Biodiv Sci ›› 2017, Vol. 25 ›› Issue (12): 1285-1294. DOI: 10.17520/biods.2017096
Special Issue: 生物入侵
• Special Feature: Biological Invasion • Previous Articles Next Articles
Yan Sun1,*(), Zhongshi Zhou2, Rui Wang2, Heinz Müller-Schärer3
Received:
2017-03-24
Accepted:
2017-06-10
Online:
2017-12-20
Published:
2017-12-10
Contact:
Sun Yan
Yan Sun, Zhongshi Zhou, Rui Wang, Heinz Müller-Schärer. Biological control opportunities of ragweed are predicted to decrease with climate change in East Asia[J]. Biodiv Sci, 2017, 25(12): 1285-1294.
Ambrosia artemisiifolia | Ophraella communa | Epiblema strenuana | |
---|---|---|---|
当前气候背景 Current climate scenario | |||
一般线性模型 GLM | 0.88±0.002 | 0.88±0.004 | 0.84±0.01 |
广义助推模型 GBM | 0.89±0.002 | 0.90±0.003 | 0.89±0.006 |
随机森林模型 RF | 0.89±0.003 | 0.91±0.003 | 0.89±0.006 |
最大熵模型MaxEnt | 0.87±0.003 | 0.83±0.004 | 0.83±0.009 |
未来气候背景: HD-26 Future climate scenario: HD-26 | |||
一般线性模型 GLM | 0.87±0.003 | 0.87±0.002 | 0.83±0.01 |
广义助推模型 GBM | 0.89±0.002 | 0.90±0.002 | 0.90±0.006 |
随机森林模型 RF | 0.90±0.002 | 0.91±0.002 | 0.91±0.006 |
最大熵模型MaxEnt | 0.86±0.003 | 0.83±0.003 | 0.80±0.01 |
未来气候背景: HD-85 Future climate scenario: HD-85 | |||
一般线性模型 GLM | 0.88±0.003 | 0.88±0.002 | 0.84±0.008 |
广义助推模型 GBM | 0.90±0.003 | 0.92±0.001 | 0.86±0.008 |
随机森林模型 RF | 0.89±0.003 | 0.92±0.001 | 0.86±0.009 |
最大熵模型MaxEnt | 0.88±0.003 | 0.84±0.003 | 0.78±0.01 |
未来气候背景: IP-26 Future climate scenario: IP-26 | |||
一般线性模型 GLM | 0.89±0.003 | 0.87±0.002 | 0.87±0.01 |
广义助推模型 GBM | 0.90±0.002 | 0.90±0.002 | 0.91±0.008 |
随机森林模型 RF | 0.91±0.002 | 0.91±0.001 | 0.91±0.008 |
最大熵模型MaxEnt | 0.89±0.003 | 0.85±0.002 | 0.82±0.009 |
未来气候背景: IP-85 Future climate scenario: IP-85 | |||
一般线性模型 GLM | 0.87±0.003 | 0.87±0.002 | 0.88±0.008 |
广义助推模型 GBM | 0.89±0.003 | 0.90±0.002 | 0.91±0.006 |
随机森林模型 RF | 0.91±0.003 | 0.91±0.002 | 0.91±0.006 |
最大熵模型MaxEnt | 0.87±0.003 | 0.84±0.003 | 0.88±0.008 |
Table 1 AUC power of all species using four models under current and future climate scenarios showing acceptable AUC scores
Ambrosia artemisiifolia | Ophraella communa | Epiblema strenuana | |
---|---|---|---|
当前气候背景 Current climate scenario | |||
一般线性模型 GLM | 0.88±0.002 | 0.88±0.004 | 0.84±0.01 |
广义助推模型 GBM | 0.89±0.002 | 0.90±0.003 | 0.89±0.006 |
随机森林模型 RF | 0.89±0.003 | 0.91±0.003 | 0.89±0.006 |
最大熵模型MaxEnt | 0.87±0.003 | 0.83±0.004 | 0.83±0.009 |
未来气候背景: HD-26 Future climate scenario: HD-26 | |||
一般线性模型 GLM | 0.87±0.003 | 0.87±0.002 | 0.83±0.01 |
广义助推模型 GBM | 0.89±0.002 | 0.90±0.002 | 0.90±0.006 |
随机森林模型 RF | 0.90±0.002 | 0.91±0.002 | 0.91±0.006 |
最大熵模型MaxEnt | 0.86±0.003 | 0.83±0.003 | 0.80±0.01 |
未来气候背景: HD-85 Future climate scenario: HD-85 | |||
一般线性模型 GLM | 0.88±0.003 | 0.88±0.002 | 0.84±0.008 |
广义助推模型 GBM | 0.90±0.003 | 0.92±0.001 | 0.86±0.008 |
随机森林模型 RF | 0.89±0.003 | 0.92±0.001 | 0.86±0.009 |
最大熵模型MaxEnt | 0.88±0.003 | 0.84±0.003 | 0.78±0.01 |
未来气候背景: IP-26 Future climate scenario: IP-26 | |||
一般线性模型 GLM | 0.89±0.003 | 0.87±0.002 | 0.87±0.01 |
广义助推模型 GBM | 0.90±0.002 | 0.90±0.002 | 0.91±0.008 |
随机森林模型 RF | 0.91±0.002 | 0.91±0.001 | 0.91±0.008 |
最大熵模型MaxEnt | 0.89±0.003 | 0.85±0.002 | 0.82±0.009 |
未来气候背景: IP-85 Future climate scenario: IP-85 | |||
一般线性模型 GLM | 0.87±0.003 | 0.87±0.002 | 0.88±0.008 |
广义助推模型 GBM | 0.89±0.003 | 0.90±0.002 | 0.91±0.006 |
随机森林模型 RF | 0.91±0.003 | 0.91±0.002 | 0.91±0.006 |
最大熵模型MaxEnt | 0.87±0.003 | 0.84±0.003 | 0.88±0.008 |
Fig. 1 Geographical predictions of Ambrosia artemisiifolia and two biological control insects for East Asia, under present and future climatic scenarios. The climatic suitability indicates the optimal threshold of the percentage of models predicting each species. Dark green in all figures, A. artemisiifolia; under current climatic conditions: (A) Red, Ophraella communa; sienna, overlap 40.3%; (B) Blue, Epiblema strenuana; sienna, overlap 21.6%; under future climatic scenarios: (C) Red, Ophraella communa; sienna, overlap 29.8%; (D) Blue, Epiblema strenuana; sienna, overlap 20.3%. Models calibrated in East Asia only.
Fig. 2 Niche of Ambrosia artemisiifolia in climatic space using principal component analysis (PCA-env). Panels (A) and (B) represent the niche of the species along the two first axes of the PCA for the native North American (NA) and introduced East Asian (EA) range, respectively. Gray shading shows the density of the occurrences of the species by the cell. The solid contour lines illustrate 100% of the available environment, and dashed lines indicate the 50% of the most common background environment. Yellow circles in (A) and (B) give the occurrences of two insect species in NA and in EA. The contribution of the climatic variables of the two axes of the PCA and the percentage of inertia explained by the two axes is given in (C). Histograms (D-F) show the observed niche overlap between the two ranges (bars and a diamond) and simulated niche overlaps (gray bars) on which tests of niche equivalency (D), niche similarity of EA and NA (E), and niche similarity of NA and EA (F) are calculated from 100 iterations, with the significance level of the tests.
[1] | Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends in Ecology & Evolution, 22, 42-47. |
[2] | Barriopedro D, Fischer EM, Luterbacher J, Trigo RM, García-Herrera R (2011) The hot summer of 2010: redrawing the temperature record map of Europe. Science, 332, 220-224. |
[3] | Björkman C, Niemelä P (2015) Climate Change and Insect Pests. CABI, Oxfordshire, UK. |
[4] | Broennimann O, Fitzpatrick MC, Pearman PB, Petitpierre B, Pellissier L, Yoccoz NG, Thuiller W, Fortin MJ, Randin C, Zimmermann NE (2012) Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21, 481-497. |
[5] | Broennimann O, Petitpierre B, Randin C, Engler R, Breiner F, Manuela D, Pellissier L, Pottier J, Pio D, Mateo RG (2014) Package ‘ecospat’. . |
[6] | Cola VD, Broennimann O, Petitpierre B, Breiner FT, D’Amen M, Randin C, Engler R, Pottier J, Pio D, Dubuis A (2016) ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography, 40, 774-787. |
[7] | Essl F, Biró K, Brandes D, Broennimann O, Bullock JM, Chapman DS, Chauvel B, Dullinger S, Fumanal B, Guisan A (2015) Biological flora of the British Isles: Ambrosia artemisiifolia. Journal of Ecology, 103, 1069-1098. |
[8] | Fukano Y, Doi H (2013) Population abundance and host use pattern of Ophraella communa (Coleoptera: Chrysomelidae) in its native and introduced range. Biocontrol Science and Technology, 23, 595-601. |
[9] | Fukano Y, Yahara T (2012) Changes in defense of an alien plant Ambrosia artemisiifolia before and after the invasion of a native specialist enemy Ophraella communa. PLoS ONE, 7, e49114. |
[10] | Futuyma DJ, McCafferty SS (1990) Phylogeny and the evolution of host plant associations in the leaf beetle genus Ophraella (Coleoptera, Chrysomelidae). Evolution, 44, 1885-1913. |
[11] | Gerber E, Schaffner U, Gassmann A, Hinz H, Seier M, Müller-Schärer H (2011) Prospects for biological control of Ambrosia artemisiifolia in Europe: learning from the past. Weed Research, 51, 559-573. |
[12] | Gillson L, Dawson TP, Jack S, McGeoch MA (2013) Accommodating climate change contingencies in conservation strategy. Trends in Ecology and Evolution, 28, 135-142. |
[13] | Giorgetta MA, Jungclaus J, Reick CH, Legutke S, Bader J, Böttinger M, Brovkin V, Crueger T, Esch M, Fieg K (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. Journal of Advances in Modeling Earth Systems, 5, 572-597. |
[14] | Goolsby JA, De Barro PJ, Kirk AA, Sutherst RW, Canas L, Ciomperlik MA, Ellsworth PC, Gould JR, Hartley DM, Hoelmer KA (2005) Post-release evaluation of biological control of Bemisia tabaci biotype “B” in the USA and the development of predictive tools to guide introductions for other countries. Biological Control, 32, 70-77. |
[15] | Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecological Modelling, 135, 147-186. |
[16] | Hannah L, Midgley GF, Millar D (2002) Climate change— integrated conservation strategies. Global Ecology and Biogeography, 11, 485-495. |
[17] | Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978. |
[18] | Hisauchi K (1950) Naturalized Plants. Kagakutosyo syuppan, Tokyo. |
[19] | Hoelmer K, Kirk A (2005) Selecting arthropod biological control agents against arthropod pests: Can the science be improved to decrease the risk of releasing ineffective agents? Biological Control, 34, 255-264. |
[20] | IPCC (2013) Climate change 2013: The Physical Science Basis. |
[21] | Kettenring KM, Adams CR (2011) Lessons learned from invas¬ive plant control experiments: a systematic review and meta-analysis. Journal of Applied Ecology, 48, 970-979. |
[22] | LeSage L (1986) A taxonomic monograph of the Nearctic galerucine genus Ophraella Wilcox (Coleoptera: Chryso¬m¬elidae). Memoirs of the Entomological Society of Canada, 118, 3-75. |
[23] | Li HK, Li M, Li D (1999) Ambrosia artemisiifolia and its biological control. World Agriculture, (8), 40-41. (in Chinese) |
[李宏科, 李萌, 李丹 (1999) 豚草及其防治概况. 世界农业, (8), 40-41.] | |
[24] | Ma J, Guo JY, Wan FH, Hu X, Wan FH, Li B, Guo J (2008) Biological control of Ambrosia artemisiifolia and A. trifida. In: Biological Invasions: Biological Control Theory and Practice, pp. 157-185. Science Press, Beijing. (in Chinese with English abstract) |
[马骏, 郭建英, 万方浩 (2008) 普通豚草和三裂叶豚的生物防治, 见: 生物入侵: 生物防治篇(万方浩, 李保平, 郭建英主编), 157-185页. 科学出版社, 北京.] | |
[25] | McFadyen RC (1992) Biological control against Parthenium weed in Australia. Crop Protection, 11, 400-407. |
[26] | Messenger P, van den Bosch R(1971) The adaptability of introduced biological control agents. In: Biological Control (ed. Huffaker CB), pp. 68-92. Springer, Boston. |
[27] | Moriya S, Shiyake S (2001) Spreading the distribution of an exotic ragweed beetle, Ophraella communa LeSage (Coleoptera: Chrysomelidae), in Japan. Japanese Journal of Entomology (New Series), 4, 99-102. |
[28] | Mukherjee A, Christman MC, Overholt WA, Cuda JP (2011) Prioritizing areas in the native range of hygrophila for surveys to collect biological control agents. Biological Control, 56, 254-262. |
[29] | Müller-Schärer H, Schaffner U (2008) Classical biological control: exploiting enemy escape to manage plant invasions. Biological Invasions, 10, 859-874. |
[30] | Palmer W, Goeden R (1991) The host range of Ophraella communa LeSage (Coleoptera: Chrysomelidae). The Coleopterists’ Bulletin, 45, 115-120. |
[31] | Pearce J, Ferrier S (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecological Modelling, 133, 225-245. |
[32] | Peterson AT (2003) Predicting the geography of species’ invasions via ecological niche modeling. The Quarterly Review of Biology, 78, 419-433. |
[33] | Peterson AT (2011) Ecological niches and geographic distributions (MPB-49). Princeton University Press, New Jursey. |
[34] | Petitpierre B, Kueffer C, Broennimann O, Randin C, Daehler C, Guisan A (2012) Climatic niche shifts are rare among terrestrial plant invaders. Science, 335, 1344-1348. |
[35] | R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. . |
[36] | Roderick GK, Hufbauer R, Navajas M (2012) Evolution and biological control. Evolutionary Applications, 5, 419-423. |
[37] | Schweiger O, Settele J, Kudrna O, Klotz S, Kühn I (2008) Climate change can cause spatial mismatch of trophically interacting species. Ecology, 89, 3472-3479. |
[38] | Seastedt TR (2015) Biological control of invasive plant species: a reassessment for the Anthropocene. New Phytologist, 205, 490-502. |
[39] | Sun Y, Brönnimann O, Roderick GK, Poltavsky A, Lommen STE, Müller-Schärer H (2017) Climatic suitability ranking of candidate biological control agents for weeds: a biogeographic approach for ragweed management in Europe under present and future climatic conditions. Ecosphere, 8, e01731. |
[40] | Tanaka K (2009) Genetic variation in flight activity of Ophraella communa (Coleoptera: Chrysomelidae): heritability estimated by artificial selection. Environmental Entomology, 38, 266-273. |
[41] | Tanaka K, Murata K, Matsuura A (2015) Rapid evolution of an introduced insect Ophraella communa LeSage in new environments: temporal changes and geographical differences in photoperiodic response. Entomological Science, 18, 104-112. |
[42] | Theoharides KA, Dukes JS (2007) Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytologist, 176, 256-273. |
[43] | Thuiller W, Georges D, Engler R (2013) Biomod2: ensemble platform for species distribution modeling. R package. . |
[44] | Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecology Letters, 14, 702-708. |
[45] | Walker B, Steffen W (1997) An overview of the implications of global change for natural and managed terrestrial ecosystems. Conservation Ecology, 1, 2. |
[46] | Walther G-R, Roques A, Hulme PE, Sykes MT, Pyšek P, Kühn I, Zobel M, Bacher S, Botta-Dukát Z, Bugmann H (2009) Alien species in a warmer world: risks and opportunities. Trends in Ecology & Evolution, 24, 686-693. |
[47] | Wan FH, Liu WX, Ma J, Guo J (2005) Ambrosia artemisiifolia and A. trifida. In: Biology and Management of Invasive Alien Species in Agriculture and Forestry (eds Wan FH, Zheng XB, Guo JY), pp. 662-688. Science Press, Beijing. (in Chinese) |
[万方浩, 刘万学, 马骏, 郭建英 (2005) 普通豚草和三裂叶豚草. 见: 重要农林外来入侵物种的生物学与控制(万方浩, 郑小波, 郭建英主编), 662-688页. 科学出版社, 北京.] | |
[48] | Wan FH, Guan GQ, Wang R (1993) Ambrosia and Its Comprehensive Administration. Chinese Science and Technology Press, Beijing. |
(in Chinese) [万方浩, 关广清, 王韧 (1993) 豚草及豚草综合治理. 中国科学技术出版社, 北京.] | |
[49] | Winston RL, Schwarzländer M, Hinz HL, Day MD, Cock MJW, Julien MH (2014) Biological Control of Weeds: A World Catalogue of Agents and Their Target Weeds, 5th edn. USDA Forest Service, Forest Health Technology Enterprise Team, Virginia. |
[50] | Wisz MS, Hijmans R, Li J, Peterson AT, Graham C, Guisan A (2008) Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14, 763-773. |
[51] | Yamazaki K, Imai C, Natuhara Y (2000) Rapid population growth and food-plant exploitation pattern in an exotic leaf beetle, Ophraella communa LeSage (Coleoptera: Chrysomelidae), in western Japan. Applied Entomology and Zoology, 35, 215-223. |
[52] | Zhou ZS, Chen HS, Zheng XW, Guo JY, Guo W, Li M, Luo M, Wan FH (2014) Control of the invasive weed Ambrosia artemisiifolia with Ophraella communa and Epiblema str¬enuana. Biocontrol Science and Technology, 24, 950-964. |
[53] | Zhou ZS, Guo JY, Chen HS, Wan FH (2010) Effects of temperature on survival, development, longevity, and fecundity of Ophraella communa (Coleoptera: Chrysomelidae), a potential biological control agent against Ambrosia artemisiifolia (Asterales: Asteraceae). Environmental Entomology, 39, 1021-1027. |
[54] | Zhou ZS, Guo JY, Michaud JP, Li M, Wan FH (2011a) Variation in cold hardiness among geographic populations of the ragweed beetle, Ophraella communa LeSage (Coleoptera: Chrysomelidae), a biological control agent of Ambrosia artemisiifolia L. (Asterales: Asteraceae), in China. Biological Invasions, 13, 659-667. |
[55] | Zhou ZS, Guo JY, Wan FH (2015) Review on management of Ambrosia artemisiifolia using natural enemy insects. Chinese Journal of Biological Control, 31, 657-665. |
[56] | Zhou ZS, Guo JY, Zheng XW, Luo M, Chen HS, Wan FH (2011b) Reevaluation of biosecurity of Ophraella communa against sunflower (Helianthus annuus). Biocontrol Science and Technology, 21, 1147-1160. |
[57] | Zhou ZS, Rasmann S, Li M, Guo JY, Chen HS, Wan FH (2013) Cold temperatures increase cold hardiness in the next generation Ophraella communa beetles. PLoS ONE, 8, e74760. |
[1] | Yunwei Dong, Menghuan Bao, Jiao Cheng, Yiyong Chen, Jianguo Du, Yangchun Gao, Lisha Hu, Xincheng Li, Chunlong Liu, Geng Qin, Jin Sun, Xin Wang, Guang Yang, Chongliang Zhang, Xiong Zhang, Yuyang Zhang, Zhixin Zhang, Aibin Zhan, Qiang He, Jun Sun, Bin Chen, Zhongli Sha, Qiang Lin. Advances of marine biogeography in China: Species distribution model and its applications [J]. Biodiv Sci, 2024, 32(5): 23453-. |
[2] | Xiaobo Lü, Donghai Li, Xiaobo Yang, Mengwen Zhang. The species coexisted in mangrove communities through niche differentiation of flooding time and salinity [J]. Biodiv Sci, 2024, 32(3): 23302-. |
[3] | Minhao Chen, Chao Zhang, Jiadong Wang, Zhenjie Zhan, Junzhi Chen, Xiaofeng Luan. Distribution and niche overlap of American mink and Eurasian otter in Northeast China [J]. Biodiv Sci, 2023, 31(1): 22289-. |
[4] | Ziyu Ma, Zaixin He, Yiqing Wang, Dazhao Song, Fan Xia, Shiming Cui, Hongxin Su, Jianlin Deng, Ping Li, Sheng Li. An update on the current distribution and key habitats of the clouded leopard (Neofelis nebulosa) populations in China [J]. Biodiv Sci, 2022, 30(9): 22349-. |
[5] | Weiyue Sun, Jiangping Shu, Yufeng Gu, Morigengaowa, Xiajin Du, Baodong Liu, Yuehong Yan. Conservation genomics analysis revealed the endangered mechanism of Adiantum nelumboides [J]. Biodiv Sci, 2022, 30(7): 21508-. |
[6] | Chaodan Guo, Caiyun Zhao, Feifei Li, Junsheng Li. Comparative study of invasive and native herbs in natural forests and plantation forests: With Nonggang National Nature Reserve as an example [J]. Biodiv Sci, 2022, 30(4): 21356-. |
[7] | Xiyang Hao, Cha He, Kelin Chu, Zhixin Shen, Qiang Zhao, Wei Gao, Da Pan, Hongying Sun. The distribution pattern and biodiversity conservation of freshwater crabs in Hainan Island [J]. Biodiv Sci, 2021, 29(5): 605-616. |
[8] | Yichao Li, Yongsheng Chen, Denis Sandanov, Ao Luo, Tong Lü, Xiangyan Su, Yunpeng Liu, Qinggang Wang, Viktor Chepinoga, Sergey Dudov, Wei Wang, Zhiheng Wang. Patterns and environmental drivers of Ranunculaceae species richness and phylogenetic diversity across eastern Eurasia [J]. Biodiv Sci, 2021, 29(5): 561-574. |
[9] | Yuanjun Yu, Huolin Luo, Nannan Liu, Dongjin Xiong, Yibo Luo, Boyun Yang. Influence of the climate change on suitable areas of Calanthe sieboldii and its pollinators in China [J]. Biodiv Sci, 2020, 28(7): 769-778. |
[10] | Jian Wang, Yiyi Dong, Libin Ma, Bo Pan, Fangzhou Ma, Hui Ding, Yaping Hu, Yanqiong Peng, Xiaobing Wu, Bo Wang. Spatial variation in ant-tree network organization in the Xishuangbanna National Nature Reserve [J]. Biodiv Sci, 2020, 28(6): 695-706. |
[11] | He Weiming. Biological invasions: Are their impacts precisely knowable or not? [J]. Biodiv Sci, 2020, 28(2): 253-255. |
[12] | Yi Li,Zhiyao Tang,Yujing Yan,Ke Wang,Lei Cai,Jinsheng He,Song Gu,Yijian Yao. Incorporating species distribution model into the red list assessment and conservation of macrofungi: A case study with Ophiocordyceps sinensis [J]. Biodiv Sci, 2020, 28(1): 99-106. |
[13] | Shun Li,Liang Zou,Yinan Gong,Haitao Yang,Tianming Wang,Limin Feng,Jianping Ge. Advances in LiDAR technology in the field of animal ecology [J]. Biodiv Sci, 2019, 27(9): 1021-1031. |
[14] | Xiaoyun Shi,Xiaogang Shi,Qiang Hu,Tianpei Guan,Qiang Fu,Jian Zhang,Meng Yao,Sheng Li. Evaluating the potential habitat overlap and predation risk between snow leopards and free-range yaks in the Qionglai Mountains, Sichuan [J]. Biodiv Sci, 2019, 27(9): 951-959. |
[15] | Zhang Xiaoling, Li Yichao, Wang Yunyun, Cai Hongyu, Zeng Hui, Wang Zhiheng. Influence of future climate change in suitable habitats of tea in different countries [J]. Biodiv Sci, 2019, 27(6): 595-606. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn