 郭屹立, 丁涛, 王斌, 向悟生. 广西弄岗喀斯特季节性雨林藤本种子植物多样性及繁殖习性[J]. 植物生态学报, 2017, 41(7): 716-728.
[10] 王力, 张芸, 孔昭宸, 杨振京, 阎顺, 李月丛. 新疆天山南坡吐鲁番地区表土花粉的初步研究[J]. 植物生态学报, 2017, 41(7): 779-786.
[11] 张小龙, 杨丽华, 康明. 牛耳朵和马坝报春苣苔同域种群授粉后的生殖隔离[J]. 生物多样性, 2017, 25(6): 615-620.
[12] 孙颖, 王蕾, 杨雪, 王阿香, 何淼. 侧金盏花双受精进程研究[J]. 植物学报, 2017, 52(4): 480-486.
[13] 沈泽昊, 杨明正, 冯建孟, 李新辉, 彭培好, 郑智. 中国高山植物区系地理格局与环境和 空间因素的关系[J]. 生物多样性, 2017, 25(2): 182-194.
[14] 贾乐东, 李施蒙, 许代香, 曲存民, 李加纳, 王瑞. 甘蓝型油菜BnMYB80基因的生物信息学分析[J]. 植物学报, 2016, 51(5): 620-630.
[15] 郑荣倩, 候真珍, 张爱勤. 早春短命植物黑鳞顶冰花的花粉呈现时序及其适应性[J]. 植物学报, 2016, 51(5): 594-600.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed