Biodiv Sci ›› 2021, Vol. 29 ›› Issue (11): 1447-1460. DOI: 10.17520/biods.2021240
• Original Papers: Plant Diversity • Previous Articles Next Articles
Received:
2021-06-16
Accepted:
2021-07-30
Online:
2021-11-20
Published:
2021-08-17
Contact:
Naili Zhang
Yumei Pan, Naili Zhang. Effects of tree diversity on enzyme activity in litter of a subtropical forest ecosystem[J]. Biodiv Sci, 2021, 29(11): 1447-1460.
胞外酶名称 Extracellular enzyme | 胞外酶活性对应底物 Extracellular enzyme activity substrate |
---|---|
α-葡萄糖苷酶 α-glucosidase (AG) | 4-羟甲基-7-香豆素(MUB)-α-D-葡萄糖苷 4-MUB-α-D-glucopyranoside |
β-葡萄糖苷酶 β-glucosidase (BG) | 4-羟甲基-7-香豆素(MUB)-β-D-葡萄糖苷 4-MUB-β-D-glucopyranoside |
纤维二糖水解酶 Cellubiosidase (CB) | 4-羟甲基-7-香豆素(MUB)-β-D-纤维二糖糖苷 4-MUB-β-D-cellobioside |
木糖苷酶 Xylosidase (XS) | 4-羟甲基-7-香豆素(MUB)-β-D-木吡喃糖苷 4-MUB-β-D-xylopyranoside |
N-乙酰-β-氨基葡萄糖苷酶 N-acetyl-β-glucosaminidase (NAG) | 4-羟甲基-7-香豆素(MUB)-N-乙酰-β-氨基葡萄糖苷 4-MUB-N-acetyl-β-D-glucosaminide |
酸性磷酸酶 Acid phosphatase (AP) | 4-羟甲基-7-香豆素(MUB)磷酸盐 4-MUB phosphate |
多酚氧化酶 Polyphenol oxidase (PPO) | L-二羟苯丙氨酸(DOPA) L-dihydroxyphenyllalanine |
Table 1 The corresponding substrate of extracellular enzyme activity of litter leaves
胞外酶名称 Extracellular enzyme | 胞外酶活性对应底物 Extracellular enzyme activity substrate |
---|---|
α-葡萄糖苷酶 α-glucosidase (AG) | 4-羟甲基-7-香豆素(MUB)-α-D-葡萄糖苷 4-MUB-α-D-glucopyranoside |
β-葡萄糖苷酶 β-glucosidase (BG) | 4-羟甲基-7-香豆素(MUB)-β-D-葡萄糖苷 4-MUB-β-D-glucopyranoside |
纤维二糖水解酶 Cellubiosidase (CB) | 4-羟甲基-7-香豆素(MUB)-β-D-纤维二糖糖苷 4-MUB-β-D-cellobioside |
木糖苷酶 Xylosidase (XS) | 4-羟甲基-7-香豆素(MUB)-β-D-木吡喃糖苷 4-MUB-β-D-xylopyranoside |
N-乙酰-β-氨基葡萄糖苷酶 N-acetyl-β-glucosaminidase (NAG) | 4-羟甲基-7-香豆素(MUB)-N-乙酰-β-氨基葡萄糖苷 4-MUB-N-acetyl-β-D-glucosaminide |
酸性磷酸酶 Acid phosphatase (AP) | 4-羟甲基-7-香豆素(MUB)磷酸盐 4-MUB phosphate |
多酚氧化酶 Polyphenol oxidase (PPO) | L-二羟苯丙氨酸(DOPA) L-dihydroxyphenyllalanine |
影响因子 Impact factor | AG | BG | CB | XS | NAG | AP | PPO |
---|---|---|---|---|---|---|---|
树种丰富度 Tree richness | 12.469*** | 2.245 | 5.282** | 4.683** | 0.434 | 1.945 | 0.404 |
邻居树种丰富度 Neighbor tree richness | 8.351*** | 1.474 | 6.076** | 4.712** | 8.009*** | 1.100 | 1.897 |
同种树种丰富度 Conspecific species richness | 1.058 | 10.658*** | 11.566*** | 17.113*** | 10.518*** | 11.720*** | 5.526** |
凋落叶有机碳含量 Litter organic carbon content | 0.500 | 0.290 | 0.177 | 0.566 | 1.982 | 0.000 | 1.008 |
凋落叶全氮含量 Litter total nitrogen content | 1.868 | 1.845 | 3.140* | 0.000 | 9.660*** | 1.214 | 1.424 |
凋落叶磷含量 Litter P content | 0.652 | 2.313 | 3.109* | 1.374 | 3.378* | 0.626 | 0.057 |
凋落叶钙含量 Litter Ca content | 0.452 | 0.462 | 0.669 | 3.195* | 10.781*** | 4.451** | 1.122 |
凋落叶铁含量 Litter Fe content | 0.591 | 2.325 | 1.532 | 1.884 | 0.925 | 1.066 | 0.172 |
凋落叶镁含量 Litter Mg content | 0.101 | 0.234 | 0.269 | 0.352 | 0.068 | 3.068* | 0.035 |
海拔 Altitude | 0.218 | 0.169 | 0.218 | 0.413 | 0.238 | 0.187 | 1.234 |
南北坡向 North-south aspect | 2.519 | 5.133** | 6.337** | 13.787*** | 6.817** | 5.251** | 0.072 |
东西坡向 East-west aspect | 0.089 | 0.001 | 1.414 | 0.392 | 0.061 | 7.307** | 3.663* |
坡度 Slope | 1.305 | 2.709 | 2.303 | 1.526 | 0.237 | 1.215 | 0.988 |
Table 2 The effects of tree richness at the plot level, neighbor tree richness and litter chemicals on the activities of extracellular enzymes (F value). A linear mixed effect model was established with tree species richness, neighbour tree species richness, conspecifics richness (the richness of the same species with neighbor species as target species), litter organic carbon, total nitrogen, phosphorus, calcium, iron, magnesium, elevation, north-south slope orientation and east-west slope orientation as fixed factors, and tree species and species category as random variables. AG, α-glucosidase; BG, β-glucosidase; CB, Cellubiosidase; XS, Xylosidase; NAG, N-acetyl-β-glucosaminidase; AP, Acid phosphatase; PPO, Polyphenol oxidase. *, P < 0.1; **, P < 0.05; ***, P < 0.01.
影响因子 Impact factor | AG | BG | CB | XS | NAG | AP | PPO |
---|---|---|---|---|---|---|---|
树种丰富度 Tree richness | 12.469*** | 2.245 | 5.282** | 4.683** | 0.434 | 1.945 | 0.404 |
邻居树种丰富度 Neighbor tree richness | 8.351*** | 1.474 | 6.076** | 4.712** | 8.009*** | 1.100 | 1.897 |
同种树种丰富度 Conspecific species richness | 1.058 | 10.658*** | 11.566*** | 17.113*** | 10.518*** | 11.720*** | 5.526** |
凋落叶有机碳含量 Litter organic carbon content | 0.500 | 0.290 | 0.177 | 0.566 | 1.982 | 0.000 | 1.008 |
凋落叶全氮含量 Litter total nitrogen content | 1.868 | 1.845 | 3.140* | 0.000 | 9.660*** | 1.214 | 1.424 |
凋落叶磷含量 Litter P content | 0.652 | 2.313 | 3.109* | 1.374 | 3.378* | 0.626 | 0.057 |
凋落叶钙含量 Litter Ca content | 0.452 | 0.462 | 0.669 | 3.195* | 10.781*** | 4.451** | 1.122 |
凋落叶铁含量 Litter Fe content | 0.591 | 2.325 | 1.532 | 1.884 | 0.925 | 1.066 | 0.172 |
凋落叶镁含量 Litter Mg content | 0.101 | 0.234 | 0.269 | 0.352 | 0.068 | 3.068* | 0.035 |
海拔 Altitude | 0.218 | 0.169 | 0.218 | 0.413 | 0.238 | 0.187 | 1.234 |
南北坡向 North-south aspect | 2.519 | 5.133** | 6.337** | 13.787*** | 6.817** | 5.251** | 0.072 |
东西坡向 East-west aspect | 0.089 | 0.001 | 1.414 | 0.392 | 0.061 | 7.307** | 3.663* |
坡度 Slope | 1.305 | 2.709 | 2.303 | 1.526 | 0.237 | 1.215 | 0.988 |
Fig. 1 The activities of seven extracellular enzymes in litter of the target tree species under different tree species richness at the plot level (mean ± SE). Different letters indicate significant differences (P < 0.05).
Fig. 2 The activities of seven extracellular enzymes in litter of the target tree species under different neighbour tree species richness (mean ± SE). Different letters indicate significant differences (P < 0.05).
Fig. 3 Correlation between alpha-diversity index of saprotrophic fungal community and extracellular enzyme activities in litter of the target tree species. AG, α-glucosidase; BG, β-glucosidase; CB, Cellubiosidase; XS, Xylosidase; NAG, N-acetyl-β-glucosaminidase; AP, Acid phosphatase; PPO, Polyphenol oxidase. Richness, Saprotrophic fungal richness; Chao 1, Chao 1 index; ACE, Abundance-based coverage estimators index; Shannon, Shannon index; Simpson, Simpson index; Pielou’s, Pielou’s evennesss index; Abundance, Saprotrophic fungal abundance. green, Positive correlation; red, Negative correlation; *, P < 0.1; **, P < 0.05; ***, P < 0.001.
Fig. 4 Mantel test and distance-based redundancy analysis (db-RDA) of saprotrophic fungal community and extracellular enzyme activities. AG, α-glucosidase; BG, β-glucosidase; CB, Cellubiosidase; XS, Xylosidase; NAG, N-acetyl-β-glucosaminidase; AP, Acid phosphatase; PPO, Polyphenol oxidase.
[1] |
Ali A, Yan ER (2017) The forest strata-dependent relationship between biodiversity and aboveground biomass within a subtropical forest. Forest Ecology and Management, 401, 125-134.
DOI URL |
[2] | Babe GN, Toukam ST, Massai JT, Maigari P, Ngakou A, Ibrahima A (2020) Isolation and characterization of bacteria involved in Daniellia oliveri, Ficus sycomorus, Hymenocardia acida and Terminalia glaucescens leaf litter decomposition and their hydrolytic enzyme potentials. International Journal of Plant & Soil Science, 32, 65-82. |
[3] | Bengtsson-Palme J, Ryberg M, Hartmann M, Branco S, Wang Z, Godhe A de Wit P, Sánchez-García M, Ebersberger I de Sousa F, Amend AS, Jumpponen A, Unterseher M, Kristiansson E, Abarenkov K, Bertrand YJK, Sanli K, Eriksson KM, Vik U, Veldre V, Nilsson RH (2013) Improved software detection and extraction of ITS1 and ITS 2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods in Ecology and Evolution, 4, 914-919. |
[4] |
Bongers FJ, Schmid B, Durka W, Li S, Bruelheide H, Hahn CZ, Yan HR, Ma KP, Liu XJ (2020) Genetic richness affects trait variation but not community productivity in a tree diversity experiment. New Phytologist, 227, 744-756.
DOI PMID |
[5] |
Brockerhoff EG, Barbaro L, Castagneyrol B, Forrester DI, Gardiner B, González-Olabarria JR, Lyver POB, Meurisse N, Oxbrough A, Taki H, Thompson ID, van der Plas F, Jactel H (2017) Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodiversity and Conservation, 26, 3005-3035.
DOI URL |
[6] |
Bruelheide H, Nadrowski K, Assmann T, Bauhus J, Both S, Buscot F, Chen XY, Ding BY, Durka W, Erfmeier A, Gutknecht JLM, Guo DL, Guo LD, Härdtle W, He JS, Klein AM, Kühn P, Liang Y, Liu XJ, Michalski S, Niklaus PA, Pei KQ, Scherer‐Lorenzen M, Scholten T, Schuldt A, Seidler G, Trogisch S, Oheimb G, Welk E, Wirth C, Wubet T, Yang XF, Yu MJ, Zhang SR, Zhou HZ, Fischer M, Ma KP, Schmid B (2014) Designing forest biodiversity experiments: General considerations illustrated by a new large experiment in subtropical China. Methods in Ecology and Evolution, 5, 74-89.
DOI URL |
[7] | Bruelheide H, Schmidt K, Seidler G, Nadrowski K (2013) Main Experiment: Site A plots: Diversity treatments coordinates, topography. BEF-China data portal. http://china.befdata.biow.uni-leipzig.de/datasets/71. .(accessed on 2021-04-29) |
[8] |
Burke DJ, Weintraub MN, Hewins CR, Kalisz S (2011) Relationship between soil enzyme activities, nutrient cycling and soil fungal communities in a northern hardwood forest. Soil Biology and Biochemistry, 43, 795-803.
DOI URL |
[9] |
Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A (2013) Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biology and Biochemistry, 58, 216-234.
DOI URL |
[10] |
Caldwell BA (2005) Enzyme activities as a component of soil biodiversity: A review. Pedobiologia, 49, 637-644.
DOI URL |
[11] | Ceballos G, Ehrlich PR, Dirzo R (2017) Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proceedings of the National Academy of Sciences, USA, 114, E6089-E6096. |
[12] |
Chen C, Chen HYH, Chen XL, Huang ZQ (2019) Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration. Nature Communications, 10, 1332.
DOI PMID |
[13] |
Chen H, Li DJ, Xiao KC, Wang KL (2018) Soil microbial processes and resource limitation in karst and non-karst forests. Functional Ecology, 32, 1400-1409.
DOI URL |
[14] | Chen YX, Huang YY, Niklaus PA, Castro-Izaguirre N, Clark AT, Bruelheide H, Ma KP, Schmid B (2020) Directed species loss reduces community productivity in a subtropical forest biodiversity experiment. Nature Ecology & Evolution, 4, 550-559. |
[15] |
Cheng KK, Yu SX (2020) Neighboring trees regulate the root-associated pathogenic fungi on the host plant in a subtropical forest. Ecology and Evolution, 10, 3932-3943.
DOI URL |
[16] |
DeForest JL (2009) The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and l-DOPA. Soil Biology and Biochemistry, 41, 1180-1186.
DOI URL |
[17] |
De Groote SRE, Vanhellemont M, Baeten L, Schrijver A, Martel A, Bonte D, Lens L, Verheyen K (2018) Tree species diversity indirectly affects nutrient cycling through the shrub layer and its high-quality litter. Plant and Soil, 427, 335-350.
DOI URL |
[18] |
Eisenhauer N, Milcu A, Sabais ACW, Bessler H, Brenner J, Engels C, Klarner B, Maraun M, Partsch S, Roscher C, Schonert F, Temperton VM, Thomisch K, Weigelt A, Weisser WW, Scheu S (2011) Plant diversity surpasses plant functional groups and plant productivity as driver of soil biota in the long term. PLoS ONE, 6, e16055.
DOI URL |
[19] |
Garland G, Banerjee S, Edlinger A, Miranda Oliveira E, Herzog C, Wittwer R, Philippot L, Maestre FT, van der Heijden MGA (2021) A closer look at the functions behind ecosystem multifunctionality: A review. Journal of Ecology, 109, 600-613.
DOI URL |
[20] |
Germany MS, Bruelheide H, Erfmeier A (2021) Drivers of understorey biomass: Tree species identity is more important than richness in a young forest. Journal of Plant Ecology, 14, 465-477.
DOI URL |
[21] |
Gholz HL, Wedin DA, Smitherman SM, Harmon ME, Parton WJ (2000) Long-term dynamics of pine and hardwood litter in contrasting environments: Toward a global model of decomposition. Global Change Biology, 6, 751-765.
DOI URL |
[22] |
Gracia M, Montané F, Piqué J, Retana J (2007) Overstory structure and topographic gradients determining diversity and abundance of understory shrub species in temperate forests in central Pyrenees (NE Spain). Forest Ecology and Management, 242, 391-397.
DOI URL |
[23] | Guo ZW, Wang XP, Fan DY (2021) Ecosystem functioning and stability are mainly driven by stand structural attributes and biodiversity, respectively, in a tropical forest in Southwestern China. Forest Ecology and Management, 481, 118696. |
[24] |
Haghverdi K, Kooch Y (2019) Effects of diversity of tree species on nutrient cycling and soil-related processes. Catena, 178, 335-344.
DOI |
[25] |
Hättenschwiler S, Fromin N, Barantal S (2011) Functional diversity of terrestrial microbial decomposers and their substrates. Comptes Rendus Biologies, 334, 393-402.
DOI PMID |
[26] |
Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annual Review of Ecology, Evolution, and Systematics, 36, 191-218.
DOI URL |
[27] | He J, Zhao YP, Guan LZ (2011) Effect of free calcium carbonate on soil pH and enzyme activities. Journal of Shenyang Agricultural University, 42, 614-617. (in Chinese with English abstract) |
[ 贺婧, 赵亚平, 关连珠 (2011) 土壤中游离碳酸钙对土壤pH及酶活性的影响. 沈阳农业大学学报, 42, 614-617.] | |
[28] |
Hooper DU, Bignell DE, Brown VK, Brussard L, Mark Dangerfield J, Wall DH, Wardle DA, Coleman DC, Giller KE, Lavelle P, van der Putten WH, de Ruiter PC, Rusek J, Silver WL, Tiedje JM, Wolters V (2000) Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: Patterns, mechanisms, and feedbacks. BioScience, 50, 1049-1061.
DOI URL |
[29] | Hou EQ, Chen CR, McGroddy ME, Wen DZ (2012) Nutrient limitation on ecosystem productivity and processes of mature and old-growth subtropical forests in China. PLoS ONE, 7, e52071. |
[30] |
Huang YY, Chen YX, Castro-Izaguirre N, Baruffol M, Brezzi M, Lang A, Li Y, Härdtle W, von Oheimb G, Yang XF, Liu XJ, Pei KQ, Both S, Yang B, Eichenberg D, Assmann T, Bauhus J, Behrens T, Buscot F, Chen XY, Chesters D, Ding BY, Durka W, Erfmeier A, Fang JY, Fischer M, Guo LD, Guo DL, Gutknecht JLM, He JS, He CL, Hector A, Hönig L, Hu RY, Klein AM, Kühn P, Liang Y, Li S, Michalski S, Scherer-Lorenzen M, Schmidt K, Scholten T, Schuldt A, Shi XZ, Tan MZ, Tang ZY, Trogisch S, Wang ZW, Welk E, Wirth C, Wubet T, Xiang WH, Yu MJ, Yu XD, Zhang JY, Zhang SR, Zhang NL, Zhou HZ, Zhu CD, Zhu L, Bruelheide H, Ma KP, Niklaus PA, Schmid B (2018) Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science, 362, 80-83.
DOI |
[31] |
Huang YY, Ma YL, Zhao K, Niklaus PA, Schmid B, He JS (2017) Positive effects of tree species diversity on litterfall quantity and quality along a secondary successional chronosequence in a subtropical forest. Journal of Plant Ecology, 10, 28-35.
DOI URL |
[32] |
Hubert NA, Gehring CA (2008) Neighboring trees affect ectomycorrhizal fungal community composition in a woodland-forest ecotone. Mycorrhiza, 18, 363-374.
DOI URL |
[33] |
Hunt HW, Ingham ER, Coleman DC, Elliott ET, Reid CPP (1988) Nitrogen limitation of production and decomposition in prairie, mountain meadow, and pine forest. Ecology, 69, 1009-1016.
DOI URL |
[34] | Kizilkaya R, Dengiz O, Göl C, Hepşen Ş (2007) Effects of different topographic positions on soil properties and soil enzymes activities. Asian Journal of Chemistry, 19, 2295-2306. |
[35] | Laureto LMO, Cianciaruso MV, Samia DSM (2015) Functional diversity: An overview of its history and applicability. Natureza & Conservação, 13, 112-116. |
[36] | Leonhardt S, Hoppe B, Stengel E, Noll L, Moll J, Bässler C, Dahl A, Buscot F, Hofrichter M, Kellner H (2019) Molecular fungal community and its decomposition activity in sapwood and heartwood of 13 temperate European tree species. PLoS ONE, 14, e0212120. |
[37] |
Li JJ, Zhou XM, Yan JX, Li HJ, He JZ (2015) Effects of regenerating vegetation on soil enzyme activity and microbial structure in reclaimed soils on a surface coal mine site. Applied Soil Ecology, 87, 56-62.
DOI URL |
[38] |
Li Y, Tian DS, Yang H, Niu SL (2018) Size-dependent nutrient limitation of tree growth from subtropical to cold temperate forests. Functional Ecology, 32, 95-105.
DOI URL |
[39] | Liu JB, Chen J, Chen GS, Guo JF, Li YQ (2020) Enzyme stoichiometry indicates the variation of microbial nutrient requirements at different soil depths in subtropical forests. PLoS ONE, 15, e0220599. |
[40] | Liu XW, Li XL, Li XT, Ma WJ, Guo Q, Zhu XR, Xing F (2021) Dominant plant identity determines soil extracellular enzyme activities of its entire community in a semi-arid grassland. Applied Soil Ecology, 161, 103872. |
[41] |
Liu Y, Shen X, Chen YM, Wang LF, Chen QM, Zhang J, Xu ZF, Tan B, Zhang L, Xiao JJ, Zhu P, Chen LH (2019) Litter chemical quality strongly affects forest floor microbial groups and ecoenzymatic stoichiometry in the subalpine forest. Annals of Forest Science, 76, 1-15.
DOI URL |
[42] | Lübbe T, Schuldt B, Leuschner C (2015) Species identity and neighbor size surpass the impact of tree species diversity on productivity in experimental broad-leaved tree sapling assemblages under dry and moist conditions. Frontiers in Plant Science, 6, 857. |
[43] |
Ma LW, Bongers FJ, Li S, Tang T, Yang B, Ma KP, Liu XJ (2021) Species identity and composition effects on community productivity in a subtropical forest. Basic and Applied Ecology, 55, 87-97.
DOI URL |
[44] |
Marx MC, Wood M, Jarvis SC (2001) A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biology and Biochemistry, 33, 1633-1640.
DOI URL |
[45] |
Maxwell TL, Augusto L, Bon L, Courbineau A, Altinalmazis-Kondylis A, Milin S, Bakker MR, Jactel H, Fanin N (2020) Effect of a tree mixture and water availability on soil nutrients and extracellular enzyme activities along the soil profile in an experimental forest. Soil Biology and Biochemistry, 148, 107864.
DOI URL |
[46] | Meng YY, Hui DF, Huangfu CH (2020) Site conditions interact with litter quality to affect home-field advantage and rhizosphere effect of litter decomposition in a subtropical wetland ecosystem. Science of the Total Environment, 749, 141442. |
[47] |
Mori AS, Lertzman KP, Gustafsson L (2017) Biodiversity and ecosystem services in forest ecosystems: A research agenda for applied forest ecology. Journal of Applied Ecology, 54, 12-27.
DOI URL |
[48] | Ostertag R, Sebastián-González E, Peck R, Hall T, Kim J, DiManno N, Rayome D, Cordell S, Banko P, Uowolo A (2020) Linking plant and animal functional diversity with an experimental community restoration in a Hawaiian lowland wet forest. Food Webs, 25, e00171. |
[49] |
Patarkalashvili T (2017) Forest biodiversity of Georgia and endangered plant species. Annals of Agrarian Science, 15, 349-351.
DOI URL |
[50] |
Patrick CJ, McCluney KE, Ruhi A, Gregory A, Sabo J, Thorp JH (2021) Multi-scale biodiversity drives temporal variability in macrosystems. Frontiers in Ecology and the Environment, 19, 47-56.
DOI URL |
[51] |
Pei ZQ, Leppert KN, Eichenberg D, Bruelheide H, Niklaus PA, Buscot F, Gutknecht JLM (2017) Leaf litter diversity alters microbial activity, microbial abundances, and nutrient cycling in a subtropical forest ecosystem. Biogeochemistry, 134, 163-181.
DOI URL |
[52] |
Peng XQ, Wang W (2016) Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of Northern China. Soil Biology and Biochemistry, 98, 74-84.
DOI URL |
[53] |
Prada-Salcedo LD, Goldmann K, Heintz-Buschart A, Reitz T, Wambsganss J, Bauhus J, Buscot F (2021) Fungal guilds and soil functionality respond to tree community traits rather than to tree diversity in European forests. Molecular Ecology, 30, 572-591.
DOI PMID |
[54] | R Core Team (2020) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. |
[55] |
Ristok C, Leppert KN, Scherer-Lorenzen M, Niklaus PA, Bruelheide H (2019) Soil macrofauna and leaf functional traits drive the decomposition of secondary metabolites in leaf litter. Soil Biology and Biochemistry, 135, 429-437.
DOI |
[56] | Sanaei A, Ali A, Yuan ZQ, Liu SF, Lin F, Fang S, Ye J, Hao ZQ, Loreau M, Bai E, Wang XG (2021) Context-dependency of tree species diversity, trait composition and stand structural attributes regulate temperate forest multifunctionality. Science of the Total Environment, 757, 143724. |
[57] |
Santonja M, Foucault Q, Rancon A, Gauquelin T, Fernandez C, Baldy V, Mirleau P (2018) Contrasting responses of bacterial and fungal communities to plant litter diversity in a Mediterranean oak forest. Soil Biology and Biochemistry, 125, 27-36.
DOI URL |
[58] |
Schmitt S, Maréchaux I, Chave J, Fischer FJ, Piponiot C, Traissac S, Hérault B (2020) Functional diversity improves tropical forest resilience: Insights from a long-term virtual experiment. Journal of Ecology, 108, 831-843.
DOI URL |
[59] | Shi LJ, Wang HM, Fu XL, Kou L, Meng SW, Dai XQ (2020) Soil enzyme activities and their stoichiometry of typical plantations in mid-subtropical China. Chinese Journal of Applied Ecology, 31, 1980-1988. (in Chinese with English abstract) |
[ 史丽娟, 王辉民, 付晓莉, 寇亮, 孟盛旺, 戴晓琴 (2020) 中亚热带典型人工林土壤酶活性及其化学计量特征. 应用生态学报, 31, 1980-1988.] | |
[60] |
Tan XP, Machmuller MB, Cotrufo MF, Shen WJ (2020) Shifts in fungal biomass and activities of hydrolase and oxidative enzymes explain different responses of litter decomposition to nitrogen addition. Biology and Fertility of Soils, 56, 423-438.
DOI URL |
[61] | Tilman D (1999) The ecological consequences of changes in biodiversity: A search for general principles. Ecology, 80, 1455-1474. |
[62] |
Tsujiyama SI, Minami M (2005) Production of phenol-oxidizing enzymes in the interaction between white-rot fungi. Mycoscience, 46, 268-271.
DOI URL |
[63] |
Ushio M, Kitayama K, Balser TC (2010) Tree species effects on soil enzyme activities through effects on soil physicochemical and microbial properties in a tropical montane forest on Mt. Kinabalu, Borneo. Pedobiologia, 53, 227-233.
DOI URL |
[64] |
Valone TJ, Balaban-Feld J (2019) An experimental investigation of top-down effects of consumer diversity on producer temporal stability. Journal of Ecology, 107, 806-813.
DOI URL |
[65] |
Voříšková J, Baldrian P (2013) Fungal community on decomposing leaf litter undergoes rapid successional changes. The ISME Journal, 7, 477-486.
DOI URL |
[66] |
Wang BT, Hu S, Yu XY, Jin L, Zhu YJ, Jin FJ (2020) Studies of cellulose and starch utilization and the regulatory mechanisms of related enzymes in fungi. Polymers, 12, 530.
DOI URL |
[67] |
Wang MQ, Li Y, Chesters D, Bruelheide H, Ma KP, Guo PF, Zhou QS, Staab M, Zhu CD, Schuldt A (2020) Host functional and phylogenetic composition rather than host diversity structure plant-herbivore networks. Molecular Ecology, 29, 2747-2762.
DOI URL |
[68] |
Waring BG (2013) Exploring relationships between enzyme activities and leaf litter decomposition in a wet tropical forest. Soil Biology and Biochemistry, 64, 89-95.
DOI URL |
[69] |
Wei CC, Liu XF, Lin CF, Li XF, Li Y, Zheng YX (2018) Response of soil enzyme activities to litter input changes in two secondary Castanopsis carlessii forests in subtropical China. Chinese Journal of Plant Ecology, 42, 692-702. (in Chinese with English abstract)
DOI URL |
[ 魏翠翠, 刘小飞, 林成芳, 李先锋, 李艳, 郑裕雄 (2018) 凋落物输入改变对亚热带两种米槠次生林土壤酶活性的影响. 植物生态学报, 42, 692-702.]
DOI |
|
[70] | Xu ZJ, Wan XH, Liang YF, Shi XZ (2021) Effects of root growth on leaf litter decomposition and enzyme activity in litter layer. Chinese Journal of Applied Ecology, 32, 31-38. (in Chinese with English abstract) |
[ 许子君, 万晓华, 梁艺凡, 施秀珍 (2021) 根系在凋落物层生长对凋落叶分解及酶活性的影响. 应用生态学报, 32, 31-38.] | |
[71] |
Zeng XQ, Durka W, Fischer M (2017) Species-specific effects of genetic diversity and species diversity of experimental communities on early tree performance. Journal of Plant Ecology, 10, 252-258.
DOI URL |
[72] |
Zhang NL, Bruelheide H, Li YN, Liang Y, Wubet T, Trogisch S, Ma KP (2020) Community and neighbourhood tree species richness effects on fungal species in leaf litter. Fungal Ecology, 47, 100961.
DOI URL |
[73] |
Zhang NL, Li YN, Wubet T, Bruelheide H, Liang Y, Purahong W, Buscot F, Ma KP (2018) Tree species richness and fungi in freshly fallen leaf litter: Unique patterns of fungal species composition and their implications for enzymatic decomposition. Soil Biology and Biochemistry, 127, 120-126.
DOI URL |
[74] |
Zheng LT, Chen HYH, Biswas SR, Bao DF, Fang XC, Abdullah M, Yan ER (2021) Diversity and identity of economics traits determine the extent of tree mixture effects on ecosystem productivity. Journal of Ecology, 109, 1898-1908.
DOI URL |
[75] |
Zilliox C, Gosselin F (2014) Tree species diversity and abundance as indicators of understory diversity in French mountain forests: Variations of the relationship in geographical and ecological space. Forest Ecology and Management, 321, 105-116.
DOI URL |
[1] | Yanyu Ai, Haixia Hu, Ting Shen, Yuxuan Mo, Jinhua Qi, Liang Song. Vascular epiphyte diversity and the correlation analysis with host tree characteristics: A case in a mid-mountain moist evergreen broad-leaved forest, Ailao Mountains [J]. Biodiv Sci, 2024, 32(5): 24072-. |
[2] | Xing Chen, Shuwen Tu, Zun Dai, Shuang Gao, Youfang Wang, Shichen Xing, Bojia Wei, Luyan Tang, Ruiping Shi, Xiaorui Wang, Yongying Liu, Dongping Zhao, Xia Tang, Xue Yao, Mingshui Zhao, Hanxing Wu, Xiangbin Qi, Jian Zhang, Min Li, Jian Wang. Bryophytes diversity of Tianmushan National Nature Reserve, Zhejiang Province [J]. Biodiv Sci, 2023, 31(4): 22649-. |
[3] | Yujie Xue, Anpeng Cheng, Shan Li, Xiaojuan Liu, Jingwen Li. The effects of environment and species diversity on shrub survival in subtropical forests [J]. Biodiv Sci, 2023, 31(3): 22443-. |
[4] | Shang Xiaofan, Zhang Jian, Gao Haojie, Ku Weipeng, Bi Yuke, Li Xiupeng, Yan Enrong. Island area and climate jointly impact seed plant richness patterns across the Zhoushan Archipelago [J]. Biodiv Sci, 2023, 31(12): 23392-. |
[5] | Wenjia Wu, Ye Yuan, Jing Zhang, Lixia Zhou, Jun Wang, Hai Ren, Zhanfeng Liu. Dynamics of soil nematode community during the succession of forests in southern subtropical China [J]. Biodiv Sci, 2022, 30(12): 22205-. |
[6] | Weng Changlu,Zhang Tiantian,Wu Donghao,Chen Shengwen,Jin Yi,Ren Haibao,Yu Mingjian,Luo Yuanyuan. Drivers and patterns of α- and β-diversity in ten main forest community types in Gutianshan, eastern China [J]. Biodiv Sci, 2019, 27(1): 33-41. |
[7] | Li Tong,Li Junning,Wei Yulian. Species diversity and distribution of wood-decaying fungi in Gutianshan National Nature Reserve [J]. Biodiv Sci, 2019, 27(1): 81-87. |
[8] | Chuping Wu, Wenjuan Han, Bo Jiang, Bowen Liu, Weigao Yuan, Aihua Shen, Yujie Huang, Jinru Zhu. Relationships between species richness and biomass/productivity depend on environmental factors in secondary forests of Dinghai, Zhejiang Province [J]. Biodiv Sci, 2018, 26(6): 545-553. |
[9] | Shanshan Li, Zhengwen Wang, Junjie Yang. Changes in soil microbial communities during litter decomposition [J]. Biodiv Sci, 2016, 24(2): 195-204. |
[10] | Chunming Yuan, Yunfen Geng, Yong Chai, Jiabo Hao, Tao Wu. Response of lianas to edge effects in mid-montane moist evergreen broad- leaved forests in the Ailao Mountains, SW China [J]. Biodiv Sci, 2016, 24(1): 40-47. |
[11] | Juan Li,Cong Guo,Zhishu Xiao. Fruit composition and seed dispersal strategies of woody plants in a Dujiangyan subtropical forest, Southwest China [J]. Biodiv Sci, 2013, 21(5): 572-581. |
[12] | Hede Gong, Guoping Yang, Zhiyun Lu, Yuhong Liu. Diversity and spatial distribution patterns of trees in an evergreen broad-leaved forest in the Ailao Mountains, Yunnan [J]. Biodiv Sci, 2011, 19(2): 143-150. |
[13] | Xiaofang Sun, Jianhui Huang, Meng Wang, Xingguo Han. Responses of litter decomposition to biodiversity manipulation in the Inner Mongolia grassland of China [J]. Biodiv Sci, 2009, 17(4): 397-405. |
[14] | ZHU Biao, CHEN An-Ping, LIU Zeng-Li, FANG Jing-Yun. Plant community composition and tree species diversity on eastern and western Nanling Mountains, China [J]. Biodiv Sci, 2004, 12(1): 53-62. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn