Biodiv Sci ›› 2013, Vol. 21 ›› Issue (3): 278-287. DOI: 10.3724/SP.J.1003.2013.10012
• Orginal Article • Previous Articles Next Articles
Wensheng Bu1, Runguo Zang1,*(), Yi Ding1, Junyan Zhang1, Yunze Ruan2
Received:
2013-01-09
Accepted:
2013-04-03
Online:
2013-05-20
Published:
2013-06-05
Contact:
Zang Runguo
Wensheng Bu,Runguo Zang,Yi Ding,Junyan Zhang,Yunze Ruan. Relationships between plant functional traits at the community level and environmental factors during succession in a tropical lowland rainforest on Hainan Island, South China[J]. Biodiv Sci, 2013, 21(3): 278-287.
演替阶段 | 海拔 | 凹凸度 | 坡度 | 干扰类型 |
---|---|---|---|---|
Stages | Elevation | Convex | Slope | Disturbance type |
15年次生林 15-year-old secondary forest | 419-520(467) | -7到7(0) | 5-27.3(14.1) | 刀耕火种 Shifting cultivation |
30年次生林 30-year-old secondary forest | 514-576(545) | -10到12(0.2) | 9-38.6(23.5) | 刀耕火种 Shifting cultivation |
60年次生林 60-year-old secondary forest | 474-515(498) | -14到9(-0.1) | 8-39.2(19.4) | 刀耕火种 Shifting cultivation |
老龄林 Old-growth forest (OG) | 550-650(598) | -18到14(-1) | 7-39.5(27.0) | 未干扰 No disturbance |
Table 1 Basic information of tropical lowland rainforest plots at different successional stages in the Bawangling Nature Reserve (the number is the mean of value in the brackets)
演替阶段 | 海拔 | 凹凸度 | 坡度 | 干扰类型 |
---|---|---|---|---|
Stages | Elevation | Convex | Slope | Disturbance type |
15年次生林 15-year-old secondary forest | 419-520(467) | -7到7(0) | 5-27.3(14.1) | 刀耕火种 Shifting cultivation |
30年次生林 30-year-old secondary forest | 514-576(545) | -10到12(0.2) | 9-38.6(23.5) | 刀耕火种 Shifting cultivation |
60年次生林 60-year-old secondary forest | 474-515(498) | -14到9(-0.1) | 8-39.2(19.4) | 刀耕火种 Shifting cultivation |
老龄林 Old-growth forest (OG) | 550-650(598) | -18到14(-1) | 7-39.5(27.0) | 未干扰 No disturbance |
Fig.1 Variations of environmental factors during different successional stages of tropical lowland rainforest in Bawangling Nature Reserve, Hainan Island. CO, Canopy openness; WC, Water content; BD, Bulk density; pH, pH value; SOM, Soil organic matter; TN, Total nitrogen; TP, Total phosphorus; TK, Total potassium; AN, Available nitrogen; AP, Available phosphorus and AK, Available potassium. Abbreviations of other parameters are same as Table 1. Boxes with different letters differ significantly at P <0.05.
Fig. 2 Variations of plant functional traits during different successional stages of tropical lowland rainforest in Bawangling Nature Reserve, Hainan Island. SLA, Specific leaf area; LDMC, Leaf dry matter content; WD, Wood density; Hmax, Potential maximum height; LNC, Leaf nitrogen content; LPC, Leaf phosphorus content; LKC, Leaf potassium content; LCC, Leaf total organic carbon. Abbreviations of other parameters are same as Table 1. Boxes with different letters differ significantly at P < 0.05.
阶段 | 性状 | 环境变量 Environmental variables | 回归方程参数 Parameters | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Stage | Trait | CO | BD | pH | SOM | TP | TK | AN | AP | R2 | AIC | P | |
15年次生林 15-year-old secondary forest (15yr) | |||||||||||||
SLA | 0.47 | 0.12 | 154.6 | 0.0145 | |||||||||
LDMC | |||||||||||||
WD | 0.18 | 0.17 | 37.5 | 0.0029 | |||||||||
Hmax | |||||||||||||
LNC | 0.30 | 0.15 | 97.4 | 0.0064 | |||||||||
LPC | |||||||||||||
LKC | 0.38 | -0.20 | 0.27 | 101.2 | 0.0005 | ||||||||
LCC | -0.41 | 0.21 | 107.2 | 0.0009 | |||||||||
30年次生林 30-year-old secondary forest (30yr) | |||||||||||||
SLA | -0.63 | 0.45 | 0.34 | 138.9 | <0.0001 | ||||||||
LDMC | -0.30 | 0.15 | 87.1 | 0.005 | |||||||||
WD | -0.32 | 0.15 | 56.3 | 0.0057 | |||||||||
Hmax | 0.67 | -0.30 | 0.35 | 117.6 | <0.0001 | ||||||||
LNC | 0.35 | 0.28 | 0.16 | 104.2 | 0.0154 | ||||||||
LPC | 0.75 | -0.19 | 0.22 | 0.41 | 106.3 | <0.0001 | |||||||
LKC | -0.90 | 0.33 | 0.39 | 142.0 | <0.0001 | ||||||||
LCC | 0.74 | -0.40 | 0.39 | 127.4 | <0.0001 | ||||||||
60年次生林 60-year-old secondary forest (60yr) | |||||||||||||
SLA | 0.71 | 0.60 | 92.5 | <0.0001 | |||||||||
LDMC | -0.53 | -0.40 | 0.65 | 91.5 | <0.0001 | ||||||||
WD | -0.28 | -0.40 | 0.62 | 52.2 | <0.0001 | ||||||||
Hmax | -0.48 | -0.60 | 0.56 | 117.2 | <0.0001 | ||||||||
LNC | 0.37 | 0.48 | 0.67 | 72.1 | <0.0001 | ||||||||
LPC | 0.11 | 0.19 | 0.63 | -26.3 | <0.0001 | ||||||||
LKC | -0.29 | 0.70 | 0.37 | 125.9 | <0.0001 | ||||||||
LCC | -0.13 | 0.37 | 0.49 | 54.7 | <0.0001 | ||||||||
老龄林 Old-growth forest (OG) | |||||||||||||
SLA | -0.28 | 0.29 | 0.41 | 59.0 | <0.0001 | ||||||||
LDMC | -0.23 | 0.32 | 0.21 | 80.6 | 0.035 | ||||||||
WD | -0.26 | -0.44 | 0.32 | 52.0 | 0.0001 | ||||||||
Hmax | 0.59 | 0.14 | 90.8 | 0.0079 | |||||||||
LNC | -0.72 | 0.18 | 140.7 | 0.0022 | |||||||||
LPC | -0.24 | 0.21 | 19.8 | 0.0008 | |||||||||
LKC | 0.68 | 0.17 | 137.6 | 0.0029 | |||||||||
LCC | 0.47 | 0.62 | 0.31 | 100.5 | 0.0002 |
Table 2 Multiple regression analysis between abundance-weighted mean value and environmental variables in different successional stages. The values of environmental variables are path coefficients (standardized regression coefficient) in regression model. R2 indicates coefficient of determination. AIC indicates Alkaike’s information criterion. Abbreviations of other variables are the same as Fig.1 and Fig. 2.
阶段 | 性状 | 环境变量 Environmental variables | 回归方程参数 Parameters | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Stage | Trait | CO | BD | pH | SOM | TP | TK | AN | AP | R2 | AIC | P | |
15年次生林 15-year-old secondary forest (15yr) | |||||||||||||
SLA | 0.47 | 0.12 | 154.6 | 0.0145 | |||||||||
LDMC | |||||||||||||
WD | 0.18 | 0.17 | 37.5 | 0.0029 | |||||||||
Hmax | |||||||||||||
LNC | 0.30 | 0.15 | 97.4 | 0.0064 | |||||||||
LPC | |||||||||||||
LKC | 0.38 | -0.20 | 0.27 | 101.2 | 0.0005 | ||||||||
LCC | -0.41 | 0.21 | 107.2 | 0.0009 | |||||||||
30年次生林 30-year-old secondary forest (30yr) | |||||||||||||
SLA | -0.63 | 0.45 | 0.34 | 138.9 | <0.0001 | ||||||||
LDMC | -0.30 | 0.15 | 87.1 | 0.005 | |||||||||
WD | -0.32 | 0.15 | 56.3 | 0.0057 | |||||||||
Hmax | 0.67 | -0.30 | 0.35 | 117.6 | <0.0001 | ||||||||
LNC | 0.35 | 0.28 | 0.16 | 104.2 | 0.0154 | ||||||||
LPC | 0.75 | -0.19 | 0.22 | 0.41 | 106.3 | <0.0001 | |||||||
LKC | -0.90 | 0.33 | 0.39 | 142.0 | <0.0001 | ||||||||
LCC | 0.74 | -0.40 | 0.39 | 127.4 | <0.0001 | ||||||||
60年次生林 60-year-old secondary forest (60yr) | |||||||||||||
SLA | 0.71 | 0.60 | 92.5 | <0.0001 | |||||||||
LDMC | -0.53 | -0.40 | 0.65 | 91.5 | <0.0001 | ||||||||
WD | -0.28 | -0.40 | 0.62 | 52.2 | <0.0001 | ||||||||
Hmax | -0.48 | -0.60 | 0.56 | 117.2 | <0.0001 | ||||||||
LNC | 0.37 | 0.48 | 0.67 | 72.1 | <0.0001 | ||||||||
LPC | 0.11 | 0.19 | 0.63 | -26.3 | <0.0001 | ||||||||
LKC | -0.29 | 0.70 | 0.37 | 125.9 | <0.0001 | ||||||||
LCC | -0.13 | 0.37 | 0.49 | 54.7 | <0.0001 | ||||||||
老龄林 Old-growth forest (OG) | |||||||||||||
SLA | -0.28 | 0.29 | 0.41 | 59.0 | <0.0001 | ||||||||
LDMC | -0.23 | 0.32 | 0.21 | 80.6 | 0.035 | ||||||||
WD | -0.26 | -0.44 | 0.32 | 52.0 | 0.0001 | ||||||||
Hmax | 0.59 | 0.14 | 90.8 | 0.0079 | |||||||||
LNC | -0.72 | 0.18 | 140.7 | 0.0022 | |||||||||
LPC | -0.24 | 0.21 | 19.8 | 0.0008 | |||||||||
LKC | 0.68 | 0.17 | 137.6 | 0.0029 | |||||||||
LCC | 0.47 | 0.62 | 0.31 | 100.5 | 0.0002 |
1 | Aerts R, Chapin III FS (1999) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns.Advances in Ecological Research, 30, 1-67. |
2 | Baribault TW, Kobe RK, Finley AO (2012) Tropical tree growth is correlated with soil phosphorus, potassium, and calcium, though not for legumes.Ecological Monographs, 82, 189-203. |
3 | Chazdon RL (2003) Tropical forest recovery: legacies of human impact and natural disturbances.Perspectives in Plant Ecology, Evolution and Systematics, 6, 51-71. |
4 | Cleveland CC, Townsend AR, Taylor P, Alvarez-Clare S, Bustamante MMC, Chuyong G, Dobrowski SZ, Grierson P, Harms KE, Houlton BZ, Marklein A, Parton W, Porder S, Reed SC, Sierra CA, Silver WL, Tanner EVJ, Wieder WR (2011) Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis.Ecology Letters, 14, 939-947. |
5 | Coomes OT, Takasaki Y, Rhemtulla JM (2011) Land-use poverty traps identified in shifting cultivation systems shape long-term tropical forest cover.Proceedings of the National Academy of Sciences,USA, 108, 13925-13930. |
6 | Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van Der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide.Australian Journal of Botany, 51, 335-380. |
7 | Dalle SP, Pulido MT, de Blois S (2011) Balancing shifting cultivation and forest conservation: lessons from a “sustainable landscape” in southeastern Mexico.Ecological Applications, 21, 1557-1572. |
8 | Dalling JW, Hubbell SP (2002) Seed size, growth rate and gap microsite conditions as determinants of recruitment success for pioneer species.Journal of Ecology, 90, 557-568. |
9 | De Deyn GB, Cornelissen JHC, Bardgett RD (2008) Plant functional traits and soil carbon sequestration in contrasting biomes.Ecology Letters, 11, 516-531. |
10 | Ding J (丁佳), Wu Q (吴茜), Yan H (闫慧), Zhang SR (张守仁) (2011) Effects of topographic variations and soil characteristics on plant functional traits in a subtropical evergreen broad-leaved forest.Biodiversity Science(生物多样性), 19, 158-167. (in Chinese with English abstract) |
11 | Ding Y (丁易), Zang RG (臧润国) (2011) Vegetation recovery dynamics of tropical lowland rain forest in Bawangling of Hainan Island, South China.Chinese Journal of Plant Ecology(植物生态学报), 35, 577-586. (in Chinese with English abstract) |
12 | Ding Y, Zang R, Liu S, He F, Letcher SG (2012) Recovery of woody plant diversity in tropical rain forests in southern China after logging and shifting cultivation.Biological Conservation, 145, 225-233. |
13 | Fortunel C, Garnier E, Joffre R, Kazakou E, Quested H, Grigulis K, Lavorel S, Ansquer P, Castro H, Cruz P, Doležal J, Eriksson O, Freitas H, Golodets C, Jouany C, Kigel J, Kleyer M, Lehsten V, Lepš J, Meier T, Pakeman R, Papadimitriou M, Papanastasis VP, Quétier F, Robson M, Sternberg M, Theau JP, Thébault A, Zarovali M (2009) Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe.Ecology, 90, 598-611. |
14 | Garnier E, Cortez J, Billès G, Navas M-L, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint J-P (2004) Plant functional markers capture ecosystem properties during secondary succession.Ecology, 85, 2630-2637. |
15 | Huston M, Smith T (1987) Plant succession: life history and competition.The American Naturalist, 130, 168-198. |
16 | Jiang GM (蒋高明) (1995) The impact of global increasing of CO2 on plants.Chinese Bulletin of Botany(植物学通报), 12(4), 1-7. (in Chinese) |
17 | Keddy PA (1992) Assembly and response rules: two goals for predictive community ecology.Journal of Vegetation Science, 3, 157-164. |
18 | Laliberté E, Shipley B, Norton DA, Scott D (2012) Which plant traits determine abundance under long-term shifts in soil resource availability and grazing intensity? Journal of Ecology, 100, 662-677. |
19 | Lohbeck M, Poorter L, Paz H, Pla L, van Breugel M, Martínez-Ramos M, Bongers F (2012) Functional diversity changes during tropical forest succession.Perspectives in Plant Ecology, Evolution and Systematics, 14, 89-96. |
20 | Long W, Zang R, Ding Y (2011) Air temperature and soil phosphorus availability correlate with trait differences between two types of tropical cloud forests.Flora: Morphology, Distribution, Functional Ecology of Plants, 206, 896-903. |
21 | Meier CL, Bowman WD (2010) Chemical composition and diversity influence non-additive effects of litter mixtures on soil carbon and nitrogen cycling: implications for plant species loss.Soil Biology and Biochemistry, 42, 1447-1454. |
22 | Nishimua T, Suzuki E, Kohyama T, Tsuyuzaki S (2007) Mortality and growth of trees in peat-swamp and heath forests in Central Kalimantan after severe drought.Plant Ecology, 188, 165-177. |
23 | Ordoñez JC, van Bodegom PM, Witte JM, Wright IJ, Reich PB, Aerts R (2009) A global study of relationships between leaf traits, climate and soil measures of nutrient fertility.Global Ecology and Biogeography, 18, 137-149. |
24 | Orwin KH, Buckland SM, Johnson D, Turner BL, Smart S, Oakley S, Bardgett RD (2010) Linkages of plant traits to soil properties and the functioning of temperate grassland.Journal of Ecology, 98, 1074-1083. |
25 | R Development Core Team (2011) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. |
26 | Raevel V, Violle C, Munoz F (2012) Mechanisms of ecological succession: insights from plant functional strategies.Oikos, 121, 1761-1770. |
27 | Read L, Lawrence D (2003) Litter nutrient dynamics during succession in dry tropical forests of the Yucatan: regional and seasonal effects.Ecosystems, 6, 747-761. |
28 | Schleuter D, Daufresne M, Massol F, Argillier C (2010) A user’s guide to functional diversity indices.Ecological Monographs, 80, 469-484. |
29 | Schmidt MW, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-Knabner I, Lehmann J, Manning DA, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property.Nature, 478, 49-56. |
30 | Suding KN, Lavorel S, Chapin FS, Cornelissen JHC, Díaz S, Garnier E, Goldberg D, Hooper DU, Jackson ST, Navas M-L (2008) Scaling environmental change through the community-level: a trait-based response-and-effect frame- work for plants.Global Change Biology, 14, 1125-1140. |
31 | Tahmasebi Kohyani P, Bossuyt B, Bonte D, Hoffmann M (2008) Importance of grazing and soil acidity for plant community composition and trait characterisation in coastal dune grasslands.Applied Vegetation Science, 11, 179-186. |
32 | Tilman D (1988) Plant Strategies and the Dynamics and Structure of Plant Communities. Princeton University Press, Princeton. |
33 | Tripler CE, Kaushal SS, Likens GE, Todd Walter M (2006) Patterns in potassium dynamics in forest ecosystems.Ecology Letters, 9, 451-466. |
34 | Vile D, Shipley B, Garnier E (2006) A structural equation model to integrate changes in functional strategies during old-field succession.Ecology, 87, 504-517. |
35 | Villéger S, Mason NWH, Mouillot D (2008) New multidimensional functional indices for a multifaceted framework in functional ecology.Ecology, 89, 2290-2301. |
36 | Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional!Oikos, 116, 882-892. |
37 | Walker LR, Del Moral R (2003) Primary Succession and Ecosystem Rehabilitation. Cambridge University Press, London. |
38 | Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species.Annual Review of Ecology and Systematics, 33, 125-159. |
39 | Whitmore T, Burslem D, Newbery D, Prins H, Brown N. (1998) Major Disturbances in Tropical Rainforests. Blackwell Science Ltd, Oxford. |
40 | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Pooter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum.Nature, 428, 821-827. |
41 | Wright SJ, Yavitt JB, Wurzburger N, Turner BL, Tanner EVJ, Sayer EJ, Santiago LS, Kaspari M, Hedin LO, Harms KE, Garcia MN, Corre MD (2011) Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest.Ecology, 92, 1616-1625. |
42 | Yao TT (尧婷婷), Meng TT (孟婷婷), Ni J (倪健), Yan S (阎顺), Feng XH (冯晓华), Wang GH (王国宏) (2010) Leaf functional trait variation and its relationship with plant phylogenic background and the climate in Xinjiang Junggar Basin, NW China.Biodiversity Science(生物多样性), 18, 188-197. (in Chinese with English abstract) |
43 | Zang RG (臧润国), Ding Y (丁易), Zhang ZD (张志东), Deng FY (邓福英), Mao PL (毛培利) (2010) Ecological Basis of Conservation and Restoration for the Major Functional Groups in Tropical Natural Forests on Hainan Island (海南岛热带天然林主要功能群保护与恢复的生态学基础). Science Press, Beijing. (in Chinese) |
44 | Zhang WR (张万儒), Yang GC (杨光澄), Tu XN (屠星南) (1999) The Forestry Industry Standard of the People’s Republic of China: Determination of Forest Soil (中国林业行业标准: 森林土壤测定方法). China Standard Press, Beijing. (in Chinese) |
[1] | Yali Zhang, Bingchang Zhang, Kang Zhao, Kaikai Li, Yanjin Liu. Variation of bacterial communities and their driving factors in different types of biological soil crusts in Mu Us sandy land [J]. Biodiv Sci, 2023, 31(8): 23027-. |
[2] | Xiaofeng Wang, Jiesheng Rao, Tao Yang, Wencong Liu, Xi Tian, Xi Chen, Qiming Liu, Yanxiao Xu, Qiuyu Zhang, Hongqiang Zhang, Xu Zhang, Xiaokun Ou, Zehao Shen. Spatial variation and determinants of woody plant species diversity in a semi-humid evergreen broad-leaved forest in the Jizu Mountains, Yunnan [J]. Biodiv Sci, 2023, 31(11): 23217-. |
[3] | Ting Wang, Lizhi Zhou. The spatial-temporal patterns of bird diversity and its determinants in the small wetlands in Hefei City [J]. Biodiv Sci, 2022, 30(7): 21445-. |
[4] | Wenkai Xue, Huadanshang Meng, Yanhong Wang, Pan Zhu, Ji De, Xiaofang Guo. Relationship between culturable filamentous fungal diversity and environmental factors in Nam Co Lake [J]. Biodiv Sci, 2022, 30(6): 21473-. |
[5] | Tian Luo, Fangyuan Yu, Juyu Lian, Junjie Wang, Jian Shen, Zhifeng Wu, Wanhui Ye. Impact of canopy vertical height on leaf functional traits in a lower subtropical evergreen broad-leaved forest of Dinghushan [J]. Biodiv Sci, 2022, 30(5): 21414-. |
[6] | Moxu Wu, Mingtai An, Li Tian, Feng Liu. Effects of environmental factors on quantitative characteristics of woody plant sexual system in Maolan karst forest [J]. Biodiv Sci, 2022, 30(11): 22025-. |
[7] | Zhenbin Jiao, Yibo Luo. Effects of environmental and genetic factors on phenotypic traits and species classification of Dendrobium huoshanense [J]. Biodiv Sci, 2021, 29(8): 1073-1086. |
[8] | Yuhan Shi, Zongxin Ren, Weijia Wang, Xin Xu, Jie Liu, Yanhui Zhao, Hong Wang. Predicting the spatial distribution of three Astragalusspecies and their pollinating bumblebees in the Sino-Himalayas [J]. Biodiv Sci, 2021, 29(6): 759-769. |
[9] | Chen Shao, Yaoqi Li, Ao Luo, Zhiheng Wang, Zhenxiang Xi, Jianquan Liu, Xiaoting Xu. Relationship between functional traits and genome size variation of angiosperms with different life forms [J]. Biodiv Sci, 2021, 29(5): 575-585. |
[10] | Jiantan Zhang, Yanpeng Li, Ruyun Zhang, Yunlong Ni, Wenying Zhou, Juyu Lian, Wanhui Ye. Height-diameter models based on branch wood density classification for the south subtropical evergreen broad-leaved forest of Dinghushan [J]. Biodiv Sci, 2021, 29(4): 456-466. |
[11] | Xinghui Lu, Runguo Zang, Yi Ding, Jihong Huang, Yue Xu. Habitat characteristics and its effects on seedling abundance of Hopea hainanensis, a Wild Plant with Extremely Small Populations [J]. Biodiv Sci, 2020, 28(3): 289-295. |
[12] | Shitong Wang, Yaozhan Xu, Teng Yang, Xinzeng Wei, Mingxi Jiang. Impacts of microhabitats on leaf functional traits of the wild population of Sinojackia huangmeiensis [J]. Biodiv Sci, 2020, 28(3): 277-288. |
[13] | Rijin Jiang,Linlin Zhang,Kaida Xu,Pengfei Li,Yi Xiao,Ziwei Fan. Characteristics and diversity of nekton functional groups in the coastal waters of south-central Zhejiang Province [J]. Biodiv Sci, 2019, 27(12): 1330-1338. |
[14] | Xiuqin Yin, Yan Tao, Haixia Wang, Chen Ma, Xinchang Kou, Huan Xu, Dong Cui. Forest soil fauna ecology in Northeast China: Review and prospect [J]. Biodiv Sci, 2018, 26(10): 1083-1090. |
[15] | Danxiao Peng, Limin Lu, Zhiduan Chen. Regional tree of life and its application in floristic studies [J]. Biodiv Sci, 2017, 25(2): 156-162. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn