生物多样性 ›› 2016, Vol. 24 ›› Issue (11): 1227-1233.doi: 10.17520/biods.2016031

• • 上一篇    下一篇

鱼类多样性监测的理论方法及中国内陆 水体鱼类多样性监测

刘焕章1, *(), 杨君兴2, 刘淑伟2, 高欣1, 陈宇顺1, 张春光3, 赵凯4, 李新辉5, 刘伟6   

  1. 1.中国科学院水生生物研究所, 武汉 430072
    2.中国科学院昆明动物研究所, 昆明 650223
    3.中国科学院动物研究所, 北京 100101
    4.中国科学院西北高原生物研究所, 西宁 810008
    5.中国水产科学研究院珠江水产研究所, 广州 510380
    6.中国水产科学研究院黑龙江水产研究所, 哈尔滨 150076
  • 收稿日期:2016-11-11 接受日期:2016-11-23 出版日期:2016-11-20
  • 通讯作者: 刘焕章 E-mail:hzliu@ihb.ac.cn
  • 基金项目:
    中国生物多样性监测与研究网络(Sino BON)和长江三峡生态与环境监测系统(JJ [2015]-042)

Theory and methods on fish diversity monitoring with an introduction to the inland water fish diversity observation in China

Huanzhang Liu1, *(), Junxing Yang2, Shuwei Liu2, Xin Gao1, Yushun Chen1, Chunguang Zhang3, Kai Zhao4, Xinhui Li5, Wei Liu6   

  1. 1 Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072
    2 Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223
    3 Institute of Zoology, Chinese Academy of Sciences, Beijing 100101
    4 Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008
    5 Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510380
    6 Heilongjiang Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Harbin 150076
  • Received:2016-11-11 Accepted:2016-11-23 Online:2016-11-20
  • Contact: Liu Huanzhang E-mail:hzliu@ihb.ac.cn

近年来, 生物多样性监测网络的建设得到广泛重视, 全球、地区或国家生物多样性观测网不断组建。生物多样性观测的理论框架得到发展, 提出了生物多样性核心监测指标(Essential Biodiversity Variables, EBV)。鱼类多样性监测的理论框架包含于生物多样性核心监测指标之内, 在遗传、物种、生态系统等多层次进行。基于鱼类监测提出的生物完整性指数(index of biotic integrity, IBI)强调不同物种的生态功能, 可以综合反映群落结构和功能的变化, 得到广泛应用。鱼类多样性的监测方法是传统网具和现代水声学等方法的结合。监测结果的分析可以进行简单的指数比较, 也可以进行长期的趋势分析, 寻找关键节点, 探讨宏观生态格局的变化。中国内陆水体鱼类多样性监测网隶属于中国生物多样性监测与研究网络, 拟选取长江、黄河、黑龙江、珠江、澜沧江、怒江、塔里木河及青海湖8大流域, 对25个重要区域和24个重点物种(类群)进行监测, 从重要区域鱼类群落结构、重点物种(类群)种群动态和个体生物学特征、遗传多样性、早期资源等不同层次, 全面监测我国内陆水体鱼类生物多样性状况。

关键词: 内陆水体鱼类, 监测网络, 物种多样性, 生物学特征

In recent years, the establishment of biodiversity observation networks (BON) has been of great concern. The global scale GEO-BON (Global Earth Observation—Biodiversity Observation Network), regional EBONE (European Biodiversity Observation Network) and AP BON (Asia-Pacific BON), and local networks such as the J-BON (Japanese BON) and French BON have been successful. The introduction of Essential Biodiversity Variables (EBV) has laid a theoretical foundation for biodiversity observations. The fish biodiversity observation theory is embedded in the EBV, and includes work at the genetic, species, and ecosystem levels. Originally designed for fish monitoring, the index of biotic integrity (IBI) has become the most popular index, and emphasizes the identification of different ecological functional groups, which can reflect changes in community structure and function. Fish diversity survey methods include both traditional nets and modern instruments such as a hydroacoustic sonar system. Analysis of monitoring data can be completed as simple comparisons of various indices, modeling long term trends to identify change-points, and exploring ecological regime shifts. As a part of the Chinese Biodiversity Monitoring and Research Network (Sino BON)—Inland Water Fish is designed to conduct fish monitoring work in 8 major drainage basins in China including the Yangtze River, the Yellow River, the Heilongjiang River, the Zhujiang River, the Lancang River, the Nujiang (Salween) River, the Tarim River, and the Qinhaihu Lake. A total of 25 focused areas and 24 targeted species (groups) have been selected as sampling sites and crucial indicators, respectively, and monitoring variables including community structure, population structure and dynamics, biological traits, genetic diversity, and fish early resources.

Key words: inland water fish, Sino BON, species diversity, biological traits

表1

生物多样性的核心变量说明(引自Pereira et al, 2013)"

EBV 类别
EBV class
EBV举例
EBV examples
度量与尺度
Measurement and scalability
时间敏感性
Temporal sensitivity
遗传组成
Genetic composition
基因型多样性
Allelic diversity
选定的物种(濒危或家养物种)在代表性分布区的基因型
Genotypes of selected species (e.g. endangered, domesticated) at
representative locations
世代时间
Generation time
物种种群
Species populations
丰度或分布
Abundances and
distributions
进行计数或出现与否调查, 主要针对大范围网络尺度上容易监测的
物种、生态系统服务重要的物种等
Counts or presence surveys for groups of species easy to monitor or
important for ecosystem services (ES), over an extensive network of sites
1年-10年以上
1 to >10 years
物种特征
Species traits
形态学 Phenology 遥感监测植物叶子颜色变化的时间, 需要现场核实。在鱼类可以采用生长、繁殖等特征
Timing of leaf coloration by remote sensing (RS), with in situ validation. Growth and reproduction traits in fish.
1年
1 year
群落组成
Community composition
分类单元多样性
Taxonomic diversity
多个分类单元的调查以及选定区域的宏基因组研究
Consistent multitaxa surveys and metagenomics at select locations
5年-10年以上
5 to >10 years
生态系统结构
Ecosystem structure
生境结构
Habitat structure
全球或区域尺度的生物量或覆盖度遥感
RS of cover (or biomass) by height (or depth) globally or regionally
1-5年
1 to 5 years
生态系统功能
Ecosystem function
营养物质保留
Nutrient retention
选定区域的营养物输出/输入比例测量
Nutrient output/input ratios measured at select locations
1年
1 year

表2

基于生物完整性指数(IBI)评价鱼类群落生物完整性的指标及评分级别(修改自Karr, 1981, 1991)"

评价指标
Metrics
评分级别 Rating of metrics
5 3 1
A. 物种组成与丰富度 Species richness and composition 根据调查河流的大小或区域特征设定评价指标1-5的期望值, 大型河流鱼类物种期望值高; 中国的河流鲤科鱼类物种多。
Expectations for metrics 1-5 vary with stream size and region. Large rivers are with more species, and more cyprinids in Chinese waters
1. 鱼类物种总数(土著物种) Total number of fish species (native fish species)
2. 鲈类物种单元与数量(底栖物种) Number and identity of darter species (benthic species)
3. 太阳鱼科物种单元与数量(中层鱼类) Number and identity of sunfish species (water-column species)
4. 亚口鱼科物种单元与数量(长寿命鱼类) Number and identity of sucker species (long-lived species)
5. 非耐受型鱼类物种单元与数量 Number and identity of intolerant species
6. 蓝绿鳞鳃太阳鱼个体组成百分比(耐受型鱼类) Percentage of individuals as green sunfish (tolerant species) <5 5-20 >20
B. 营养类型组成 Trophic composition
7. 杂食性鱼类个体组成百分比 Percentage of individuals as omnivores <20 20-45 >45
8. 昆虫食性鲤科鱼类个体组成百分比 Percentage of individuals as insectivorous cyprinids (insectivores) >45 45-20 <20
9. 凶猛肉食性鱼类个体组成百分比(顶级捕食者) Percentage of individuals as piscivores (top carnivores) >5 5-1 <1
C. 鱼类丰度与状况 Fish abundance and condition
10. 采集到的样本个体数 Number of individuals in sample 指标10随河流大小等因子变化
Expectations for metric 10 vary with stream size and other factors
11. 杂交个体百分比 Percentage of individuals as hybrids 0 >0-1 >1
12. 带病、肿瘤、鳍条损伤、或骨骼畸形的个体百分比
Percentage of individuals with disease, tumors, fin damage, and skeletal anomalies
0-2 >2-5 >5

表3

鱼类调查方法及其适用水体(修改自Giles et al, 2005)"

调查方法 Survey methods 适用水环境 Applied water body
目测调查 Visual surveys 小型水体或清澈的溪流 Small pools and clear streams
渔获物调查 Catch returns 流水或静水水体 Running and still waters
定置网等诱捕型网具 Traps 流水或静水水体 Running and still waters
撒网等网具 Lift, throw and push netting 流水或静水水体 Running and still waters
电鱼 Electrofishing 流水或静水水体 Running and still waters
刺网 Gill netting 缓流或静水水体 Slow-flowing or still waters
围网 Seine netting 缓流或静水水体 Slow-flowing or still waters
拖网 Trawl netting 缓流或静水水体 Slow-flowing or still waters
水声学计数 Hydroacoustic sonar counters 缓流或静水水体 Slow-flowing or still waters
电子计数 Electronic counters 流水水体 Running waters

图1

基于不列颠鸟类调查数据库分析的红腹灰雀丰度指数变化趋势图示(实线为丰度指数变化曲线, 虚线为95%置信区间, 黑点表示上升的变化点, 圆圈表示下降的变化点, 引自Fewster et al, 2000)"

图2

基于100个环境因子分析的北太平洋生态稳态转换(引自Hare & Mantua, 2000)"

表4

中国内陆水体鱼类多样性监测专项网空间布局、重要地区、重点物种及主要承担单位"

水系
Water systems
重要地区
Focused areas
重点物种
Target species
主要承担单位
Lead institutions
长江
Yangtz River
长江上游珍稀特有鱼类保护区(四川合江)、三峡库尾(重庆)、三峡大坝坝下(湖北宜昌)、中游湖泊区(江西湖口)
Reserve for rare and endemic fishes of the Upper Yangtz River (Hejiang), end of the Three Gorges Reservoir (Chongqing), downstream of the Three Gorges Dam (Yichang), and floodplain of the middle Yangtz (Hukou)
洄游性鱼类(鲟鱼类)、长江上游特有鱼类(圆口铜鱼)、长江重要经济鱼类(四大家鱼)
Anadromous fish (sturgeons), endemic fishes of the Upper Yangtz River, economic species (the four major Chinese carps)
中国科学院水生生物研究所
Institute of Hydrobiology, Chinese Academy of Sciences
黄河
Yellow River
上游(巴彦淖尔)、中游(三门峡)、下游(东营)
Upper reaches (Bayan Nur), middle reaches (Sanmenxia), and lower reaches (Dongying)
马口鱼或宽鳍鱲、裂腹鱼类、鲇类
Opsariicjthys bidens or Zacco platypus, schizothroaxins, and catfishes
中科院动物研究所
Institute of Zoology, Chinese Academy of Sciences
黑龙江
Heilongjiang River
上游(呼玛)、中游(萝北)、下游(抚远)
Upper reaches (Huma), middle reaches (Luobei), and lower reaches (Fuyuan)
施氏鲟或达氏鳇、鲑科鱼类
Acipenser schrenckii, Huso dauricus, salmonids
中国水产科学研究院黑龙江水产研究所
Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences
珠江
Zhujiang River
上游(合山)、中游(桂平)、下游(肇庆)
Upper reaches (Heshan), middle reaches (Guiping), and lower reaches (Zhaoqing)
广东鲂、野鲮亚科代表种、鳅类代表种
Megalobrama terminalis, labeonins,
loaches
中国水产科学研究院珠江水产研究所
Zhujiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences
澜沧江
Lancang River
上游(维西)、中游(大理)、下游(景洪)
Upper reaches (Weixi), middle reaches (Dali), and lower reaches (Jinghong)
裂腹鱼类、鮡类、鲃类代表种
Schizothroaxins, sisorins, barbinins
中科院昆明动物研究所
Kunming Institute of Zoology, Chinese Academy of Sciences
怒江
Nujiang River
上游(贡山)、中游(六库)、下游(永德)
Upper reaches (Gongshan), middle reaches (Liuku), lower reaches (Yongde)
裂腹鱼类、鮡类、鳅类的代表种
Schizothroaxins, sisorins, loaches
中科院昆明动物研究所
Kunming Institute of Zoology, Chinese Academy of Sciences
塔里木河
Tarim River
上游(阿拉尔)、中游(沙雅)、下游(尉犁)
Upper reaches (Alaer), middle reaches (Shaya), and lower reaches (Yuli)
裂腹鱼类、鳅科鱼类代表种
Schizothroaxins, loaches
中科院西北高原生物研究所
Northwest Institute of Plateau Biology, Chinese Academy of Sciences
青海湖
Qinghai Lake
湖西北岸(刚察)、湖北岸(海晏)、湖西南岸(共和)
Northwest bank (Gangcha), north bank (Haiyan), and south bank (Gonghe)
裂腹鱼类、鳅科鱼类代表种
Schizothroaxins, loaches
中科院西北高原生物研究所
Northwest Institute of Plateau Biology, Chinese Academy of Sciences

表5

中国内陆水体鱼类多样性监测专项网的监测内容、方法和主要指标"

监测类别 Classes 监测方法 Methods 监测指标 Variables
重要区域鱼类资源监测(群落水平):流域内鱼类种类组成、不同分类单元和功能类群组成比例、优势种成分变化、早期资源状况、鱼类生存的水环境因子。
Fish resources monitoring in focused areas (community level): species composition, taxonomic groups and ecological functional groups, dominant species, fish early resources, and environmental abiotic factors.
鱼类资源调查、渔获物调查、鱼类早期资源调查、水下声纳探测、水下机器人视频追踪、水环境因子调查。
Fish resource survey, fishing harvest survey, fish early resource survey, hydro acoustic survey, and environmental abiotic factor survey.
鱼类群落特征: 鱼类名录、鱼类多样性指数、不同物种的数量组成、重量组成、优势种类、不同分类单元、功能类群的成分变化等。早期资源的种类组成与资源量。鱼类生存环境: 水温、流速、水深、河面宽度、底质特征、溶氧、pH值、透明度、电导率, 水文站的水位、径流量等。
Community level characters: species list, diversity indices, proportion of different species in numbers and biomass, dominant species, proportion of different taxonomic groups and ecological functional groups. Species composition and abundance of fish early resources. Environmental abiotic factor: water temperature, flow velocity, water depth, river width, riverbed types, dissolved oxygen, pH, transparency, conductivity, water discharge, water level of the nearby hydrographic station.
重点物种鱼类生物学特征监测(物种水平):重点鱼类物种(类群)的种群动态、个体生物学特征。
Target species biological monitoring: population dynamic and biological traits.
渔获物调查、鱼探仪、水下机器人视频追踪、声学信标。
Fishing harvest survey, sonar detection system, video monitoring with remotely operated vehicle (ROV), hydro acoustic survey.
鱼类种群特征: 种群数量、年龄结构、性比组成、体长和体重频数分布等。鱼类个体生物学特征: 鱼类的年龄与生长、鱼类的食物组成、性腺发育、繁殖力等个体生物学特征。鱼类行为特征: 鱼类洄游时间、线路; 鱼类繁殖、摄食等行为表现。
Population level characters: population size, age structure, sexual ratio, frequency distribution of body length and body weight. Fish biological traits: age and growth, diet composition, gonad development, fecundity. Fish behavior: migration time and route, breeding and feeding behavior.
重点物种遗传多样性监测:种群遗传多样性现状
Genetic diversity monitoring of target species
线粒体DNA基因和微卫星分子标记
mtDNA and short sequence repeats (SSR) diversity analysis
线粒体DNA基因的单倍型数目、单倍型多样性、核苷酸多样性; 微卫星标记反映的等位基因频率、杂合度与近交状态、有效种群大小等。 MtDNA haplotype numbers and diversity, nucleotide diversity, SSR genotype frequency, heterozygosity and inbreeding coefficient, effective population size.
1 Barko VA, Herzog DP, Hrabik RA, Scheibe JS (2004) Relationship among fish assemblages and main-channel-border physical habitats in the unimpounded upper Mississippi River. Transactions of the American Fisheries Society, 133, 371-384.
2 Chen YY (1990) Some aspects on biological diversity of freshwater ecosystem. Bioscience Communciation, 2, 197-200. (in Chinese)
[陈宜瑜 (1990) 淡水生态系统中的若干生物多样性问题. 生物科学信息, 2, 197-200.]
3 Fewster RM, Buckland ST, Siriwardena GM, Baillie SR, Wilson JD (2000) Analysis of population trends for farmland birds using generalized additive models. Ecology, 81, 1970-1984.
4 Froese R, Pauly D (2016) FishBase. World Wide Web electronic publication. www.fishbase.org, version (10/2016).
5 Giles N, Sands R, Fasham M (2005) Fish. In: Handbook of Biodiversity Methods: Survey, Evaluation and Monitoring (eds Hill D, Fasham M, Tucker G, Shewry M, Shaw P), pp. 368-386. Cambridge University Press, Cambridge.
6 Hare SR, Mantua NJ (2000) Empirical evidence for North Pacific regime shifts in 1977 and 1989. Progress in Oceanography, 47, 103-145.
7 HJ 710.7-2014J 710.7-2014 (2014) Technical Guidelines for Biodiversity Monitoring—Inland Water Fish. China Environmental Science Press, Beijing. (in Chinese)
[HJ 710.7-2014 J 710.7-2014(2014) 生物多样性观测技术导则: 内陆水域鱼类. 中国环境科学出版社, 北京.]
8 Karr JR (1981) Assessment of biotic integrity using fish communities. Fisheries, 6(6), 21-27.
9 Karr JR (1991) Biological integrity: a long-neglected aspect of water resource management. Ecological Applications, 1, 66-84.
10 Killgore KJ, Hoover JJ, George SG, Lewis BR, Murphy CE, Lancaster WE (2007) Distribution, relative abundance and movements of pallid sturgeon in the free-flowing Mississippi River. Journal of Applied Ichthyology, 23, 476-483.
11 Ma KP (2015) Biodiversity monitoring in China: from CForBio to Sino BON. Biodiversity Science, 23, 1-2. (in Chinese)
[马克平 (2015) 中国生物多样性监测网络建设: 从CForBio到Sino BON. 生物多样性, 23, 1-2.]
12 Miller DL, Hughes RM, Karr JR, Leonard PM, Moyle PB, Schrader LH, Thompson BA, Daniels RA, Fausch KD, Fitzhugh GA, Gammon JR, Halliwell DB, Angermeier PL, Orth DJ (1988) Regional applications of an index of biotic integrity for use in water resource management. Fisheries, 13(5), 12-20.
13 Miranda LE, Killgore KJ (2014) Fish depth distributions in the Lower Mississippi River. River Research and Applications, 30, 347-359.
14 Nakano SI, Yahara T, Nakashizuka T (2012) The Biodiversity Observation Network in the Asia-Pacific Region: Toward Further Development of Monitoring, Ecological Research Monographs, Springer, Tokyo.
15 Pereira HM, Ferrier S, Walters M, Geller GN, Jongman RHG, Scholes RJ, Bruford MW, Brummitt N, Butchart SHM, Cardoso AC, Coops NC, Dulloo E, Fith DP, Freyhof J, Gregory RD, Heip C, Höft R, Hurtt G, Jetz W, Karp DS, McGeoch MA, Obura D, Onoda Y, Pettorelli N, Reyers B, Sayre R, Scharlemann JPW, Stuart SN, Turak E, Walpole M, Wegmann M (2013) Essential biodiversity variables. Science, 339, 277-278.
16 Sarkar UK, Pathak AK, Sinha RK, Sivakumar K, Pandian AK, Pandey A, Dubey VK, Lakra WS (2012) Freshwater fish biodiversity in the River Ganga (India): changing pattern, threats and conservation perspectives. Reviews in Fish Biology and Fisheries, 22, 251-272.
17 Scholes RJ, Mace GM, Turner W, Geller GN, Jürgens N, Larigauderie A, Muchoney D, Walther BA, Mooney HA (2008) Toward a Global Biodiversity Observing System. Science, 321, 1044-1045.
18 Scholes RJ, Walters M, Turak E, Saarenmaa H, Heip CH, Tuama ÉÓ, Faith DP, Mooney HA, Ferrier S, Jongman RH, Harrison IJ, Yahara T, Pereira HM, Larigauderie A, Geller G (2012) Building a global observing system for biodiversity. Current Opinion in Environmental Sustainability, 4, 139-146.
19 Steuck MJ, Yess S, Pitlo J, Van Vooren A, Rasmussen J (2010) Distribution and Relative Abundance of Upper Mississippi River Fishes. Upper Mississippi River Conservation Committee, Onalaska, Wisconsin.
[1] 秦浩,张殷波,董刚,张峰. (2019) 山西关帝山森林群落物种、谱系和功能多样性海拔格局. 植物生态学报, 43(9): 762-773.
[2] 谭一波, 申文辉, 付孜, 郑威, 欧芷阳, 谭长强, 彭玉华, 庞世龙, 何琴飞, 黄小荣, 何峰. (2019) 环境因子对桂西南蚬木林下植被物种多样性变异的解释. 生物多样性, 27(9): 970-983.
[3] 唐丽丽,杨彤,刘鸿雁,康慕谊,王仁卿,张峰,高贤明,岳明,张梅,郑璞帆,石福臣. (2019) 华北地区荆条灌丛分布及物种多样性空间分异 规律. 植物生态学报, 43(9): 825-833.
[4] 陈自宏, 王元兵, 代永东, 陈凯, 徐玲, 何謦成. (2019) 滇西太保山森林公园子囊菌门虫生真菌物种多样性及其消长动态. 生物多样性, 27(9): 993-1001.
[5] 方文静,蔡琼,朱江玲,吉成均,岳明,郭卫华,张峰,高贤明,唐志尧,方精云. (2019) 华北地区落叶松林的分布、群落结构和物种多样性. 植物生态学报, 43(9): 742-752.
[6] 崔宝凯, 袁海生, 周丽伟, 何双辉, 魏玉莲. (2019) 大小兴安岭针叶树倒木上木腐真菌的物种多样性. 生物多样性, 27(8): 887-895.
[7] 李俊凝, 李通, 魏玉莲. (2019) 丰林国家级自然保护区木腐真菌多样性与寄主倒木的关系. 生物多样性, 27(8): 880-886.
[8] 图力古尔, 王雪珊, 张鹏. (2019) 大小兴安岭地区伞菌和牛肝菌类区系. 生物多样性, 27(8): 867-873.
[9] 焦萌, 李晶, 赵慧峰, 武春生, 张爱兵. (2019) 基于在线数据库的鳞翅目刺蛾科昆虫物种多样性及其全球分布格局. 生物多样性, 27(7): 778-786.
[10] 张明明,杨朝辉,王丞,王娇娇,胡灿实,雷孝平,石磊,粟海军,李佳琦. (2019) 贵州梵净山国家级自然保护区鸟兽红外相机监测. 生物多样性, 27(7): 813-818.
[11] 邹安龙, 马素辉, 倪晓凤, 蔡琼, 李修平, 吉成均. (2019) 模拟氮沉降对北京东灵山辽东栎群落林下植物物种多样性的影响. 生物多样性, 27(6): 607-618.
[12] 张新新, 王茜, 胡颖, 周玮, 陈晓阳, 胡新生. (2019) 植物边缘种群遗传多样性研究进展. 植物生态学报, 43(5): 383-395.
[13] 胡宜峰, 余文华, 岳阳, 黄正澜懿, 李玉春, 吴毅. (2019) 海南岛翼手目物种多样性现状与分布预测. 生物多样性, 27(4): 400-408.
[14] 颜文博,吉晟男,帅凌鹰,赵雷刚,朱大鹏,曾治高. (2019) 秦岭南坡陕西洋县辖区哺乳动物物种多样性的空间分布格局. 生物多样性, 27(2): 177-185.
[15] 陈作艺, 许晓静, 朱素英, 翟梦怡, 李扬. (2019) 中国沿海洛氏角毛藻复合群的多样性组成及地理分布. 生物多样性, 27(2): 149-158.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed