Biodiv Sci ›› 2022, Vol. 30 ›› Issue (2): 21419. DOI: 10.17520/biods.2021419
Special Issue: 物种形成与系统进化
• Original Papers: Plant Diversity • Previous Articles Next Articles
Yin Wang1,2, Jianming Wang1,2, Mengjun Qu1,2, Jingwen Li1,2,*()
Received:
2021-10-21
Accepted:
2021-11-18
Online:
2022-02-20
Published:
2022-02-28
Contact:
Jingwen Li
About author:
*E-mail: Lijingwenhy@bjfu.edu.cnYin Wang, Jianming Wang, Mengjun Qu, Jingwen Li. Plant community assembly processes and key drivers in an arid inland river basin[J]. Biodiv Sci, 2022, 30(2): 21419.
采样点 Site | 植被类型 Vegetation type (中国科学院中国植被图编辑委员会, | 物种丰富度 Species richness | 平均(范围)地下水位 Mean (Range) groundwater depth (m) | 与河道的距离 Distance from the river channel (m) | 海拔 Altitude (m) |
---|---|---|---|---|---|
1 | 胡杨疏林 Populus euphratica woodland | 8.4 ± 1.8 | 1.30 (0.38-1.70) | 32 | 959 |
2 | 7.8 ± 0.9 | 1.78 (1.43-2.16) | 47 | 1,010 | |
3 | 7.9 ± 1.4 | 1.80 (1.52-2.00) | 99 | 939 | |
4 | 4.4 ± 1.7 | 1.96 (1.76-2.23) | 104 | 915 | |
5 | 2.6 ± 0.7 | 2.30 (2.17-2.48) | 230 | 1,064 | |
6 | 多枝柽柳灌丛 Tamarix ramosissima scrub | 6.2 ± 1.5 | 2.12 (1.77-2.38) | 643 | 907 |
7 | 2.4 ± 0.7 | 2.93 (2.37-3.23) | 1,698 | 951 | |
8 | 2.8 ± 0.6 | 4.75 (4.39-4.97) | 2,821 | 914 | |
9 | 2.8 ± 1.2 | 5.04 (4.92-5.31) | 3,397 | 903 | |
10 | 3.9 ± 0.9 | 3.81 (3.71-3.92) | 3,249 | 945 | |
11 | 3.9 ± 0.7 | 2.53 (2.32-2.62) | 831 | 946 | |
12 | 膜果麻黄荒漠 Ephedra przewalskii desert | 7.0 ± 0.8 | 2.70 (2.48-2.96) | 641 | 1,027 |
13 | 5.2 ± 0.6 | 3.15 (3.09-3.21) | 3,610 | 1,012 | |
14 | 2.6 ± 0.7 | 3.54 (3.43-3.59) | 1,941 | 945 | |
15 | 霸王荒漠 Zygophyllum xanthoxylon desert | 6.1 ± 1.0 | 3.12 (2.93-3.22) | 912 | 976 |
16 | 4.9 ± 0.9 | 3.92 (3.47-4.13) | 2,562 | 1,032 | |
17 | 泡泡刺荒漠 Nitraria sphaerocarpa desert | 4.1 ± 1.4 | 4.21 (4.18-4.24) | 4,288 | 993 |
18 | 2.9 ± 0.7 | 6.68 (6.66-6.70) | 5,745 | 976 | |
19 | 3.4 ± 0.7 | 6.24 (6.21-6.26) | 4,842 | 932 | |
20 | 沙拐枣荒漠 Calligonum mongolicum desert | 3.2 ± 0.4 | 4.00 (3.78-4.18) | 4,285 | 1,027 |
21 | 小果白刺荒漠 Nitraria sibirica desert | 3.4 ± 0.8 | 5.45 (5.27-5.68) | 4,029 | 960 |
22 | 红砂荒漠 Reaumuria soongorica desert | 6.0 ± 1.7 | 2.68 (2.48-2.85) | 1,867 | 1,009 |
23 | 6.2 ± 1.2 | 2.85 (2.43-3.01) | 649 | 980 | |
24 | 2.6 ± 0.7 | 3.39 (2.65-3.91) | 2,098 | 926 | |
25 | 2.8 ± 0.8 | 3.79 (3.64-3.98) | 4,300 | 928 | |
26 | 沙蒿荒漠 Artemisia salsoloides desert | 4.3 ± 1.2 | 2.77 (2.61-2.91) | 2,097 | 937 |
27 | 6.1 ± 2.0 | 2.78 (2.35-2.93) | 1,429 | 985 |
Table 1 Information on plant community and vegetation types in our study region
采样点 Site | 植被类型 Vegetation type (中国科学院中国植被图编辑委员会, | 物种丰富度 Species richness | 平均(范围)地下水位 Mean (Range) groundwater depth (m) | 与河道的距离 Distance from the river channel (m) | 海拔 Altitude (m) |
---|---|---|---|---|---|
1 | 胡杨疏林 Populus euphratica woodland | 8.4 ± 1.8 | 1.30 (0.38-1.70) | 32 | 959 |
2 | 7.8 ± 0.9 | 1.78 (1.43-2.16) | 47 | 1,010 | |
3 | 7.9 ± 1.4 | 1.80 (1.52-2.00) | 99 | 939 | |
4 | 4.4 ± 1.7 | 1.96 (1.76-2.23) | 104 | 915 | |
5 | 2.6 ± 0.7 | 2.30 (2.17-2.48) | 230 | 1,064 | |
6 | 多枝柽柳灌丛 Tamarix ramosissima scrub | 6.2 ± 1.5 | 2.12 (1.77-2.38) | 643 | 907 |
7 | 2.4 ± 0.7 | 2.93 (2.37-3.23) | 1,698 | 951 | |
8 | 2.8 ± 0.6 | 4.75 (4.39-4.97) | 2,821 | 914 | |
9 | 2.8 ± 1.2 | 5.04 (4.92-5.31) | 3,397 | 903 | |
10 | 3.9 ± 0.9 | 3.81 (3.71-3.92) | 3,249 | 945 | |
11 | 3.9 ± 0.7 | 2.53 (2.32-2.62) | 831 | 946 | |
12 | 膜果麻黄荒漠 Ephedra przewalskii desert | 7.0 ± 0.8 | 2.70 (2.48-2.96) | 641 | 1,027 |
13 | 5.2 ± 0.6 | 3.15 (3.09-3.21) | 3,610 | 1,012 | |
14 | 2.6 ± 0.7 | 3.54 (3.43-3.59) | 1,941 | 945 | |
15 | 霸王荒漠 Zygophyllum xanthoxylon desert | 6.1 ± 1.0 | 3.12 (2.93-3.22) | 912 | 976 |
16 | 4.9 ± 0.9 | 3.92 (3.47-4.13) | 2,562 | 1,032 | |
17 | 泡泡刺荒漠 Nitraria sphaerocarpa desert | 4.1 ± 1.4 | 4.21 (4.18-4.24) | 4,288 | 993 |
18 | 2.9 ± 0.7 | 6.68 (6.66-6.70) | 5,745 | 976 | |
19 | 3.4 ± 0.7 | 6.24 (6.21-6.26) | 4,842 | 932 | |
20 | 沙拐枣荒漠 Calligonum mongolicum desert | 3.2 ± 0.4 | 4.00 (3.78-4.18) | 4,285 | 1,027 |
21 | 小果白刺荒漠 Nitraria sibirica desert | 3.4 ± 0.8 | 5.45 (5.27-5.68) | 4,029 | 960 |
22 | 红砂荒漠 Reaumuria soongorica desert | 6.0 ± 1.7 | 2.68 (2.48-2.85) | 1,867 | 1,009 |
23 | 6.2 ± 1.2 | 2.85 (2.43-3.01) | 649 | 980 | |
24 | 2.6 ± 0.7 | 3.39 (2.65-3.91) | 2,098 | 926 | |
25 | 2.8 ± 0.8 | 3.79 (3.64-3.98) | 4,300 | 928 | |
26 | 沙蒿荒漠 Artemisia salsoloides desert | 4.3 ± 1.2 | 2.77 (2.61-2.91) | 2,097 | 937 |
27 | 6.1 ± 2.0 | 2.78 (2.35-2.93) | 1,429 | 985 |
Fig. 2 Functional structure in all plant communities across arid inland river basin. Functional structure evaluated based on the mean ± 95% confidence intervals of standardized effect size of Rao’s quadratic entropy (SES.RaoQ). * Significant differences between mean of SES.RaoQ and 0 at P < 0.05; NS, Not significant. LPC, Leaf phosphorus concentration; LNC, Leaf nitrogen concentration; LA, Leaf area; SLA, Specific leaf area; RPC, Root phosphorus concentration; RNC, Root nitrogen concentration; RL, Root length; SRL, Specific root length.
Fig. 3 The proportion of functional or phylogenetic clustering and overdispersion in all plant communities across Heihe River basin. (a) Species trait values within each community; (b) Mean trait values across all plant communities. The gray line indicates the 50% of community. The full names of abbreviations are the same as in Fig.2.
功能性状 Functional trait | Blomberg’s K | P |
---|---|---|
叶氮含量 Leaf nitrogen concentration (LNC) | 0.040 | 0.924 |
叶磷含量 Leaf phosphorus concentration (LPC) | 0.124 | 0.357 |
比叶面积 Specific leaf area (SLA) | 0.084 | 0.630 |
叶面积 Leaf area (LA) | 0.110 | 0.431 |
根氮含量 Root nitrogen concentration (RNC) | 0.177 | 0.110 |
根磷含量 Root phosphorus concentration (RPC) | 0.056 | 0.846 |
比根长 Specific root length (SRL) | 0.210 | 0.059 |
根长 Root length (RL) | 0.199 | 0.060 |
Table 2 Phylogenetic signal of plant functional traits
功能性状 Functional trait | Blomberg’s K | P |
---|---|---|
叶氮含量 Leaf nitrogen concentration (LNC) | 0.040 | 0.924 |
叶磷含量 Leaf phosphorus concentration (LPC) | 0.124 | 0.357 |
比叶面积 Specific leaf area (SLA) | 0.084 | 0.630 |
叶面积 Leaf area (LA) | 0.110 | 0.431 |
根氮含量 Root nitrogen concentration (RNC) | 0.177 | 0.110 |
根磷含量 Root phosphorus concentration (RPC) | 0.056 | 0.846 |
比根长 Specific root length (SRL) | 0.210 | 0.059 |
根长 Root length (RL) | 0.199 | 0.060 |
Fig. 4 Relative contribution of groundwater depth and soil variables for standard effect size of Rao’s quadratic entropy (SES.RaoQ). The independent contribution of each variable, expressed as the percentage of explained variance, is shown in each bar chart. Variance explained refers to the R2. Figures on the left show the parameter estimates (standardized coefficients) and the associated 95% confidence interval. Gray color represents for soil variables; Black color represents for groundwater depth. MGWD, Mean groundwater depth; SDGWD, Groundwater depth seasonality; SEC, Soil electric conductivity; SOC, Soil organic matter; SAN, Soil available nitrogen; SAP, Soil available phosphorus; SM, Soil moisture. The full names of abbreviations are the same as in Fig.2.
Fig. 5 Change in standard effect size of Rao’s quadratic entropy (SES.RaoQ) (mean ± 95% confidence interval) along the gradients of mean groundwater depth (a) and groundwater depth seasonality (b). R is correlation coefficients. *** P < 0.001; NS, not significant. The full names of abbreviations are the same as in Fig.2.
Fig. 6 Variations in standard effect size of Rao’s quadratic entropy (SES.RaoQ) along the mean groundwater depth gradient. Positive values (blue points) indicate functional overdispersion, while negative values (red points) indicate functional clustering. The meanings of abbreviations are the same as in Fig.2.
[1] |
Adler PB, Fajardo A, Kleinhesselink AR, Kraft NJB (2013) Trait-based tests of coexistence mechanisms. Ecology Letters, 16, 1294-1306.
DOI URL |
[2] | Bañares-De-dios G, Macía MJ, Granzow-de la Cerda Í, Arnelas I, de Carvalho G, Espinosa CI, Salinas N, Swenson NG, Cayuela L (2020) Linking patterns and processes of tree community assembly across spatial scales in tropical montane forests. Ecology, 101, e03058. |
[3] |
Blanchard G, Munoz F, Ibanez T, Hequet V, Vandrot H, Girardi J, Birnbaum P (2019) Regional rainfall and local topography jointly drive tree community assembly in lowland tropical forests of New Caledonia. Journal of Vegetation Science, 30, 845-856.
DOI |
[4] |
Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution; International Journal of Organic Evolution, 57, 717-745.
DOI URL |
[5] |
Botta-Dukát Z (2005) Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. Journal of Vegetation Science, 16, 533-540.
DOI URL |
[6] |
Botta-Dukát Z, Czúcz B (2016) Testing the ability of functional diversity indices to detect trait convergence and divergence using individual-based simulation. Methods in Ecology and Evolution, 7, 114-126.
DOI URL |
[7] | Burnham KP, Anderson DR (2003) Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer-Verlag, New York. |
[8] |
Butterfield BJ, Bradford JB, Munson SM, Gremer JR (2017) Aridity increases below-ground niche breadth in grass communities. Plant Ecology, 218, 385-394.
DOI URL |
[9] |
Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecology Letters, 12, 693-715.
DOI PMID |
[10] |
Che YD, Liu MX, Li LR, Jiao J, Xiao W (2017) Exploring the community assembly of subalpine meadow communities based on functional traits and community phylogeny. Chinese Journal of Plant Ecology, 41, 1157-1167. (in Chinese with English abstract)
DOI URL |
[ 车应弟, 刘旻霞, 李俐蓉, 焦骄, 肖卫 (2017) 基于功能性状及系统发育的亚高寒草甸群落构建. 植物生态学报, 41, 1157-1167.]
DOI |
|
[11] |
Chen GG, Yue DX, Zhou YY, Wang D, Wang H, Hui C, Guo JJ (2021) Driving factors of community-level plant functional traits and species distributions in the desert-wetland ecosystem of the Shule River Basin, China. Land Degradation & Development, 32, 323-337.
DOI URL |
[12] |
Chen YN, Li WH, Xu CC, Ye ZX, Chen YP (2015) Desert riparian vegetation and groundwater in the lower reaches of the Tarim River basin. Environmental Earth Sciences, 73, 547-558.
DOI URL |
[13] |
Chen YN, Pang ZH, Chen YP, Li WH, Xu CC, Hao XM, Huang X, Huang TM, Ye ZX (2008) Response of riparian vegetation to water-table changes in the lower reaches of Tarim River, Xinjiang Uygur, China. Hydrogeology Journal, 16, 1371-1379.
DOI URL |
[14] |
Chen YN, Zilliacus H, Li WH, Zhang HF, Chen YP (2006) Ground-water level affects plant species diversity along the lower reaches of the Tarim River, Western China. Journal of Arid Environments, 66, 231-246.
DOI URL |
[15] |
Coyle JR, Halliday FW, Lopez BE, Palmquist KA, Wilfahrt PA, Hurlbert AH (2014) Using trait and phylogenetic diversity to evaluate the generality of the stress-dominance hypothesis in eastern North American tree communities. Ecography, 37, 814-826.
DOI URL |
[16] |
Diaz S, Cabido M, Casanoves F (1998) Plant functional traits and environmental filters at a regional scale. Journal of Vegetation Science, 9, 113-122.
DOI URL |
[17] |
Ding Y, Zang RG, Lu XH, Huang JH, Xu Y (2019) The effect of environmental filtering on variation in functional diversity along a tropical elevational gradient. Journal of Vegetation Science, 30, 973-983.
DOI |
[18] |
Eissenstat DM, Kucharski JM, Zadworny M, Adams TS, Koide RT (2015) Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest. New Phytologist, 208, 114-124.
DOI PMID |
[19] | Franzke CLE, Barbosa S, Blender R, Fredriksen HB, Laepple T, Lambert F, Nilsen T, Rypdal K, Rypdal M, Scotto MG, Vannitsem S, Watkins NW, Yang LC, Yuan NM (2020) The structure of climate variability across scales. Reviews of Geophysics, 58, 4172-4183. |
[20] | Gong ZT (2014) Chinese Soil Geography. Science Press, Beijing. (in Chinese) |
[ 龚子同 (2014) 中国土壤地理. 科学出版社, 北京.] | |
[21] |
Götzenberger L, Botta-Dukát Z, Lepš J, Pärtel M, Zobel M, de Bello F (2016) Which randomizations detect convergence and divergence in trait-based community assembly? A test of commonly used null models. Journal of Vegetation Science, 27, 1275-1287.
DOI URL |
[22] |
Gower JC (1971) A general coefficient of similarity and some of its properties. Biometrics, 27, 857-871.
DOI URL |
[23] | Hao XM, Chen YN, Li WH, Guo B, Zhao RF (2009) Evidence and ecological effects of hydraulic lift in Populus euphratica. Chinese Journal of Plant Ecology, 33, 1125-1131. (in Chinese with English abstract) |
[ 郝兴明, 陈亚宁, 李卫红, 郭斌, 赵锐锋 (2009) 胡杨根系水力提升作用的证据及其生态学意义. 植物生态学报, 33, 1125-1131.]
DOI |
|
[24] | Hao XM, Li WH, Huang X, Zhu CG, Ma JX (2009) Assessment of the groundwater threshold of desert riparian forest vegetation along the middle and lower reaches of the Tarim River, China. Hydrological Processes, 24, 178-186. |
[25] |
Kong DL, Ma CG, Zhang Q, Li L, Chen XY, Zeng H, Guo DL (2014) Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytologist, 203, 863-872.
DOI URL |
[26] |
Kraft NJB, Ackerly DD (2010) Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecological Monographs, 80, 401-422.
DOI URL |
[27] |
Lamontagne S, Cook PG, O’Grady A, Eamus D (2005) Groundwater use by vegetation in a tropical savanna riparian zone (Daly River, Australia). Journal of Hydrology, 310, 280-293.
DOI URL |
[28] |
Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Functional Ecology, 16, 545-556.
DOI URL |
[29] |
Le Bagousse-Pinguet Y, Gross N, Maestre FT, Maire V, Bello F, Fonseca CR, Kattge J, Valencia E, Leps J, Liancourt P (2017) Testing the environmental filtering concept in global drylands. Journal of Ecology, 105, 1058-1069.
DOI PMID |
[30] |
Lhotsky B, Kovács B, Ónodi G, Csecserits A, Rédei T, Lengyel A, Kertész M, Botta-Dukát Z (2016) Changes in assembly rules along a stress gradient from open dry grasslands to wetlands. Journal of Ecology, 104, 507-517.
DOI URL |
[31] |
Li YC, Chen YS, Sandanov D, Luo A, Lü T, Su XY, Liu YP, Wang QG, Chepinoga V, Dudov S, Wang W, Wang ZH (2021) Patterns and environmental drivers of Ranunculaceae species richness and phylogenetic diversity across eastern Eurasia. Biodiversity Science, 29, 561-574. (in Chinese with English abstract)
DOI URL |
[ 李亦超, 陈永生, Sandanov D, 罗奥, 吕童, 苏香燕, 刘云鹏, 王庆刚, Chepinoga V, Dudov S, 王伟, 王志恒 (2021) 欧亚大陆东部毛茛科植物多样性格局及主导因子. 生物多样性, 29, 561-574.] | |
[32] |
Liu BT, Li HB, Zhu B, Koide RT, Eissenstat DM, Guo DL (2015) Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species. New Phytologist, 208, 125-136.
DOI URL |
[33] |
Liu GF, Freschet GT, Pan X, Cornelissen JHC, Li Y, Dong M (2010) Coordinated variation in leaf and root traits across multiple spatial scales in Chinese semi-arid and arid ecosystems. New Phytologist, 188, 543-553.
DOI URL |
[34] |
Liu XJ, Ma KP (2015) Plant functional traits-Concepts, applications and future directions. Scientia Sinica Vitae, 45, 325-339. (in Chinese with English abstract)
DOI URL |
[ 刘晓娟, 马克平 (2015) 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] | |
[35] |
Luo WQ, Lan RX, Chen DX, Zhang BW, Xi NX, Li YZ, Fang SQ, Valverde-Barrantes OJ, Eissenstat DM, Chu CJ, Wang YS (2021) Limiting similarity shapes the functional and phylogenetic structure of root neighborhoods in a subtropical forest. New Phytologist, 229, 1078-1090.
DOI URL |
[36] |
Luo YH, Cadotte MW, Burgess KS, Liu J, Tan SL, Zou JY, Xu K, Li DZ, Gao LM (2019) Greater than the sum of the parts: How the species composition in different forest strata influence ecosystem function. Ecology Letters, 22, 1449-1461.
DOI URL |
[37] |
Ma ZQ, Guo DL, Xu XL, Lu MZ, Bardgett RD, Eissenstat DM, McCormack ML, Hedin LO (2018) Evolutionary history resolves global organization of root functional traits. Nature, 555, 94-97.
DOI URL |
[38] |
Murphy SJ, Salpeter K, Comita LS (2016) Higher β-diversity observed for herbs over woody plants is driven by stronger habitat filtering in a tropical understory. Ecology, 97, 2074-2084.
DOI URL |
[39] |
Muscarella R, Uriarte M, Erickson DL, Swenson NG, Kress WJ, Zimmerman JK (2016) Variation of tropical forest assembly processes across regional environmental gradients. Perspectives in Plant Ecology, Evolution and Systematics, 23, 52-62.
DOI URL |
[40] |
Qian H, Jin Y (2016) An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. Journal of Plant Ecology, 9, 233-239.
DOI URL |
[41] |
Ramm T, Cantalapiedra JL, Wagner P, Penner J, Rödel M, Müller J (2018) Divergent trends in functional and phylogenetic structure in reptile communities across Africa. Nature Communications, 9, 4697.
DOI URL |
[42] |
Rao CR (1982) Diversity and dissimilarity coefficients: A unified approach. Theoretical Population Biology, 21, 24-43.
DOI URL |
[43] |
Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671-675.
PMID |
[44] |
Schöb C, Armas C, Guler M, Prieto I, Pugnaire FI (2013) Variability in functional traits mediates plant interactions along stress gradients. Journal of Ecology, 101, 753-762.
DOI URL |
[45] | Swenson NG (2014) Functional and Phylogenetic Ecology in R. Springer, New York. |
[46] |
Swenson NG, Enquist BJ (2009) Opposing assembly mechanisms in a Neotropical dry forest: Implications for phylogenetic and functional community ecology. Ecology, 90, 2161-2170.
PMID |
[47] | The Editorial Committee of Vegetation Map of China, Chinese Academy of Sciences (2007) Vegetation Map of the People’s Republic of China (1:1000000). Geological Publishing House, Beijing. (in Chinese) |
[ 中国科学院中国植被图编辑委员会 (2007) 中华人民共和国植被图(1:1000000). 地质出版社, 北京.] | |
[48] |
Wang JM, Chen C, Li JW, Feng YM, Lu Q (2019) Different ecological processes determined the alpha and beta components of taxonomic, functional, and phylogenetic diversity for plant communities in dryland regions of Northwest China. PeerJ, 6, e6220.
DOI URL |
[49] | Wang P, Yu JJ, Min LL, Xu YL, Zhu BQ, Zhang YC, Du CY (2014) Shallow groundwater regime and its driving forces in the Ejina Oasis. Quaternary Sciences, 34, 982-993. (in Chinese with English abstract) |
[ 王平, 于静洁, 闵雷雷, 徐永亮, 朱秉启, 张一驰, 杜朝阳 (2014) 额济纳绿洲浅层地下水动态监测研究及其进展. 第四纪研究, 34, 982-993.] | |
[50] |
Wang X, Song NP, Yang XG, Chen L, Qu WJ, Wang L (2021a) Inferring community assembly mechanisms from functional and phylogenetic diversity: The relative contribution of environmental filtering decreases along a sand desertification gradient in a desert steppe community. Land Degradation & Development, 32, 2360-2370.
DOI URL |
[51] |
Wang Y, Wang JM, Wang XL, He YC, Li GJ, Li JW (2021b) Dominant roles but distinct effects of groundwater depth on regulating leaf and fine-root N, P and N:P ratios of plant communities. Journal of Plant Ecology, 14, 1158-1174.
DOI URL |
[52] |
Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475-505.
DOI URL |
[53] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature, 428, 821-827.
DOI URL |
[54] | Yan RY, Lou AR (2019) Phylogenetic structure of shrub community in Alxa Desert and its environmental determinants. Acta Botanica Boreali-Occidentalia Sinica, 39, 2072-2081. (in Chinese with English abstract) |
[ 闫瑞亚, 娄安如 (2019) 阿拉善荒漠灌丛群落谱系结构及其影响因子. 西北植物学报, 39, 2072-2081.] | |
[55] | Yang YH, Chen YN, Li WH (2008) Soil properties and their impacts on changes in species diversity in the lower reaches of Tarim River, Xinjiang, China. Acta Ecologica Sinica, 28, 602-611. (in Chinese with English abstract) |
[ 杨玉海, 陈亚宁, 李卫红 (2008) 新疆塔里木河下游土壤特性及其对物种多样性的影响. 生态学报, 28, 602-611.] | |
[56] |
Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG, McGlinn DJ, O’Meara BC, Moles AT, Reich PB, Royer DL, Soltis DE, Stevens PF, Westoby M, Wright IJ, Aarssen L, Bertin RI, Calaminus A, Govaerts R, Hemmings F, Leishman MR, Oleksyn J, Soltis PS, Swenson NG, Warman L, Beaulieu JM (2014) Three keys to the radiation of angiosperms into freezing environments. Nature, 506, 89-92.
DOI URL |
[57] |
Zeng Y, Zhao CY, Li J, Li Y, Lü G, Liu T (2019) Effect of groundwater depth on riparian plant diversity along riverside-desert gradients in the Tarim River. Journal of Plant Ecology, 12, 564-573.
DOI URL |
[58] |
Zhao LJ, Xie C, Liu XH, Wang NL, Yu Z, Dong XY, Wang LX (2020) Water sources of major plant species along a strong climatic gradient in the inland Heihe River Basin. Plant and Soil, 455, 439-466.
DOI URL |
[59] |
Zhu JT, Yu JJ, Wang P, Wang ZY (2011) Quantitative classification and analysis of relationships between plant communities and their groundwater environment in the Ejina Desert Oasis of China. Chinese Journal of Plant Ecology, 35, 480-489. (in Chinese with English abstract)
DOI URL |
[ 朱军涛, 于静洁, 王平, 王志勇 (2011) 额济纳荒漠绿洲植物群落的数量分类及其与地下水环境的关系分析. 植物生态学报, 35, 480-489.]
DOI |
|
[60] |
Zhu JT, Yu JJ, Wang P, Yu Q, Eamus D (2014) Variability in groundwater depth and composition and their impacts on vegetation succession in the lower Heihe River Basin, north-western China. Marine and Freshwater Research, 65, 206-217.
DOI URL |
[61] | Zhu RQ, Liu ML, Li G, Kang HM, Yang T, Wang ZY (2020) Responses of leaf functional traits of Reaumuria soongorica in two different desert habitats. Journal of Northwest Forestry University, 35(5), 29-34. (in Chinese with English abstract) |
[ 朱瑞清, 刘美玲, 李刚, 康红梅, 杨涛, 王治业 (2020) 2种水分生境下红砂叶片功能性状的响应及适应机制. 西北林学院学报, 35(5), 29-34.] |
[1] | Mengyao Zheng, Yuan Li, Xuerong Wang, Yue Zhang, Tong Jia. Soil protozoa community assembly mechanism in different vegetation types of Luya Mountain [J]. Biodiv Sci, 2024, 32(4): 23419-. |
[2] | Rui Qu, Zhenjun Zuo, Youxin Wang, Liangjian Zhang, Zhigang Wu, Xiujuan Qiao, Zhong Wang. The biogeochemical niche based on elementome and its applications in different ecosystems [J]. Biodiv Sci, 2024, 32(4): 23378-. |
[3] | Xinyi Zhong, Fan Zhao, Xue Yao, Yuru Wu, Yin Xu, Shunyao Yu, Jingyun Lin, Jianfeng Hao. Relationship between herbaceous plant diversity and soil anti-scourability under different maintenance measures at Sanxingdui City Wall [J]. Biodiv Sci, 2023, 31(8): 23169-. |
[4] | Shengxian Yang, Qing Yang, Xiaodong Li, Xin Chao, Huiqiu Liu, Lanruoxue Wei, Sang Ba. Deterministic processes dominate the geographic distribution pattern and community assembly of phytoplankton in typical plateau rivers [J]. Biodiv Sci, 2023, 31(7): 23092-. |
[5] | Fang Du, Xiaoying Rong, Peng Xu, Benfeng Yin, Yuanming Zhang. Bacterial diversity and community assembly responses to precipitation in the Gurbantunggut Desert [J]. Biodiv Sci, 2023, 31(2): 22492-. |
[6] | Jiesheng Rao, Tao Yang, Xi Tian, Wencong Liu, Xiaofeng Wang, Hengjun Qian, Zehao Shen. Vertical structural characteristics of a semi-humid evergreen broad-leaved forest and common tree species based on a portable backpack LiDAR [J]. Biodiv Sci, 2023, 31(11): 23216-. |
[7] | Jianyu Dong, Xin Sun, Qipeng Zhan, Yuyang Zhang, Xiumei Zhang. Patterns and drivers of beta diversity of subtidal macrobenthos community on the eastern coast of Laizhou Bay [J]. Biodiv Sci, 2022, 30(3): 21388-. |
[8] | Yongqingcuomu , Xinqiang Xi, Kechang Niu. Effect of plant species loss on grassland caterpillar in alpine meadows [J]. Biodiv Sci, 2022, 30(11): 22069-. |
[9] | Xiangcheng Mi, Xugao Wang, Guochun Shen, Xubin Liu, Xiaoyang Song, Xiujuan Qiao, Gang Feng, Jie Yang, Zikun Mao, Xuehong Xu, Keping Ma. Chinese Forest Biodiversity Monitoring Network (CForBio): Twenty years of exploring community assembly mechanisms and prospects for future research [J]. Biodiv Sci, 2022, 30(10): 22504-. |
[10] | Cheng Gao, Liang-Dong Guo. Progress on microbial species diversity, community assembly and functional traits [J]. Biodiv Sci, 2022, 30(10): 22429-. |
[11] | Shaopeng Wang, Mingyu Luo, Yanhao Feng, Chengjin Chu, Dayong Zhang. Theoretical advances in biodiversity research [J]. Biodiv Sci, 2022, 30(10): 22410-. |
[12] | Jiapeng Kang, Lu Han, Chunhui Feng, Haizhen Wang. Species abundance distribution in two riparian forests under contrasting environmental regimes in the Tarim Desert [J]. Biodiv Sci, 2021, 29(7): 875-886. |
[13] | Yuanli Ouyang, Cancan Zhang, Xiaofan Lin, Lixin Tian, Hanjiao Gu, Fusheng Chen, Wensheng Bu. Growth differences and characteristics of root and leaf morphological traits for different mycorrhizal tree species in the subtropical China: A case study of Xingangshan, Jiangxi Province [J]. Biodiv Sci, 2021, 29(6): 746-758. |
[14] | Chen Shao, Yaoqi Li, Ao Luo, Zhiheng Wang, Zhenxiang Xi, Jianquan Liu, Xiaoting Xu. Relationship between functional traits and genome size variation of angiosperms with different life forms [J]. Biodiv Sci, 2021, 29(5): 575-585. |
[15] | Lei Dong, Jing Wang, Yonggang Liu, Zhiping Zhao, Xiangcheng Mi, Ke Guo. Phylogenetic structure of Vitex negundo var. heterophylla shrub communities and Spiraea trilobata shrub communities in the North Taihang Mountains [J]. Biodiv Sci, 2021, 29(1): 21-31. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn