生物多样性 ›› 2017, Vol. 25 ›› Issue (1): 23-33.doi: 10.17520/biods.2016199

• • 上一篇    下一篇

云南哀牢山常绿阔叶林的空间分异及其影响因素

徐远杰1, 林敦梅2, 石明3, 谢妍洁3, 王逸之1, 管振华1, *(), 向建英1   

  1. 1 西南林业大学云南生物多样性研究院, 昆明 650224
    2 重庆大学三峡库区生态环境教育部重点实验室, 重庆 400044
    3西南林业大学林学院, 昆明 650224
  • 收稿日期:2016-07-20 接受日期:2017-01-05 出版日期:2017-01-20
  • 通讯作者: 管振华 E-mail:gzhenhua009@gmail.com
  • 基金项目:
    国家自然科学基金(31300454)

Spatial heterogeneity and its causes in evergreen broad-leaved forests in the Ailao Mountains, Yunnan Province

Yuanjie Xu1, Dunmei Lin2, Ming Shi3, Yanjie Xie3, Yizhi Wang1, Zhenhua Guan1, *(), Jianying Xiang1   

  1. 1 Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming 650224
    2 Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044
    3 The Faculty of Forestry, Southwest Forestry University, Kunming 650224
  • Received:2016-07-20 Accepted:2017-01-05 Online:2017-01-20
  • Contact: Guan Zhenhua E-mail:gzhenhua009@gmail.com

理解物种丰富度在空间上的变化, 阐明植物群落组成对生境异质性的响应是群落生态学研究的核心议题之一。与生境异质性有关的生态位分化对植物群落的多样性格局和物种分布具有重要影响。本文以分布在云南哀牢山的4种常绿阔叶林为研究对象, 通过对42个森林样地的调查取样, 探讨了常绿阔叶林的群落分布和树种丰富度在地形和土壤环境梯度上的变异。结果表明: 4种常绿阔叶林的树种组成有显著的差异。季风常绿阔叶林的树种丰富度极显著地高于其他3种类型; 中山湿性常绿阔叶林极显著地高于半湿润常绿阔叶林; 其他类型之间的差异不显著。非度量多维尺度分析显示, 海拔、坡度、土壤含水率及有机质等9个环境梯度是控制森林群落结构和树种分布的主要因素。土壤有效硼、海拔、全钾和凹凸度为树种丰富度的最佳预测变量, 累积解释了树种丰富度63.2%的变异。地形和土壤因子一起能够解释哀牢山常绿阔叶林的群落组成和树种丰富度的大部分变异。

关键词: 生境异质性, 群落组成, 树种丰富度, 常绿阔叶林, 哀牢山

Understanding the variation of species richness over spatial scales, and elucidating the response of plant community composition to habitat heterogeneity has been one of the major topics in the study of community ecology. Niche differentiation related to habitat heterogeneity plays an important role in shaping diversity levels and species distribution patterns of plant communities. Based on a survey of 42 plots of four types of evergreen broad-leaved forests in the Ailao Mountains of Yunnan Province, this paper explored how community distribution and tree species richness of such forests changed along topographic and edaphic gradients. We found significant differences in community composition among the four types of evergreen broad-leaved forests. Tree species richness of monsoon evergreen broad-leaved forests was significantly higher than that of the other forest types. Tree species richness of mid-montane moist evergreen broad-leaved forests was significantly higher than that of semi-humid evergreen broad-leaved forests, whereas no significant difference was observed among the other forest types. Non-metric multidimensional scaling (NMDS) revealed that nine environmental gradients, including elevation, slope, soil water content, soil organic matter, were the determinants of forest community composition and tree distribution patterns. As the best predictors of tree species richness, soil available boron, elevation, soil total potassium and convexity together explained 63.2% of the variance of tree species richness. The combination of topographic and edaphic factors explained most of the variance of community composition and tree species richness of the evergreen broad leaved forests in the Ailao Mountains.

Key words: habitat heterogeneity, community composition, tree species richness, evergreen broad-leaved forests, the Ailao Mountains

图1

哀牢山和研究区的地理位置"

表1

4种常绿阔叶林样地树种相对优势度(%)及其对组内相似性的贡献率(括号内的数值, %)"

树种名
Species name
苔藓矮林
MD
中山湿性阔叶林
MM
季风常绿阔叶林
MS
半湿润常绿阔叶林
SH
倒卵叶石栎 Lithocarpus crassifolius 25.54(23.40)
云南桤叶树 Clethra delavayi 12.81(17.81)
露珠杜鹃 Rhododendron irroratum 19.47(17.51)
云南越桔 Vaccinium duclouxii 8.37(13.47) 8.68(21.18)
珍珠花 Lyonia ovalifolia 10.45(12.52) 9.99(10.38)
珊瑚冬青 Ilex corallina 5.94(6.35) 8.50(13.34)
木果石栎 Lithocarpus xylocarpus 16.88 (20.10)
腾冲栲 Castanopsis wattii 7.50(7.53)
硬斗柯 Lithocarpus hancei 8.96(6.42)
薄叶马银花 Rhododendron leptothrium 3.30(4.70)
舟柄茶 Stewartia pteropetiolata 3.94(3.51)
滇木荷 Schima noronhae 5.13(2.59)
四川冬青 Ilex szechwanensis 2.72(2.01)
旱冬瓜 Alnus nepalensis 19.39(21.73) 9.71(18.22)
高山栲 Castanopsis delavayi 9.56(21.37)
母猪果 Helicia nilagirica 4.29(10.23)
茶梨 Anneslea fragrans 2.51(8.21)
截头石栎 Lithocarpus truncatus 10.20 (7.47)
小果栲 Castanopsis fleuryi 8.93(7.35)
滇南木姜子 Litsea garrettii 4.37(6.19)
西南木荷 Schima wallichii 6.13(4.77)
红梗润楠 Machilus rufipes 4.96(2.97)
滇青冈 Cyclobalanopsis glaucoides 35.04(27.95)
白穗石栎 Lithocarpus craibianus 28.38(27.93)
多穗石栎 Lithocarpus polystachyus 20.47(24.96)

表2

NMDS排序轴与环境因子的相关性系数"

环境因子
Environmental factors
NMDS第一轴 NMDS1 NMDS第二轴 NMDS2 r2 P
海拔 Elevation -0.779 -0.627 0.897 0.001
凹凸度 Convexity 0.992 -0.128 0.098 0.134
坡向 Aspect -0.025 -1.000 0.035 0.490
坡度 Slope -0.352 -0.936 0.241 0.007
土壤含水率 Soil water content (SW) -0.994 -0.107 0.635 0.001
土壤有机质 Soil organic matter (SOM) -0.825 -0.566 0.293 0.003
土壤pH值 pH 0.998 0.067 0.597 0.001
全氮 Total nitrogen (TN) -0.367 -0.930 0.060 0.312
全磷 Total phosphorus (TP) -0.543 0.840 0.108 0.121
全钾 Total potassium (TK) 0.150 -0.989 0.374 0.002
有效氮 Available nitrogen (AN) -0.582 0.813 0.079 0.210
有效磷 Available phosphorus (AP) -0.918 0.396 0.432 0.001
有效钾 Available potassium (AK) 0.112 0.994 0.316 0.001
有效硼 Available boron (AB) -0.272 0.962 0.503 0.001

图2

哀牢山4种植被亚型森林样地非度量多维尺度分析。圆圈、+、箭头分别代表样地、树种及环境因子(图注同图1及表2)"

表3

“dredge”模型筛选表"

有效硼
AB
有效钾
AK
凹凸度
Convexity
海拔
Elevation
pH 全钾
TK
自由度
df
AICc ΔAICc 权重值
Weight
1 1.796 -0.128 -0.001 -0.345 5 90.0 0.00 0.261
2 2.082 -0.001 -0.250 4 90.4 0.39 0.214
3 2.374 -0.001 4 91.0 0.95 0.162
4 2.001 -0.005 -0.124 -0.002 -0.409 6 91.3 1.26 0.139
5 2.290 -0.005 -0.002 -0.320 6 91.5 1.44 0.127
6 2.544 0.676 -0.302 5 92.0 2.00 0.096
相对重要性Importance 1.00 0.27 0.40 0.90 0.10 0.84

图3

哀牢山4种植被亚型森林的树种丰富度。林型代号同图1。"

图4

树种丰富度对环境因子的响应。图中实线表示树种丰富度的期望值, 虚线表示95%置信区间。"

1 Baldeck CA, Harms KE, Yavitt JB, John R, Turner BL, Valencia R, Navarrete H, Davies SJ, Chuyong GB, Kenfack D, Thomas DW, Madawala S, Gunatilleke N, Gunatilleke S, Bunyavejchewin S, Kiratiprayoon S, Yaacob A, Supardi MNN, Dalling JW (2013) Soil resources and topography shape local tree community structure in tropical forests. Proceedings of the Royal Society of London B: Biological Sciences, 280, 20122532.
2 Balvanera P, Aguirre E (2006) Tree diversity, environmental heterogeneity, and productivity in a Mexican tropical dry forest. Biotropica, 38, 479-491.
3 Bao SD (2005) Agricultural Chemistry Analysis of Soil. China Agriculture Press, Beijing. (in Chinese)
[鲍士旦 (2005)土壤农化分析. 中国农业出版社, 北京.]
4 Bartoń K (2015) MuMIn: Multi-model Inference. R package version, 1.15.6.
5 Bohlman SA, Laurance WF, Laurance SG, Nascimento HE, Fearnside PM, Andrade A (2008) Importance of soils, topography and geographic distance in structuring central Amazonian tree communities. Journal of Vegetation Science, 19, 863-874.
6 Budke JC, Jarenkow JA, de Oliveira-Filho AT (2007) Relationships between tree component structure, topography and soils of a riverside forest, Rio Botucaraí, Southern Brazil. Plant Ecology, 189, 187-200.
7 Christensen M, Heilmann-Clausen J (2009) Forest biodiversity gradients and the human impact in Annapurna Conservation Area, Nepal. Biodiversity and Conservation, 18, 2205-2221.
8 Chuyong GB, Kenfack D, Harms KE, Thomas DW, Condit R, Comita LS (2011) Habitat specificity and diversity of tree species in an African wet tropical forest. Plant Ecology, 212, 1363-1374.
9 Clark DB, Palmer MW, Clark DA (1999) Edaphic factors and the landscape-scale distributions of tropical rain forest trees. Ecology, 80, 2662-2675.
10 Comprehensive Investigation Group of the Ailao Mountain National Nature Reserve(1988) Reports on a Comprehen- sive Investigation of the Ailao Mountain National Nature Reserve. The Nationalities Publishing House of Yunnan, Kunming. (in Chinese)
[哀牢山自然保护区综合考察团(1988) 哀牢山自然保护区综合考察报告集. 云南民族出版社, 昆明.]
11 de Toledo JJ, Magnusson WE, Castilho CV, Nascimento HE (2011) How much variation in tree mortality is predicted by soil and topography in Central Amazonia? Forest Ecology and Management, 262, 331-338.
12 Dinno A (2015) Nonparametric pairwise multiple comparisons in independent groups using Dunn’s test. The Stata Journal, 15, 292-300.
13 Dinno A (2016) Dunn’s Test of Multiple Comparisons Using Rank Sums, R package version, 132. https://CRAN.R -project.org/package=dunn.test.
14 Editorial Committee of the Vegetation of Yunnan(1987) The Vegetation of Yunnan. Science Press, Beijing. (in Chinese)
[云南植被编写组(1987) 云南植被. 科学出版社, 北京.]
15 Engelbrecht BM, Comita LS, Condit R, Kursar TA, Tyree MT, Turner BL, Hubbell SP (2007) Drought sensitivity shapes species distribution patterns in tropical forests. Nature, 447, 80-82.
16 Ferreira-Júnior WG, Silva AF, Schaefer CEGR, Neto JAAM, Dias AS, Ignácio M, Medeiros MCMP (2007) Influence of soils and topographic gradients on tree species distribution in a Brazilian Atlantic tropical semideciduous forest. Edinburgh Journal of Botany, 64, 137-157.
17 Gong HD, Yang GP, Lu ZY, Liu YH, Cao M (2011) Composition and spatio-temporal distribution of tree seedlings in an evergreen broad-leaved forest in the Ailao Mountains, Yunnan. Biodiversity Science, 19, 151-157. (in Chinese with English abstract)
[巩合德, 杨国平, 鲁志云, 刘玉洪, 曹敏 (2011) 哀牢山常绿阔叶林乔木树种的幼苗组成及时空分布特征. 生物多样性, 19, 151-157.]
18 Guo YL, Wang B, Xiang WS, Ding T, Lu SH, Huang FZ, Wen SJ, Li DX, He YL, Li XK (2016) Responses of spatial pattern of woody plants’ basal area to topographic factors in a tropical karst seasonal rainforest in Nonggang, Guangxi, southern China. Biodiversity Science, 24, 30-39. (in Chinese with English abstract)
[郭屹立, 王斌, 向悟生, 丁涛, 陆树华, 黄甫昭, 文淑均, 李冬兴, 何运林, 李先琨 (2016) 喀斯特季节性雨林木本植物胸高断面积分布格局及其对地形因子的响应. 生物多样性, 24, 30-39.]
19 Guo YL, Wang B, Mallik AU, Huang FZ, Xiang WS, Ding T, Wen SJ, Lu SH, Li DX, He YL, Li XK (2016) Topographic species-habitat associations of tree species in a heterogeneous tropical karst seasonal rain forest, China. Journal of Plant Ecology, 9, 1-11.
20 Homeier J, Breckle SW, Günter S, Rollenbeck RT, Leuschner C (2010) Tree diversity, forest structure and productivity along altitudinal and topographical gradients in a species-rich ecuadorian montane rain forest. Biotropica, 42, 140-148.
21 Itoh A, Yamakura T, Ohkubo T, Kanzaki M, Palmiotto PA, LaFrankie JV, Ashton PS, Lee HS (2003) Importance of topography and soil texture in the spatial distribution of two sympatric dipterocarp trees in a Bornean rainforest. Ecological Research, 18, 307-320.
22 John R, Dalling JW, Harms KE, Yavitt JB, Stallard RF, Mirabello M, Hubbell SP, Valencia R, Navarrete H, Vallejo M, Foster RB (2007) Soil nutrients influence spatial distributions of tropical tree species. Proceedings of the National Academy of Sciences, USA, 104, 864-869.
23 Jones MM, Tuomisto H, Borcard D, Legendre P, Clark DB, Olivas PC (2008) Explaining variation in tropical plant community composition: influence of environmental and spatial data quality. Oecologia, 155, 593-604.
24 Lai JS, Mi XC, Ren HB, Ma KP (2009) Species-habitat associations change in a subtropical forest of China. Journal of Vegetation Science, 20, 415-423.
25 Laurance SG, Laurance WF, Andrade A, Fearnside PM, Harms KE, Vicentini A, Luizão RC (2010) Influence of soils and topography on Amazonian tree diversity: a landscape-scale study. Journal of Vegetation Science, 21, 96-106.
26 Lomolino MV (2001) Elevation gradients of species-density: historical and perspective views. Global Ecology and Biogeography, 10, 3-13.
27 Lundholm JT (2009) Plant species diversity and environmental heterogeneity: spatial scale and competing hypotheses. Journal of Vegetation Science, 20, 377-391.
28 Magurran AE (2004) Measuring Biological Diversity. Blackwell Science Ltd., Blackwell Publishing Company, Victoria, Australia.
29 Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2016) Vegan: Community Ecology Package, Version 2.3-5. https://CRAN.R-project.org/package=vegan (accessed on 2017-2-3).
30 Oliveira-Filho AT, Vilela EA, Carvalho DA, Gavilanes ML (1994) Effects of soils and topography on the distribution of tree species in a tropical riverine forest in south-eastern Brazil. Journal of Tropical Ecology, 10, 483-508.
31 Oliveira-Filho AD, Curi N, Vilela EA, Carvalho DA (2001) Variation in tree community composition and structure with changes in soil properties within a fragment of semi-deciduous forest in south-eastern Brazil. Edinburgh Journal of Botany, 58, 139-158.
32 Palmiotto PA, Davies SJ, Vogt KA, Ashton MS, Vogt DJ, Ashton PS (2004) Soil-related habitat specialization in dipterocarp rain forest tree species in Borneo. Journal of Ecology, 92, 609-623.
33 Pereira JAA, Oliveira-Filho AT, Lemos-Filho JP (2007) Environmental heterogeneity and disturbance by humans control much of the tree species diversity of Atlantic montane forest fragments in SE Brazil. Plant Conservation and Biodiversity, 16, 1761-1784.
34 Peruggia M (2003) Model selection and multimodel inference: a practical information-theoretic approach. Journal of the American Statistical Association, 98, 778-779.
35 Pinto JRR, Oliveira-Filho AT, Hay JDV (2005) Influence of soil and topography on the composition of a tree community in a central Brazilian valley forest. Edinburgh Journal of Botany, 62, 69-90.
36 Potts MD, Ashton PS, Plotkin JB, Kaufmann LS (2002) Habitat patterns in tropical rainforests: a comparison of 105 plots in northwest Borneo. Ecology, 83, 2782-2797.
37 Poulos HM, Camp AE (2010) Topographic influences on vegetation mosaics and tree diversity in the Chihuahuan Desert Borderlands. Ecology, 91, 1140-1151.
38 Russo SE, Davies SJ, King DA, Tan S (2005) Soil-related performance variation and distributions of tree species in a Bornean rain forest. Journal of Ecology, 93, 879-889.
39 Steidinger B (2015) Qualitative differences in tree species distributions along soil chemical gradients give clues to the mechanisms of specialization: why boron may be the most important soil nutrient at Barro Colorado Island. New Phytologist, 206, 895-899.
40 Takyu M, Aiba S, Kitayama K (2002) Effects of topography on tropical lower montane forests under different geological conditions on Mount Kinabalu, Borneo. Plant Ecology, 159, 35-49.
41 Tateno R, Takeda H (2003) Forest structure and tree species distribution in relation to topography-mediated heterogeneity of soil nitrogen and light at the forest floor. Ecological Research, 18, 559-571.
42 Tripler CE, Kaushal SS, Likens GE, Walter TM (2006) Patterns in potassium dynamics in forest ecosystems. Ecology Letters, 9, 451-466.
43 Tsui CC, Chen ZS, Hsieh CF (2004) Relationships between soil properties and slope position in a lowland rain forest of southern Taiwan. Geoderma, 123, 131-142.
44 Urban DL, Miller C, Halpin PN, Stephenson NL (2000) Forest gradient response in Sierran landscapes: the physical template. Landscape Ecology, 15, 603-620.
45 Wood S (2016) Mixed GAM Computation Vehicle with GCV/AIC/REML Smoothness Estimation, Version 1.8-12.(accessed on 2017-2-3).
46 Wright SJ, Yavitt JB, Wurzburger N, Turner BL, Tanner EV, Sayer EJ, Santiago LS, Kaspari M, Hedin LO, Harms KE, Garcia MN, Corre MD (2011) Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology, 92, 1616-1625.
47 Xu YJ, Chen YN, Li WH, Fu AH, Ma XD, Gui DW, Chen YP (2011) Distribution pattern of plant species diversity in the mountainous region of Ili River Valley, Xinjiang. Environmental Monitoring and Assessment, 177, 681-694.
48 Yamakura T, Kanzaki A, Itoh T, Ohkubo K, Ogino EOK, Chai HS, Ashton PS (1995) Topography of a large-scale research plot established within a tropical rain forest at Lambir, Sarawak. Tropics, 5, 41-56.
49 Yasuhiro K, Hirofumi M, Kihachiro K (2004) Effects of topographic heterogeneity on tree species richness and stand dynamics in a subtropical forest in Okinawa Island, southern Japan. Journal of Ecology, 92, 230-240.
50 Yimer F, Ledin S, Abdelkadir A (2006) Soil property variations in relation to topographic aspect and vegetation community in the south-eastern highlands of Ethiopia. Forest Ecology and Management, 232, 90-99.
[1] 芦伟, 余建平, 任海保, 米湘成, 陈建华, 马克平. 古田山中亚热带常绿阔叶林群落物种多样性的空间变异特征[J]. 生物多样性, 2018, 26(9): 1023-1028.
[2] 张宇, 冯刚. 内蒙古昆虫物种多样性分布格局及其机制[J]. 生物多样性, 2018, 26(7): 701-706.
[3] 孟令君, 姚杰, 秦江环, 范春雨, 张春雨, 赵秀海. 吉林蛟河针阔混交林乔木幼苗组成及其密度格局影响因素[J]. 植物生态学报, 2018, 42(6): 653-662.
[4] 辜翔,张仕吉,刘兆丹,李雷达,陈金磊,王留芳,方晰. 中亚热带植被恢复对土壤有机碳含量、碳密度的影响[J]. 植物生态学报, 2018, 42(5): 595-608.
[5] 邹顺, 周国逸, 张倩媚, 徐姗, 熊鑫, 夏艳菊, 刘世忠, 孟泽, 褚国伟. 1992-2015年鼎湖山季风常绿阔叶林群落结构动态[J]. 植物生态学报, 2018, 42(4): 442-452.
[6] 温韩东, 林露湘, 杨洁, 胡跃华, 曹敏, 刘玉洪, 鲁志云, 谢有能. 云南哀牢山中山湿性常绿阔叶林20 hm2动态样地的物种组成与群落结构[J]. 植物生态学报, 2018, 42(4): 419-429.
[7] 宋云峰, 陈声文, 王薇, 余建平, 钱海源, 王云泉, 陈磊, 米湘成, 任海保, 叶铎, 陈建华, 马克平. 负密度制约和生境过滤对古田山幼苗功能多样性年际变化的影响[J]. 生物多样性, 2017, 25(9): 959-965.
[8] 孙茜, 薛子可, 解琳琳, 贺学礼, 赵丽莉. 沙冬青及其伴生植物深色有隔内生真菌物种多样性[J]. 植物生态学报, 2017, 41(7): 729-737.
[9] 隋丹丹, 王悦, 练琚愉, 张健, 胡健波, 欧阳学军, 范宗骥, 曹洪麟, 叶万辉. 鼎湖山南亚热带常绿阔叶林林窗
分布格局及其成因
[J]. 生物多样性, 2017, 25(4): 382-392.
[10] 叶铎, 董瑞瑞, 米湘成, 芦伟, 郑振杰, 于明坚, 倪健, 陈建华. 古田山常绿阔叶林萌生特征及其与群落物种多样性的关系[J]. 生物多样性, 2017, 25(4): 393-400.
[11] 周浙昆, 黄健, 丁文娜. 若干重要地质事件对中国植物区系 形成演变的影响[J]. 生物多样性, 2017, 25(2): 123-135.
[12] 赵鸣飞, 王国义, 邢开雄, 王宇航, 薛峰, 康慕谊, 罗开. 秦岭西部森林群落相似性递减格局及其影响因素[J]. 生物多样性, 2017, 25(1): 3-10.
[13] 丁晖, 方炎明, 杨新虎, 袁发银, 何立恒, 姚剑飞, 吴俊, 迟斌, 李垚, 陈水飞, 陈婷婷, 徐海根. 黄山亚热带常绿阔叶林的群落特征[J]. 生物多样性, 2016, 24(8): 875-887.
[14] 刘帅, 廖嘉星, 肖翠, 范秀华. 长白山次生针阔混交林乔木幼苗存活的影响因素分析[J]. 植物生态学报, 2016, 40(7): 711-722.
[15] 欧阳明, 杨清培, 陈昕, 杨光耀, 施建敏, 方向民. 毛竹扩张对次生常绿阔叶林物种组成、结构与多样性的影响[J]. 生物多样性, 2016, 24(6): 649-657.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed