Biodiv Sci ›› 2024, Vol. 32 ›› Issue (3): 23491. DOI: 10.17520/biods.2023491
• Original Papers: Animal Diversity • Previous Articles
Kexin Cao1, Jingwen Wang1, Guo Zheng1, Pengfeng Wu1, Yingbin Li2, Shuyan Cui1,*()
Received:
2023-12-26
Accepted:
2024-02-18
Online:
2024-03-20
Published:
2024-03-06
Contact:
*E-mail: cui.shu.yan@163.com
Kexin Cao, Jingwen Wang, Guo Zheng, Pengfeng Wu, Yingbin Li, Shuyan Cui. Effects of precipitation regime change and nitrogen deposition on soil nematode diversity in the grassland of northern China[J]. Biodiv Sci, 2024, 32(3): 23491.
Fig. 1 Conceptual representation of the precipitation and nitrogen addition experimental design. The numbers next to the drops represent the frequency of precipitation, each drop represents 1 mm of rainfall, and N represents nitrogen addition treatment.
Fig. 2 Effects of precipitation intensity changes and N addition on soil nutrients (a‒p), soil environment (q‒t) and vegetation properties (u‒z) (mean ± SE). N0 and N10 are treatments without and with nitrogen, respectively. Different lowercase letters for soil nutrients (A), soil environment (B), and vegetation characteristics (C) indicate that there are significant differences in different precipitation intensity treatments under N0 and N10 treatments, respectively (P < 0.05). SOC, Soil organic carbon; TN, Total soil nitrogen; TP, Total soil phosphorus; AN, Available nitrogen; NH4+-N, Ammoniacal nitrogen; NO3--N, Nitrate-nitrogen; MBC, Microbial biomass carbon; MBN, Microbial biomass nitrogen; SM, Soil moisture; AGB, Aboveground biomass; BGB, Belowground biomass.
处理 Treatments | 分类α多样性 Taxonomic α diversity | 分类β多样性 Taxonomic β diversity | 功能α多样性 Functional α diversity | 功能β多样性 Functional β diversity | 系统发育α多样性 Phylogenetic α diversity | 系统发育β多样性 Phylogenetic β diversity |
---|---|---|---|---|---|---|
氮添加 N | 30.207*** | 1.938 | 14.385*** | 2.046 | 10.709** | 0.177 |
水添加 P | 3.395* | 1.123 | 1.363 | 3.610** | 0.426 | 4.608*** |
氮水交互 N × P | 6.761*** | 3.095* | 3.920** | 3.469** | 4.942** | 4.826*** |
Table 1 Results (F-values) of two-way ANOVAs on the effects of N addition (N) and precipitation intensity change (P) and their interactions (N × P) on taxonomic, functional and phylogenetic nematode α and β diversity
处理 Treatments | 分类α多样性 Taxonomic α diversity | 分类β多样性 Taxonomic β diversity | 功能α多样性 Functional α diversity | 功能β多样性 Functional β diversity | 系统发育α多样性 Phylogenetic α diversity | 系统发育β多样性 Phylogenetic β diversity |
---|---|---|---|---|---|---|
氮添加 N | 30.207*** | 1.938 | 14.385*** | 2.046 | 10.709** | 0.177 |
水添加 P | 3.395* | 1.123 | 1.363 | 3.610** | 0.426 | 4.608*** |
氮水交互 N × P | 6.761*** | 3.095* | 3.920** | 3.469** | 4.942** | 4.826*** |
Fig. 3 Effects of precipitation intensity change and nitrogen addition on soil nematode taxonomic α and β diversity (a, d), functional α and β diversity (b, e), and phylogenetic α and β diversity (c, f). N0 and N10 are treatments without and with nitrogen, respectively. Different lowercase letters indicate that nematode diversity is significantly different between different precipitation intensities under N0 treatment; different capital letters indicate that nematode diversity is significantly different between different precipitation intensities under N10 treatment (P < 0.05). The significance of N addition on nematode diversity under the same precipitation intensity is indicated by asterisks (*P < 0.05, **P < 0.01).
环境因子 Environmental factors | 分类α多样性 Taxonomic α diversity | 功能α多样性 Functional α diversity | 系统发育α多样性 Phylogenetic α diversity |
---|---|---|---|
含水量 SM (%) | 0.345* | 0.290* | 0.286* |
土壤pH值 pH | 0.512** | 0.402** | 0.397** |
土壤有机碳 SOC (g/kg) | -0.04 | 0.088 | -0.009 |
土壤全氮 TN (g/kg) | -0.04 | 0.099 | 0.043 |
土壤全磷 TP (g/kg) | 0.104 | 0.307* | 0.098 |
土壤微生物量碳 MBC (mg/kg) | 0.420** | 0.312* | 0.405** |
土壤微生物量氮 MBN (mg/kg) | -0.171 | 0.123 | 0.185 |
碱解氮 AN (mg/kg) | -0.113 | 0.037 | -0.149 |
铵态氮 NH4+-N (mg/kg) | 0.093 | -0.093 | -0.044 |
硝态氮 NO3--N (mg/kg) | -0.305* | -0.371** | -0.254 |
植物地上生物量 AGB (g/m2) | -0.232 | -0.260 | -0.155 |
植物地下生物量 BGB (g/m2) | -0.346* | -0.321* | -0.345* |
丰富度 Richness | 0.312* | 0.132 | 0.203 |
Table 2 Correlation analysis results of environmental factors on the α diversity of soil nematodes
环境因子 Environmental factors | 分类α多样性 Taxonomic α diversity | 功能α多样性 Functional α diversity | 系统发育α多样性 Phylogenetic α diversity |
---|---|---|---|
含水量 SM (%) | 0.345* | 0.290* | 0.286* |
土壤pH值 pH | 0.512** | 0.402** | 0.397** |
土壤有机碳 SOC (g/kg) | -0.04 | 0.088 | -0.009 |
土壤全氮 TN (g/kg) | -0.04 | 0.099 | 0.043 |
土壤全磷 TP (g/kg) | 0.104 | 0.307* | 0.098 |
土壤微生物量碳 MBC (mg/kg) | 0.420** | 0.312* | 0.405** |
土壤微生物量氮 MBN (mg/kg) | -0.171 | 0.123 | 0.185 |
碱解氮 AN (mg/kg) | -0.113 | 0.037 | -0.149 |
铵态氮 NH4+-N (mg/kg) | 0.093 | -0.093 | -0.044 |
硝态氮 NO3--N (mg/kg) | -0.305* | -0.371** | -0.254 |
植物地上生物量 AGB (g/m2) | -0.232 | -0.260 | -0.155 |
植物地下生物量 BGB (g/m2) | -0.346* | -0.321* | -0.345* |
丰富度 Richness | 0.312* | 0.132 | 0.203 |
环境因子 Environmental factors | 分类β多样性Taxonomic β diversity | 功能β多样性 Functional β diversity | 系统发育β多样性 Phylogenetic β diversity |
---|---|---|---|
含水量 SM (%) | -0.066 | 0.072 | 0.340** |
土壤pH值 pH | 0.014 | -0.033 | 0.029 |
土壤有机碳 SOC (g/kg) | 0.087 | -0.050 | -0.001 |
土壤全氮 TN (g/kg) | 0.048 | -0.047 | 0.049 |
土壤全磷 TP (g/kg) | 0.026 | -0.029 | 0.057 |
土壤微生物量碳 MBC (mg/kg) | 0.343** | -0.302** | 0.040 |
土壤微生物量氮 MBN (mg/kg) | -0.137 | 0.128 | 0.323** |
碱解氮 AN (mg/kg) | 0.025 | -0.065 | -0.071 |
铵态氮 NH4+-N (mg/kg) | -0.058 | 0.131 | 0.211 |
硝态氮NO3--N (mg/kg) | -0.065 | 0.046 | 0.219 |
植物地上生物量 AGB (g/m2) | -0.014 | -0.054 | 0.054 |
植物地下生物量 BGB (g/m2) | 0.080 | -0.020 | -0.040 |
丰富度 Richness | 0.013 | 0.050 | 0.008 |
Table 3 Correlation analysis results of environmental factors on the β diversity of soil nematodes
环境因子 Environmental factors | 分类β多样性Taxonomic β diversity | 功能β多样性 Functional β diversity | 系统发育β多样性 Phylogenetic β diversity |
---|---|---|---|
含水量 SM (%) | -0.066 | 0.072 | 0.340** |
土壤pH值 pH | 0.014 | -0.033 | 0.029 |
土壤有机碳 SOC (g/kg) | 0.087 | -0.050 | -0.001 |
土壤全氮 TN (g/kg) | 0.048 | -0.047 | 0.049 |
土壤全磷 TP (g/kg) | 0.026 | -0.029 | 0.057 |
土壤微生物量碳 MBC (mg/kg) | 0.343** | -0.302** | 0.040 |
土壤微生物量氮 MBN (mg/kg) | -0.137 | 0.128 | 0.323** |
碱解氮 AN (mg/kg) | 0.025 | -0.065 | -0.071 |
铵态氮 NH4+-N (mg/kg) | -0.058 | 0.131 | 0.211 |
硝态氮NO3--N (mg/kg) | -0.065 | 0.046 | 0.219 |
植物地上生物量 AGB (g/m2) | -0.014 | -0.054 | 0.054 |
植物地下生物量 BGB (g/m2) | 0.080 | -0.020 | -0.040 |
丰富度 Richness | 0.013 | 0.050 | 0.008 |
Fig. 4 Random forest model shows the environmental that affect the taxonomic, functional, and phylogenetic α and β diversity of soil nematodes. SOC, Soil organic carbon; TN, Total soil nitrogen; TP, Total soil phosphorus; AN, Available nitrogen; NH4+-N, Ammoniacal nitrogen; NO3--N, Nitrate-nitrogen; MBC, Microbial biomass carbon; MBN, Microbial biomass nitrogen; SM, Soil moisture; AGB, Aboveground biomass; BGB, Belowground biomass. %IncMSE means the increase in mean squared error. *P < 0.05, **P < 0.01, indicating the associated factors that had significant effects on soil nematode diversity.
[1] |
Adhikari BN, Wall DH, Adams BJ (2009) Desiccation survival in an Antarctic nematode: Molecular analysis using expressed sequenced tags. BMC Genomics, 10, 69.
DOI PMID |
[2] | Bai YF, Wu JG, Clark CM, Naeem S, Pan QM, Huang JH, Zhang LX, Han XG (2010) Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: Evidence from Inner Mongolia grasslands. Global Change Biology, 16, 358-372. |
[3] | Bardgett RD, Cook R, Yeates GW, Denton CS (1999) The influence of nematodes on below-ground processes in grassland ecosystems. Plant and Soil, 212, 23-33. |
[4] | Bardgett RD, van der Putten WH, (2014) Belowground biodiversity and ecosystem functioning. Nature, 515, 505-511. |
[5] | Bongers T, Bongers M (1998) Functional diversity of nematodes. Applied Soil Ecology, 10, 239-251. |
[6] | Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 17, 837-842. |
[7] |
Canarini A, Schmidt H, Fuchslueger L, Martin V, Herbold CW, Zezula D, Gündler P, Hasibeder R, Jecmenica M, Bahn M, Richter A (2021) Ecological memory of recurrent drought modifies soil processes via changes in soil microbial community. Nature Communications, 12, 5308.
DOI PMID |
[8] | Chen DM, Lan ZC, Hu SJ, Bai YF (2015) Effects of nitrogen enrichment on belowground communities in grassland: Relative role of soil nitrogen availability vs. soil acidification. Soil Biology and Biochemistry, 89, 99-108. |
[9] | Collins SL, Sinsabaugh RL, Crenshaw C, Green L, Porras-Alfaro A, Stursova M, Zeglin LH (2008) Pulse dynamics and microbial processes in aridland ecosystems. Journal of Ecology, 96, 413-420. |
[10] | Darby BJ, Neher DA, Housman DC, Belnap J (2011) Few apparent short-term effects of elevated soil temperature and increased frequency of summer precipitation on the abundance and taxonomic diversity of desert soil micro- and meso-fauna. Soil Biology and Biochemistry, 43, 1474-1481. |
[11] |
de Vries FT, Griffiths RI, Bailey M, Craig H, Girlanda M, Gweon HS, Hallin S, Kaisermann A, Keith AM, Kretzschmar M, Lemanceau P, Lumini E, Mason KE, Oliver A, Ostle N, Prosser JI, Thion C, Thomson B, Bardgett RD (2018) Soil bacterial networks are less stable under drought than fungal networks. Nature Communications, 9, 3033.
DOI PMID |
[12] |
Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: Observations, modeling, and impacts. Science, 289, 2068-2074.
DOI PMID |
[13] |
Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai ZC, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 320, 889-892.
DOI PMID |
[14] | Grafen A (1989) The phylogenetic regression. Philosophical Transactions of the Royal Society: Biological Sciences, 326, 119-157. |
[15] | Guo Q, Hu ZM, Li SG, Yu GR, Sun XM, Zhang LM, Mu SL, Zhu XJ, Wang YF, Li YN, Zhao W (2015) Contrasting responses of gross primary productivity to precipitation events in a water-limited and a temperature-limited grassland ecosystem. Agricultural and Forest Meteorology, 214/215, 169-177. |
[16] | Guo Q, Hu ZM, Li XR, Li SG (2013) Effects of precipitation timing on aboveground net primary productivity in Inner Mongolia temperate steppe. Acta Ecologica Sinica, 33, 4808-4817. (in Chinese with English abstract) |
[ 郭群, 胡中民, 李轩然, 李胜功 (2013) 降水时间对内蒙古温带草原地上净初级生产力的影响. 生态学报, 33, 4808-4817.] | |
[17] | Hao GC, Hu ZM, Guo Q, Di K, Li SG (2019) Median to strong rainfall intensity favors carbon sink in a temperate grassland ecosystem in China. Sustainability, 11, 6376. |
[18] | Harpole WS, Potts DL, Suding KN (2007) Ecosystem responses to water and nitrogen amendment in a California grassland. Global Change Biology, 13, 2341-2348. |
[19] |
Heisler-White JL, Knapp AK, Kelly EF (2008) Increasing precipitation event size increases aboveground net primary productivity in a semi-arid grassland. Oecologia, 158, 129-140.
DOI PMID |
[20] | Hooper DU, Johnson L (1999) Nitrogen limitation in dryland ecosystems: Responses to geographical and temporal variation in precipitation. Biogeochemistry, 46, 247-293. |
[21] |
Huxman TE, Snyder KA, Tissue D, Leffler AJ, Ogle K, Pockman WT, Sandquist DR, Potts DL, Schwinning S (2004) Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia, 141, 254-268.
PMID |
[22] | IPCC (2013) Climate Change 2013—The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. |
[23] |
Knapp AK, Avolio ML, Beier C, Carroll CJW, Collins SL, Dukes JS, Fraser LH, Griffin-Nolan RJ, Hoover DL, Jentsch A, Loik ME, Phillips RP, Post AK, Sala OE, Slette IJ, Yahdjian L, Smith MD (2017) Pushing precipitation to the extremes in distributed experiments: Recommendations for simulating wet and dry years. Global Change Biology, 23, 1774-1782.
DOI PMID |
[24] | Landesman WJ, Treonis AM, Dighton J (2011) Effects of a one-year rainfall manipulation on soil nematode abundances and community composition. Pedobiologia, 54, 87-91. |
[25] | Li JZ, Lin S, Taube F, Pan QM, Dittert K (2011) Above and belowground net primary productivity of grassland influenced by supplemental water and nitrogen in Inner Mongolia. Plant and Soil, 340, 253-264. |
[26] | Li YB, Du XF, Su XL, Han X, Liang WJ, Wang ZW, Bruelheide H, Bezemer TM, Li Q (2023) Local-scale soil nematode diversity in a subtropical forest depends on the phylogenetic and functional diversity of neighbor trees. Plant and Soil, 486, 441-454. |
[27] | Liang WJ, Lou YL, Li Q, Zhong S, Zhang XK, Wang JK (2009) Nematode faunal response to long-term application of nitrogen fertilizer and organic manure in Northeast China. Soil Biology and Biochemistry, 41, 883-890. |
[28] | Lu RK (2000) Analysis Methods of Soil Agro-Chemistry. China Agriculture Press, Beijing. (in Chinese) |
[ 鲁如坤 (2000) 土壤农业化学分析方法. 中国农业科技出版社, 北京.] | |
[29] | Michonneau F, Brown JW, Winter DJ (2016) Rotl: An R package to interact with the open Tree of Life data. Methods in Ecology and Evolution, 7, 1476-1481. |
[30] | Niu SL, Xing XR, Zhang Z, Xia JY, Zhou XH, Song B, Li LH, Wan SQ (2011) Water-use efficiency in response to climate change: From leaf to ecosystem in a temperate steppe. Global Change Biology, 17, 1073-1082. |
[31] | Papatheodorou EM, Papapostolou A, Monokrousos N, Jones DW, Scullion J, Stamou GP (2020) Crust cover and prior soil moisture status affect the response of soil microbial community and function to extreme rain events in an arid area. European Journal of Soil Biology, 101, 103243. |
[32] |
Paradis E, Schliep K (2019) Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35, 526-528.
DOI PMID |
[33] | Peltonen-Sainio P, Sorvali J, Kaseva J (2021) Finnish farmers’ views towards fluctuating and changing precipitation patterns pave the way for the future. Agricultural Water Management, 255, 107011. |
[34] | Thakur MP, Del Real IM, Cesarz S, Steinauer K, Reich PB, Hobbie S, Ciobanu M, Rich R, Worm K, Eisenhauer N (2019) Soil microbial, nematode, and enzymatic responses to elevated CO2, N fertilization, warming, and reduced precipitation. Soil Biology and Biochemistry, 135, 184-193. |
[35] | Townshend JL (1963) A modification and evaluation of the apparatus for the Oostenbrink direct cottonwool filter extraction method. Nematologica, 9, 106-110. |
[36] | Tsirogiannis C, Sandel B (2016) PhyloMeasures: A package for computing phylogenetic biodiversity measures and their statistical moments. Ecography, 39, 709-714. |
[37] | van den Hoogen J, Geisen S, Routh D, Ferris H, Traunspurger W, Wardle DA, de Goede RGM, Adams BJ, Ahmad W, Andriuzzi WS, Bardgett RD, Bonkowski M, Campos-Herrera R, Cares JE, Caruso T, de Brito Caixeta L, Chen XY, Costa SR, Creamer R, da Cunha Castro JM, Dam M, Djigal D, Escuer M, Griffiths BS, Gutiérrez C, Hohberg K, Kalinkina D, Kardol P, Kergunteuil A, Korthals G, Krashevska V, Kudrin AA, Li Q, Liang WJ, Magilton M, Marais M, Martín JAR, Matveeva E, Mayad EH, Mulder C, Mullin P, Neilson R, Duong Nguyen TA, Nielsen UN, Okada H, Rius JEP, Pan KW, Peneva V, Pellissier L, da Silva JCP, Pitteloud C, Powers TO, Powers K, Quist CW, Rasmann S, Moreno SS, Scheu S, Setälä H, Sushchuk A, Tiunov AV, Trap J, van der Putten W, Vestergård M, Villenave C, Waeyenberge L, Wall DH, Wilschut R, Wright DG, Yang JI, Crowther TW, (2019) Soil nematode abundance and functional group composition at a global scale. Nature, 572, 194-198. |
[38] | Villéger S, Grenouillet G, Brosse S (2013) Decomposing functional β-diversity reveals that low functional β-diversity is driven by low functional turnover in European fish assemblages. Global Ecology and Biogeography, 22, 671-681. |
[39] | Wagg C, Bender SF, Widmer F, van der Heijden MGA, (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences, USA, 111, 5266-5270. |
[40] | Wan BB, Liu T, Gong X, Zhang Y, Li CJ, Chen XY, Hu F, Griffiths BS, Liu MQ (2022) Energy flux across multitrophic levels drives ecosystem multifunctionality: Evidence from nematode food webs. Soil Biology and Biochemistry, 169, 108656. |
[41] | Wang HL, Liu GC, Huang BB, Wang XC, Xing YJ, Wang QG (2021) Long-term nitrogen addition and precipitation reduction decrease soil nematode community diversity in a temperate forest. Applied Soil Ecology, 162, 103895. |
[42] | Wei CZ, Zheng HF, Li Q, Lü XT, Yu Q, Zhang HY, Chen QS, He NP, Kardol P, Liang WJ, Han XG (2012) Nitrogen addition regulates soil nematode community composition through ammonium suppression. PLoS ONE, 7, e43384. |
[43] | Wu SB, Zhang P, Yu BJ, Yu JX, Lei YX, Chen KH, Yang LT (2022) Effects of simulated nitrogen deposition on soil nematode community. Sichuan Agricultural Science and Technology, (9), 86-88. (in Chinese) |
[ 吴少彬, 张萍, 余伯均, 喻佳欣, 雷应雪, 陈开惠, 杨礼通 (2022) 模拟氮沉降对土壤线虫群落的影响. 四川农业科技, (9), 86-88.] | |
[44] | Xia JY, Niu SL, Wan SQ (2009) Response of ecosystem carbon exchange to warming and nitrogen addition during two hydrologically contrasting growing seasons in a temperate steppe. Global Change Biology, 15, 1544-1556. |
[45] | Yang HJ, Wu MY, Liu WX, Zhang Z, Zhang NL, Wan SQ (2011) Community structure and composition in response to climate change in a temperate steppe. Global Change Biology, 17, 452-465. |
[46] |
Yeates GW, Bongers T, De Goede RG, Freckman DW, Georgieva SS (1993) Feeding habits in soil nematode families and genera—An outline for soil ecologists. Journal of Nematology, 25, 315-331.
PMID |
[47] | Zhang NL, Wan SQ, Li LH, Bi J, Zhao MM, Ma KP (2008) Impacts of urea N addition on soil microbial community in a semi-arid temperate steppe in Northern China. Plant and Soil, 311, 19-28. |
[48] | Zhang YQ, Mao QG, Wang C, Wang SH, Liu T, Mo JM, Lu XK (2020) Advances in effect of nitrogen deposition on soil nematode communities. Journal of Tropical and Subtropical Botany, 28, 105-114. (in Chinese with English abstract) |
[ 张勇群, 毛庆功, 王聪, 王森浩, 刘滔, 莫江明, 鲁显楷 (2020) 氮沉降对土壤线虫群落影响的研究进展. 热带亚热带植物学报, 28, 105-114.] |
[1] | Zhu Yao, Xue Wei, Jinhao Ma, Xiao Ren, Yuying Wang, Lei Hu, Pengfei Wu. Short-term effects of warming and wetting on the soil nematode communities in the alpine meadow [J]. Biodiv Sci, 2024, 32(5): 23483-. |
[2] | Qi Wu, Xiaoqing Zhang, Yuting Yang, Yibo Zhou, Yi Ma, Daming Xu, Xingfeng Si, Jian Wang. Spatio-temporal changes in biodiversity of epiphyllous liverworts in Qingyuan Area of Qianjiangyuan-Baishanzu National Park, Zhejiang Province [J]. Biodiv Sci, 2024, 32(4): 24010-. |
[3] | Shuhan Yang, He Wang, Lei Chen, Yingfei Liao, Guang Yan, Yining Wu, Hongfei Zou. Effects of heterogeneous habitat on soil nematode community characteristics in the Songnen Plain [J]. Biodiv Sci, 2024, 32(1): 23295-. |
[4] | Yasu Cao, Min Fan, Yu Peng, Jiaxun Xin, Nanyi Peng. Effects of landscape pattern dynamics on plant species and functional diversity in Hunshandak Sandland [J]. Biodiv Sci, 2023, 31(8): 23048-. |
[5] | Li Feng. On synergistic governance of biodiversity and climate change in the perspective of international law [J]. Biodiv Sci, 2023, 31(7): 23110-. |
[6] | Fayang Li, Yingyu Li, Wenni Jiang, Shuguang Liu, Chao Huo, Qiaoqi Sun, Hongfei Zou. How forest fires affect bird diversity over time in boreal forest interiors and edges in the Greater Khingan Mountains [J]. Biodiv Sci, 2023, 31(7): 22665-. |
[7] | Xiaocheng Chen, Pengzhan Zhang, Bin Kang, Linshan Liu, Liang Zhao. Species and functional diversity of the passerine birds in the Tibetan Plateau based on specimens from the collection of Northwest Institute of Plateau Biology, Chinese Academy of Sciences [J]. Biodiv Sci, 2023, 31(5): 22638-. |
[8] | Yuanyuan Xiao, Wei Feng, Yangui Qiao, Yuqing Zhang, Shugao Qin. Effects of soil microbial community characteristics on soil multifunctionality in sand-fixation shrublands [J]. Biodiv Sci, 2023, 31(4): 22585-. |
[9] | Xue Yao, Xing Chen, Zun Dai, Kun Song, Shichen Xing, Hongyu Cao, Lu Zou, Jian Wang. Importance of collection strategy on detection probability and species diversity of epiphyllous liverworts [J]. Biodiv Sci, 2023, 31(4): 22685-. |
[10] | Wenwen Shao, Guozhen Fan, Zhizhou He, Zhiping Song. Phenotypic plasticity and local adaptation of Oryza rufipogon revealed by common garden trials [J]. Biodiv Sci, 2023, 31(3): 22311-. |
[11] | Jiawen Sang, Chuangye Song, Ningxia Jia, Yuan Jia, Changcheng Liu, Xianguo Qiao, Lin Zhang, Weiying Yuan, Dongxiu Wu, Linghao Li, Ke Guo. Vegetation survey and mapping on the Qinghai-Tibet Plateau [J]. Biodiv Sci, 2023, 31(3): 22430-. |
[12] | Wei Zhang, Dongdong Zhai, Fei Xiong, Hongyan Liu, Yuanyuan Chen, Ying Wang, Chuansong Liao, Xinbin Duan, Huiwu Tian, Huatang Deng, Daqing Chen. Community structure and functional diversity of fishes in the Three Gorges Reservoir [J]. Biodiv Sci, 2023, 31(2): 22136-. |
[13] | Jinzhou Wang, Jing Xu. Nature-based solutions for addressing biodiversity loss and climate change: Progress, challenges and suggestions [J]. Biodiv Sci, 2023, 31(2): 22496-. |
[14] | Jinhua Liu, Feng Li, Tao Tian, Haifeng Xiao. Response of soil bacteria and nematodes to litter identity and diversity of dominant plants in a tropical rainforest [J]. Biodiv Sci, 2023, 31(11): 23276-. |
[15] | Caifang Luo, Tao Yang, Qiuyu Zhang, Xinpei Wang, Zehao Shen. Plant functional traits, community functional diversity and their environmental determinants of the semi-humid evergreen broad-leaved forest in the Central Yunnan Plateau [J]. Biodiv Sci, 2023, 31(11): 23215-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn