生物多样性 ›› 2017, Vol. 25 ›› Issue (4): 401-408.doi: 10.17520/biods.2016246

• 研究报告: 动物多样性 • 上一篇    下一篇

小兴安岭铁力林业局冬季西伯利亚狍(Capreolus pygargus)的生境选择

陈龙1, 2, 李月辉1, *(), 胡远满1, 熊在平1, 吴文1, 2, 李悦3, 问青春4   

  1. 1 中国科学院沈阳应用生态研究所, 中国科学院森林生态与管理重点实验室, 沈阳 110016
    2 中国科学院大学, 北京 100049
    3 辽宁大学环境学院, 沈阳 110036
    4 辽宁省环境监测中心, 沈阳 110161;
  • 收稿日期:2016-09-02 接受日期:2017-04-11 出版日期:2017-04-20
  • 通讯作者: 李月辉 E-mail:liyh@iae.ac.cn
  • 基金项目:
    基金项目: 国家自然科学基金(41271201, 41371198)

Habitat selection by roe deer (Capreolus pygargus) over winter in the Tieli Forestry Bureau of the Lesser Xing’an Mountains

Long Chen1, 2, Yuehui Li1, *(), Yuanman Hu1, Zaiping Xiong1, Wen Wu1, 2, Yue Li3, Qingchun Wen4   

  1. 1 Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016
    2 University of Chinese Academy of Sciences, Beijing 100049
    3 College of Environmental Sciences, Liaoning University, Shenyang 110036
    4 Environmental Monitoring Experiment Center of Liaoning Province, Shenyang 110161
  • Received:2016-09-02 Accepted:2017-04-11 Online:2017-04-20
  • Contact: Li Yuehui E-mail:liyh@iae.ac.cn

为了揭示西伯利亚狍(Capreolus pygargus)的生境选择倾向, 本文在小兴安岭铁力林业局布设22条样线, 每条样线长1.5 km左右, 于2014年11月、2015年1月和12月沿着样线共设置西伯利亚狍的利用样方105个和对照样方68个, 记录样方内15个生境因子特征。利用Bailey’s法判断西伯利亚狍对各生境因子的选择倾向, 使用资源选择函数分析西伯利亚狍对生境因子的综合选择。结果表明, 西伯利亚狍倾向选择的地形特征分别为海拔 ≤ 300 m或 ≥ 450 m、上坡位或坡度 > 4°; 倾向选择的植被特征分别为农田或针叶林、林龄 ≤ 25 yr、郁闭度 ≥ 0.6、乔木数量 ≤ 15棵、乔木平均高 < 15 m、乔木平均胸径 ≤ 10 cm、灌木盖度 ≤ 0.3或草本盖度 > 0.2; 倾向选择的食物特征为食物多; 倾向选择的安全特征分别为能见度 > 50 m或雪深 ≤ 10 cm。影响西伯利亚狍生境综合选择的主要因子为坡向、坡度、植被类型、郁闭度、乔木数量、乔木平均高和能见度。铁力林业局西伯利亚狍喜欢农田、喜欢易于感知威胁并能够迅速逃跑的相对开阔的生境; 地形特征、植被特征和安全特征是影响综合选择的主要生境特征。本研究提示, 构建适宜农田林地空间配置的景观格局将成为景观尺度保护西伯利亚狍种群的途径。

关键词: 西伯利亚狍, 小兴安岭, 森林景观, 生境选择, 资源选择函数, 能见度

Habitat selection by roe deer (Capreolus pygargus) was explored by using line-transect sampling in the Tieli Forestry Bureau of the Lesser Xing’an Mountains. A total of 22 line-transects, each of which was about 1.5 km long, were installed. Fifteen habitat factors were measured in 105 plots used by roe deer and 68 control plots, respectively, in November 2014, January and December 2015. Based on Bailey’s method analyzing the selectivity of roe deer using habitat factors, the result showed that in terms of topographic factors, roe deer preferred the habitats with altitude ≤ 300 m or ≥ 450 m, gradient > 4°or upper slope position; in terms of vegetation factors, roe deer preferred the farmland or coniferous forest, tree age ≤ 25 yr, canopy closure ≥ 0.6, number of trees ≤ 15, average tree height < 15 m, average DBH ≤ 10 cm, shrub coverage ≤ 0.3 or herbage coverage > 0.2; in terms of food factors, roe deer preferred much food abundance; and in terms of safety factors, roe deer preferred visibility > 50 m or snow depth ≤ 10 cm. The resource selection function revealed that the dominant factors influencing habitat selection by roe deer were aspect of slope, gradient, vegetation type, canopy closure, number of trees, average tree height and visibility. The roe deer in the Tieli Forestry Bureau preferred agriculture land and open habitat where they can quickly perceive danger and escape from other animals or humans. Those factors involving topography, vegetation, security predominantly determined their habitat selection. This research suggested protecting the roe deer population by constructing an optimal forest landscape pattern mixed with agriculture lands of a certain area percentage and spatial arrangement.

Key words: roe deer (Capreolus pygargus), Lesser Xing’, an Mountains, forest landscape, habitat selection, resource selection function, visibility

表1

生境因子划分标准及西伯利亚狍对生境因子的选择倾向"

生境因子
Habitat factor
类别或等级标准
Classification
criteria
实际利用比例
Actual proportion used (Pi)
期望利用比例
Expected proportion used (Pio)
Pi的Bailey’s 95%置信区间
Bailey’s 95% interval for Pi
选择性
Preference
海拔 ≤ 300 0.732 0.723 0.728 ≤ PHalt1 ≤ 0.741 +
Altitude (Halt, m) 300 < Halt < 450 0.181 0.221 0.156 ≤ PHalt2 ≤ 0.213 -
≥ 450 0.087 0.056 0.062 ≤ PHalt3 ≤ 0.121 +
坡向 半阴半阳坡 Half-sunny slope 0.695 0.694 0.650 ≤ PAsp1 ≤ 0.741 0
Aspect of slope (Asp) 阴坡 Shady slope 0.181 0.196 0.156 ≤ PAsp2 ≤ 0.214 0
阳坡 Sunny slope 0.124 0.110 0.090 ≤ PAsp3 ≤ 0.169 0
坡度 ≤ 4° 0.307 0.462 0.303 ≤ PGrad1 ≤ 0.316 -
Gradient (Grad) 4° < Grad < 8° 0.331 0.236 0.300 ≤ PGrad2 ≤ 0.367 +
≥ 8° 0.362 0.303 0.318 ≤ PGrad3 ≤ 0.411 +
坡位 上 Upper 0.238 0.208 0.234 ≤ PPos1 ≤ 0.249 +
Slope position (Pos) 中 Middle 0.352 0.416 0.317 ≤ PPos2 ≤ 0.394 -
下 Lower 0.410 0.376 0.359 ≤ PPos3 ≤ 0.465 0
植被类型 农田 Farmland 0.152 0.092 0.112 ≤ PVeg1 ≤ 0.205 +
Vegetation type (Veg) 灌丛 Shrub 0.048 0.087 0.034 ≤ PVeg2 ≤ 0.071 -
针叶林 Coniferous forest 0.067 0.058 0.064 ≤ PVeg3 ≤ 0.076 +
阔叶林 Broad-leaved forest 0.648 0.653 0.593 ≤ PVeg4 ≤ 0.702 0
针阔混交林 Coniferous and broad-leaved mixed forest 0.086 0.110 0.061 ≤ PVeg5 ≤ 0.121 0
林龄 ≤ 25 0.228 0.174 0.225 ≤ PAge1 ≤ 0.237 +
Tree age (Age, yr) 25 < Age < 45 0.480 0.559 0.447 ≤ PAge2 ≤ 0.518 -
≥ 45 0.291 0.267 0.250 ≤ PAge3 ≤ 0.339 0
郁闭度 ≤ 0.3 0.331 0.421 0.327 ≤ PC1 ≤ 0.340 -
Canopy closure (C) 0.3 < C < 0.6 0.441 0.421 0.408 ≤ PC2 ≤ 0.479 0
≥ 0.6 0.228 0.159 0.191 ≤ PC3 ≤ 0.273 +
乔木数量 ≤ 15 0.913 0.656 0.910 ≤ PN1 ≤ 0.921 +
Number of trees (N) 15 < N < 30 0.071 0.159 0.054 ≤ PN2 ≤ 0.095 -
≥ 30 0.016 0.185 0.006 ≤ PN3 ≤ 0.038 -
乔木平均高 ≤ 10 0.189 0.144 0.186 ≤ PHtree1 ≤ 0.198 +
Average tree height (Htree, m) 10 < Htree <15 0.189 0.128 0.164 ≤ PHtree2 ≤ 0.221 +
≥ 15 0.622 0.728 0.576 ≤ PHtree3 ≤ 0.669 -
乔木平均胸径 ≤ 10 0.339 0.251 0.335 ≤ PDBH1 ≤ 0.348 +
Average DBH (DBH, cm) 10 < DBH < 20 0.488 0.585 0.455 ≤ PDBH2 ≤ 0.526 -
≥ 20 0.173 0.164 0.140 ≤ PDBH3 ≤ 0.215 0
灌木盖度 ≤ 0.3 0.567 0.477 0.563 ≤ PCshrub1 ≤ 0.576 +
Shrub coverage (Cshrub) 0.3 < Cshrub < 0.6 0.323 0.354 0.292 ≤ PCshrub2 ≤ 0.359 0
≥ 0.6 0.110 0.169 0.083 ≤ PCshrub3 ≤ 0.147 -
草本盖度 ≤ 0.2 0.480 0.626 0.476 ≤ PCherb1 ≤ 0.490 -
Herbage coverage (Cherb) 0.2 < Cherb < 0.4 0.299 0.205 0.269 ≤ PCherb2 ≤ 0.335 +
≥ 0.4 0.220 0.169 0.183 ≤ PCherb3 ≤ 0.265 +
食物丰富度 无 Nothing 0.076 0.087 0.073 ≤ PFa1 ≤ 0.086 -
Food abundance (Fa) 少 Little 0.038 0.121 0.026 ≤ PFa2 ≤ 0.060 -
一般 General 0.067 0.179 0.045 ≤ PFa3 ≤ 0.099 -
多 Much 0.610 0.422 0.555 ≤ PFa4 ≤ 0.665 +
丰富 Rich 0.210 0.191 0.162 ≤ PFa5 ≤ 0.266 0
能见度 ≤50 0.567 0.703 0.563 ≤ PVis1 ≤ 0.576 -
Visibility (Vis, m) 50 < Vis < 90 0.252 0.179 0.224 ≤ PVis2 ≤ 0.287 +
≥ 90 0.181 0.118 0.147 ≤ PVis3 ≤ 0.223 +
雪深 ≤ 10 0.622 0.503 0.618 ≤ PSd1 ≤ 0.631 +
Snow depth (Sd, cm) 10 < Sd < 20 0.087 0.241 0.069 ≤ PSd2 ≤ 0.113 -
≥ 20 0.291 0.256 0.250 ≤ PSd3 ≤ 0.339 0

表2

西伯利亚狍冬季生境资源选择函数的生境因子及选择系数"

变量 Variable 回归系数β Regression coefficient β 标准误 Standard error Wald 统计量 Wald statistic P
坡向 Aspect of slope 1.148 0.564 2.037 0.042*
坡度 Gradient 0.310 0.112 2.767 0.006**
郁闭度 Canopy closure 7.099 2.246 3.161 0.002**
植被类型 Vegetation type 0.672 0.319 2.110 0.035*
乔木数量 Number of trees -0.196 0.046 -4.291 1.78e-05**
乔木平均高 Average tree height -0.355 0.095 -3.730 0.000**
能见度 Visibility 0.080 0.031 2.533 0.011*
常量 Constant -4.153 2.398 -1.732 0.083
1 Abbas F, Morellet N, Hewison AJM, Merlet J, Cargnelutti B, Lourtet B, Angibault J, Daufresne T, Aulagnier S, Verheyden H (2011) Landscape fragmentation generates spatial variation of diet composition and quality in a generalist herbivore. Oecologia, 167, 401-411.
2 Borkowski J, Ukalska J (2008) Winter habitat use by red and roe deer in pine-dominated forest. Forest Ecology and Management, 255, 468-475.
3 Boyce MS (2006) Scale for resource selection functions. Diversity and Distributions, 12, 269-276.
4 Boyce MS, Mao JS, Merrill EH, Fortin D, Turner MG, Fryxell J, Turchin P (2003) Scale and heterogeneity in habitat selection by elk in Yellowstone National Park. Ecoscience, 10, 421-431.
5 Byers CR, Steinhorst RK, Krausman PR (1984) Clarification of a technique for analysis of utilization-availability data. Journal of Wildlife Management, 48, 1050-1053.
6 Ewald M, Dupke C, Heurich M, Mueller J, Reineking B (2014) LiDAR remote sensing of forest structure and GPS telemetry data provide insights on winter habitat selection of European roe deer. Forests, 5, 1374-1390.
7 Fang KN, Zhu JP, Jiang YF (2015) R Data Analysis: Methods and Application. Publishing House of Electronics Industry, Beijing. (in Chinese)
[方匡南, 朱建平, 姜叶飞 (2015) R数据分析: 方法与案例详解. 电子工业出版社, 北京.]
8 Ge ZY, Zhu HQ, Mao ZX, Zhang DD, Jiang CY, Li C, Zhang XD, Wang HJ (2012) Wintering habitat selection by roe deer (Capreolus capreolus) in Huangnihe Nature Reserve, Jilin Province of Northeast China. Chinese Journal of Ecology, 31, 943-948. (in Chinese with English abstract)
[葛志勇, 朱洪强, 毛之夏, 张冬冬, 姜春艳, 李成, 张晓东, 王海军 (2012) 黄泥河自然保护区狍冬季栖息地选择. 生态学杂志, 31, 943-948.]
9 Grovenburg TW, Monteith KL, Klaver RW, Jenks JA (2012) Predator evasion by white-tailed deer fawns. Animal Behaviour, 84, 59-65.
10 Heinze E, Boch S, Fischer M, Hessenmoller D, Klenk B, Muller J, Prati D, Schulze ED, Seele C, Socher S, Halle S (2011) Habitat use of large ungulates in northeastern Germany in relation to forest management. Forest Ecology and Management, 261, 288-296.
11 Hemami MR, Watkinson AR, Dolman PM (2004) Habitat selection by sympatric muntjac (Muntiacus reevesi) and roe deer (Capreolus capreolus) in a lowland commercial pine forest. Forest Ecology and Management, 194, 49-60.
12 Hewison AJM, Vincent JP, Joachim J, Angibault JM, Cargnelutti B, Cibien C (2001) The effects of woodland fragmentation and human activity on roe deer distribution in agricultural landscapes. Canadian Journal of Zoology, 79, 679-689.
13 Jepsen JU, Topping CJ (2004) Modelling roe deer (Capreolus capreolus) in a gradient of forest fragmentation: behavioural plasticity and choice of cover. Canadian Journal of Zoology, 82, 1528-1541.
14 Linnell JDC, Nilsen EB, Andersen R (2004) Selection of bed-sites by roe deer Capreolus capreolus fawns in an agricultural landscape. Acta Theriologica, 49, 103-111.
15 Luo Y, Zhang MM, Liu ZS, Li ZG, Hu TH, Zhai H (2009) Winter and spring habitat selection of red deer (Cervus elaphus alxaicus) in the Helan Mountains, China. Acta Ecologica Sinica, 29, 2757-2763. (in Chinese with English abstract)
[骆颖, 张明明, 刘振生, 李志刚, 胡天华, 翟昊 (2009) 贺兰山马鹿冬春季生境的选择. 生态学报, 29, 2757-2763.]
16 Morellet N, Van MB, Cargnelutti B, Angibault JM, Lourtet B, Merlet J, Ladet S, Hewison AJM (2011) Landscape composition influences roe deer habitat selection at both home range and landscape scales. Landscape Ecology, 26, 999-1010.
17 Mysterud A, Bjornsen BH, Ostbye E (1997) Effects of snow depth on food and habitat selection by roe deer Capreolus capreolus along an altitudinal gradient in south-central Norway. Wildlife Biology, 3, 27-33.
18 Neu CW, Byers CR, Peek JM (1974) Technique for analysis of utilization-availability data. Journal of Wildlife Management, 38, 541-545.
19 Partl E, Szinovatz V, Reimoser F, Schweiger-Adler J (2002) Forest restoration and browsing impact by roe deer. Forest Ecology and Management, 159, 87-100.
20 Quinn ACD, Williams DM, Porter WF (2013) Landscape structure influences space use by white-tailed deer. Journal of Mammalogy, 94, 398-407.
21 Richard E, Calenge C, Said S, Hamann J, Gaillard J (2013) Studying spatial interactions between sympatric populations of large herbivores: a null model approach. Ecography, 36, 157-165.
22 Rong K, Zong C, Ma JZ (2009) Method for analysis of habitat selection data: Bailey’s interval. Zoological Research, 30, 215-220. (in Chinese with English abstract)
[戎可, 宗诚, 马建章 (2009) Bailey’s方法在生境选择研究中的应用. 动物学研究, 30, 215-220.]
23 Strindberg S, Buckland ST (2004) Zigzag survey designs in line transect sampling. Journal of Agricultural Biological and Environmental Statistics, 9, 443-461.
24 Telleria JL, Virgos E (1997) Distribution of an increasing roe deer population in a fragmented Mediterranean landscape. Ecography, 20, 247-252.
25 Teng LW, Liu ZS, Zhang ED, Ma JZ (2006) Winter bedding site selection by the roe deer (Capreolus capreolus) in Sanjiang National Nature Reserve, Heilongjiang Province, China. Zoological Research, 27, 403-410. (in Chinese with English abstract)
[滕丽微, 刘振生, 张恩迪, 马建章 (2006) 黑龙江省三江自然保护区狍对冬季卧息地的选择. 动物学研究, 27, 403-410.]
26 Teng LW, Liu ZQ, Ma JZ, Sun YL, Wang L (2010a) Winter bed site selection by roe deer in Sanjiang National Nature Reserve, Heilongjiang Province. Journal of Northeast Forestry University, 38(11), 86-88. (in Chinese with English abstract)
[滕丽微, 刘知奇, 马建章, 孙云龙, 王磊 (2010a) 黑龙江三江自然保护区狍对冬季卧息地的选择. 东北林业大学学报, 38(11), 86-88.]
27 Teng LW, Wang L, Ma JZ, Sun YL, Liu ZQ (2010b) Microhabitat selection by Capreolus capreolus in winter in Liangshui National Nature Reserve. Journal of Northeast Forestry University, 38(8), 95-98. (in Chinese with English abstract)
[滕丽微, 王磊, 马建章, 孙云龙, 刘知奇 (2010b) 凉水国家级自然保护区狍冬季对微生境的选择. 东北林业大学学报, 38(8), 95-98.]
28 Wang CM (2014) Analysis on forestland inventory in target year of forestland protection and utilization planning in Tieli Forestry Bureau. Forest Investigation Design, (2), 1-3.
(in Chinese with English abstract) [王崇民 (2014) 铁力林业局林地保护利用规划目标年的林地保有量分析. 林业勘查设计, (2), 1-3.]
29 Wu W, Li YH, Hu YM, Chen L, Li Y, Li ZM, Nie ZW, Chen T (2016) Suitable winter habitat for Cervus elaphus on the southern slope of the Lesser Xing’an Mountains. Biodiversity Science, 24, 20-29. (in Chinese with English abstract)
[吴文, 李月辉, 胡远满, 陈龙, 李悦, 李泽鸣, 聂志文, 陈探 (2016) 小兴安岭南麓马鹿冬季适宜生境评价. 生物多样性, 24, 20-29.]
30 Zhang MH, Xiao CT, Koh HS (2005) Taxonomic status of roe deer in northeastern China based on mitochondrial DNA sequences. Acta Theriologica Sinica, 25, 14-19. (in Chinese with English abstract)
[张明海, 肖朝庭, Hungsun Koh (2005) 从分子水平探讨中国东北狍的分类地位. 兽类学报, 25, 14-19.]
31 Zhou SC, Zhang MH, Yin YX, Ren MF (2010) Habitat selection of roe deer (Capreolus capreolus) in winter in the eastern Wandashan Mountain, Heilongjiang Province. Journal of Beijing Forestry University, 32(3), 122-127.
(in Chinese with English abstract) [周绍春, 张明海, 尹远新, 任梦非 (2010) 黑龙江完达山地区狍子冬季生境选择. 北京林业大学学报, 32(3), 122-127.]
32 Zhou YL (1994) Vegetation of Xiao Hinggan Ling in China. Science Press, Beijing. (in Chinese)
[周以良 (1994) 中国小兴安岭植被. 科学出版社, 北京.]
33 Zhu HQ, Ge ZY, Liu G, Jiang CY, Zhang DD, Zhang XD, Chang SH, Mao ZX (2013) Winter bed-site selection by roe deer (Capreolus capreolus) in Huangnihe Nature Reserve. Acta Ecologica Sinica, 33, 2054-2061. (in Chinese with English abstract)
[朱洪强, 葛志勇, 刘庚, 姜春艳, 张冬冬, 张香东, 常素慧, 毛之夏 (2013) 黄泥河自然保护区狍冬季卧息地选择. 生态学报, 33, 2054-2061.]
[1] 崔宝凯, 袁海生, 周丽伟, 何双辉, 魏玉莲. (2019) 大小兴安岭针叶树倒木上木腐真菌的物种多样性. 生物多样性, 27(8): 887-895.
[2] 刘君, 王宁, 崔岱宗, 卢磊, 赵敏. (2019) 小兴安岭大亮子河国家森林公园不同生境下土壤细菌多样性和群落结构. 生物多样性, 27(8): 911-918.
[3] 刘君, 王宁, 崔岱宗, 卢磊, 赵敏. (2019) 大小兴安岭可培养细菌的资源多样性. 生物多样性, 27(8): 903-910.
[4] 任梅蓉, 杨秋霞, 魏鑫丽. (2019) 东北大小兴安岭地区梅衣科岛衣类和袋衣类地衣物种多样性. 生物多样性, 27(8): 833-841.
[5] 唐卓, 杨建, 刘雪华, 王鹏彦, 李周园. (2017) 基于红外相机技术对四川卧龙国家级自然保护区 雪豹(Panthera uncia)的研究. 生物多样性, 25(1): 62-70.
[6] 李弛, 杨道德, 张玉铭, 宋玉成, 李鹏飞, 蒋志刚. (2016) 麋鹿夜间卧息地选择的季节变化. 生物多样性, 24(9): 1031-1038.
[7] 吴文, 李月辉, 胡远满, 陈龙, 李悦, 李泽鸣, 聂志文, 陈探. (2016) 小兴安岭南麓马鹿冬季适宜生境评价. 生物多样性, 24(1): 20-29.
[8] 朱良军, 金光泽, 王晓春. (2015) 典型阔叶红松林干扰历史重建及干扰形成机制. 植物生态学报, 39(2): 125-139.
[9] 胡海清, 罗碧珍, 魏书精, 魏书威, 孙龙, 罗斯生, 马洪斌. (2015) 小兴安岭7种典型林型林分生物量碳密度与固碳能力. 植物生态学报, 39(2): 140-158.
[10] 牟长城, 石兰英, 孙晓新. (2009) 小兴安岭典型草丛沼泽湿地CO2、CH4和N2O的排放动态及其影响因素. 植物生态学报, 33(3): 617-623.
[11] 崔鹏, 康明江, 邓文洪. (2008) 繁殖季节同域分布的红腹角雉和血雉的觅食生境选择. 生物多样性, 16(2): 143-149.
[12] 布仁仓, 常禹, 胡远满, 李秀珍, 贺红士. (2008) 小兴安岭针叶树种在不同尺度上对环境因子的敏感性分析. 植物生态学报, 32(1): 80-87.
[13] 李月辉, 胡志斌, 冷文芳, 常禹, 胡远满. (2007) 大兴安岭呼中区紫貂生境格局变化及采伐的影响. 生物多样性, 15(3): 232-240.
[14] 王正寰, 王小明. (2006) 资源选择函数拟合藏狐洞穴生境利用特征的有效性分析. 生物多样性, 14(5): 382-391.
[15] 吴陆生, 吴孝兵, 江红星, 王朝林. (2005) 野生扬子鳄生境特征分析. 生物多样性, 13(2): 156-161.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed