Biodiv Sci ›› 2020, Vol. 28 ›› Issue (4): 496-503. DOI: 10.17520/biods.2019294
Special Issue: 传粉生物学; 昆虫多样性与生态功能
• Original Papers: Animal Diversity • Previous Articles Next Articles
Yiyi Dong1,2,Yanqiong Peng1,Bo Wang1,*()
Received:
2019-09-19
Accepted:
2020-01-13
Online:
2020-04-20
Published:
2020-06-15
Contact:
Bo Wang
Yiyi Dong,Yanqiong Peng,Bo Wang. Seasonal dynamics of fig wasp community and interaction networks in Ficus benjamina[J]. Biodiv Sci, 2020, 28(4): 496-503.
榕小蜂 Fig wasp | 可能的营养级水平 Presumble trophic level | 干季 Dry season | 雨季 Rainy season | ||
---|---|---|---|---|---|
丰富度 Richness | 百分比 % | 丰富度 Richness | 百分比 % | ||
Eupristina koningsbergeri | 传粉者 Pollinator | 129.01 ± 83.22 | 72.24 | 308.39 ± 183.62 | 93.18 |
Acophila sp. 1 | 造瘿者 Galler | 0.32 ± 1.17 | 0.18 | 0.09 ± 0.44 | 0.03 |
Ormyrus sp. 1 | 寄生者 Parasitoid | 0.46 ± 1.54 | 0.26 | 0.01 ± 0.09 | < 0.01 |
Philotrypesis sp. 1 | 寄生者 Parasitoid | 6.14 ± 10.40 | 3.44 | 17.95 ± 25.62 | 5.42 |
Philotrypesis sp. 2 | 寄生者 Parasitoid | 1.37 ± 3.04 | 0.77 | 1.12 ± 4.54 | 0.34 |
Philotrypesis sp. 3 | 寄生者 Parasitoid | 1.29 ± 4.69 | 0.72 | - | - |
Philotrypesis tridentate | 寄生者 Parasitoid | 7.11 ± 8.96 | 3.98 | 0.14 ± 1.06 | 0.04 |
Sycobia sp. 1 | 造瘿者 Galler | 2.67 ± 4.59 | 1.50 | 0.14 ± 0.63 | 0.04 |
Sycobia sp. 2 | 造瘿者 Galler | 1.43 ± 3.73 | 0.80 | 0.01± 0.09 | < 0.01 |
Sycobia sp. 3 | 造瘿者 Galler | 1.51 ± 2.71 | 0.85 | 0.25 ± 1.39 | 0.08 |
Sycophila sp. 1 | 寄生者 Parasitoid | 1.57 ± 3.52 | 0.88 | 0.27 ± 1.05 | 0.08 |
Sycoscapter sp. 1 | 寄生者 Parasitoid | 12.62 ± 26.64 | 7.06 | 0.46 ± 2.10 | 0.14 |
Walkerella benjamini | 造瘿者 Galler | 12.14 ± 10.21 | 6.80 | 1.90 ± 5.43 | 0.57 |
Walkerella sp. 1 | 造瘿者 Galler | 0.78 ± 1.42 | 0.43 | 0.19 ± 1.10 | 0.06 |
Walkerella sp. 2 | 造瘿者 Galler | 0.19 ± 0.77 | 0.11 | 0.04 ± 0.30 | 0.01 |
Table 1 Species abundance and composition of fig wasps in Ficus benjamina in Xishuangbanna (mean ± SD, N = 120). Of the 120 figs, 90 were from our study, the other 30 were from Bai (2006).
榕小蜂 Fig wasp | 可能的营养级水平 Presumble trophic level | 干季 Dry season | 雨季 Rainy season | ||
---|---|---|---|---|---|
丰富度 Richness | 百分比 % | 丰富度 Richness | 百分比 % | ||
Eupristina koningsbergeri | 传粉者 Pollinator | 129.01 ± 83.22 | 72.24 | 308.39 ± 183.62 | 93.18 |
Acophila sp. 1 | 造瘿者 Galler | 0.32 ± 1.17 | 0.18 | 0.09 ± 0.44 | 0.03 |
Ormyrus sp. 1 | 寄生者 Parasitoid | 0.46 ± 1.54 | 0.26 | 0.01 ± 0.09 | < 0.01 |
Philotrypesis sp. 1 | 寄生者 Parasitoid | 6.14 ± 10.40 | 3.44 | 17.95 ± 25.62 | 5.42 |
Philotrypesis sp. 2 | 寄生者 Parasitoid | 1.37 ± 3.04 | 0.77 | 1.12 ± 4.54 | 0.34 |
Philotrypesis sp. 3 | 寄生者 Parasitoid | 1.29 ± 4.69 | 0.72 | - | - |
Philotrypesis tridentate | 寄生者 Parasitoid | 7.11 ± 8.96 | 3.98 | 0.14 ± 1.06 | 0.04 |
Sycobia sp. 1 | 造瘿者 Galler | 2.67 ± 4.59 | 1.50 | 0.14 ± 0.63 | 0.04 |
Sycobia sp. 2 | 造瘿者 Galler | 1.43 ± 3.73 | 0.80 | 0.01± 0.09 | < 0.01 |
Sycobia sp. 3 | 造瘿者 Galler | 1.51 ± 2.71 | 0.85 | 0.25 ± 1.39 | 0.08 |
Sycophila sp. 1 | 寄生者 Parasitoid | 1.57 ± 3.52 | 0.88 | 0.27 ± 1.05 | 0.08 |
Sycoscapter sp. 1 | 寄生者 Parasitoid | 12.62 ± 26.64 | 7.06 | 0.46 ± 2.10 | 0.14 |
Walkerella benjamini | 造瘿者 Galler | 12.14 ± 10.21 | 6.80 | 1.90 ± 5.43 | 0.57 |
Walkerella sp. 1 | 造瘿者 Galler | 0.78 ± 1.42 | 0.43 | 0.19 ± 1.10 | 0.06 |
Walkerella sp. 2 | 造瘿者 Galler | 0.19 ± 0.77 | 0.11 | 0.04 ± 0.30 | 0.01 |
Fig. 1 Histogram of the fig wasp abundance of Ficus benjamina in Xishuangbanna. Two sample t-test was used to compared fig wasp abundance between rainy and dry seasons. Bars and errors represent mean ± SD. *** P < 0.001; NS, Not significant.
Fig. 2 The weighted co-occurrence networks of the wasp community of Ficus benjamina in Xishuangbanna. The nodes are colored by presumable trophic level, the width of each edge is proportional to the co-occur frequency of species.
Fig. 3 Fig wasp community co-occurrence network metrics between the dry and the rainy seasons in Xishuangbanna. The difference between the dry season and the rainy season were compared with t-test, the bars and error lines are mean ± SD. WNODF, Weight nestedness metric based on overlap and decreasing fill. ** P < 0.01; * P < 0.05; NS, Not significant.
[1] | Almeida-Neto M, Guimarães PR Jr, Lewinsohn TM (2007) On nestedness analyses: Rethinking matrix temperature and anti-nestedness. Oikos, 116, 716-722. |
[2] | Atmar W, Patterson BD (1993) The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia, 96, 373-382. |
[3] | Bai LF, Yang DR, Shi ZH, Peng YQ, Zhai SW (2006) Community structure of fig wasp in Ficus benjamina in different habitats. Biodiversity Science, 14, 340-344. (in Chinese with English abstract) |
[ 白莉芬, 杨大荣, 石章红, 彭艳琼, 翟树伟 (2006) 垂叶榕隐头果内小蜂群落结构与生境关系的初步研究. 生物多样性, 14, 340-344.] | |
[4] | Bascompte J, Jordano P, Melián CJ, Olesen JM (2003) The nested assembly of plant-animal mutualistic networks. Proceedings of the National Academy of Sciences, USA, 100, 9383-9387. |
[5] | Berlow EL, Dunne JA, Martinez ND, Stark PB, Williams RJ, Brose U (2009) Simple prediction of interaction strengths in complex food webs. Proceedings of the National Academy of Sciences, USA, 106, 187-191. |
[6] |
Cardona W, Kattan GH (2019) Complex effects of nonpollinating wasps on the relationship between pollinating wasp and seed production in Ficus andicola. Acta Oecologica, 98, 45-49.
DOI URL |
[7] | Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18, 117-143. |
[8] |
Cook JM, Rasplus JY (2003) Mutualists with attitude: Coevolving fig wasps and figs. Trends in Ecology & Evolution, 18, 241-248.
DOI URL |
[9] |
Donatti CI, Guimarães PR, Galetti M, Pizo MA, Marquitti FM, Dirzo R (2011) Analysis of a hyper-diverse seed dispersal network: Modularity and underlying mechanisms. Ecology Letters, 14, 773-781.
DOI URL |
[10] |
Dormann CF, Fründ J, Blüthgen N, Gruber B (2009) Indices, graphs and null models: Analyzing bipartite ecological networks. The Open Ecology Journal, 2, 7-24.
DOI URL |
[11] | Fortuna MA, Stouffer DB, Olesen JM, Jordano P, Mouillot D, Krasnov BR, Poulin R, Bascompte J (2010) Nestedness versus modularity in ecological networks: Two sides of the same coin? Journal of Animal Ecology, 79, 811-817. |
[12] | Guimarães PR Jr, Rico-Gray V, Oliveira PS, Izzo TJ, dos Reis SF, Thompson JN (2007) Interaction intimacy affects structure and coevolutionary dynamics in mutualistic networks. Current Biology, 17, 1797-1803. |
[13] | Hagen M, Kissling WD, Rasmussen C, De Aguiar MA, Brown LE, Carstensen DW, Alves-Dos-Santos I, Dupont YL, Edwards FK (2012) Biodiversity, species interactions and ecological networks in a fragmented world. Advances in Ecological Research, 46, 89-210. |
[14] |
Henri DC, Van Veen FJF (2011) Body size, life history and the structure of host-parasitoid networks. Advances in Ecological Research, 45, 135-180.
DOI URL |
[15] | Herre EA (1999) Laws governing species interactions? Encouragement and caution from figs and their associates. In: Levels of Selection in Evolution (ed. Keller L), pp. 209-237. Princeton University Press, Princeton. |
[16] |
Jacob U, Thierry A, Brose U, Arntz WE, Berg S, Brey T, Fetzer I, Jonsson T, Mintenbeck K, Möllmann C, Petchey OL, Riede JO, Dunne JA (2011) The role of body size in complex food webs: A cold case. Advances in Ecological Research, 45, 181-223.
DOI URL |
[17] | Jacquet C, Moritz C, Morissette L, Legagneux P, Massol F, Archambault P, Gravel D (2016) No complexity-stability relationship in empirical ecosystems. Nature Communications, 7, 12573. |
[18] | Jevanandam N, Goh AG, Corlett RT (2013) Climate warming and the potential extinction of fig wasps, the obligate pollinators of figs. Biology Letters, 9, 20130041. |
[19] |
Kerdelhué C, Rasplus JY (1996) The evolution of dioecy among Ficus (Moraceae): An alternative hypothesis involving non-pollinating fig wasp pressure on the fig-pollinator mutualism. Oikos, 77, 163-166.
DOI URL |
[20] |
Kerdelhué C, Rossi JP, Rasplus JY (2000) Comparative community ecology studies on old world figs and fig wasps. Ecology, 81, 2832-2849.
DOI URL |
[21] | Kong Y, Wang R, Yang DR, Sreekar R, Peng YQ, Compton SG (2016) Non-pollinator fig wasp impact on the reproductive success of an invasive fig tree: Why so little. Biocontrolence & Technology, 26, 1432-1443. |
[22] |
Krishna A, Guimarães RP Jr, Jordano P, Bascompte J (2008) A neutral-niche theory of nestedness in mutualistic networks. Oikos, 117, 1609-1618.
DOI URL |
[23] |
Lewinsohn TM, Novotny V, Basset Y (2005) Insects on plants: Diversity of herbivore assemblages revisited. Annual Review of Ecology. Evolution, and Systematics, 36, 597-620.
DOI URL |
[24] |
Lewinsohn TM, Paulodo PI, Jordano P, Bascompte J, Olesen JM (2006) Structure in plant-animal interaction assemblages. Oikos, 113, 174-184.
DOI URL |
[25] | May R, Mclean A (translated by Tao Y, Wang BH) (2007) Theoretical Ecology: Principles and Applications. Oxford University Press on Demand. |
[ May R, Mclean A (陶毅, 王百桦译) (2010) 理论生态学——原理及应用. 高等教育出版社, 北京.] | |
[26] | Memmott J (1999) The structure of a plant-pollinator food web. Ecology Letters, 2, 276-280. |
[27] | Olesen JM, Bascompte J, Dupont YL, Jordano P (2007) The modularity of pollination networks. Proceedings of the National Academy of Sciences, USA, 104, 19891-19896. |
[28] | Olesen JM, Dupont YL, Hagen M, Rasmussen C, Trøjelsgaard K (2012) Structure and dynamics of pollination networks: The past, present, and future. In: Evolution of Plant-Pollinator Relationships (ed. Patiny S), pp. 374-391. Cambridge University Press, Cambridge. |
[29] | R Development Core Team (2018) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. |
[30] | Santos GMM, Wesley D, Presley SJ (2014) The seasonal dynamic of ant-flower networks in a semi-arid tropical environment. Ecological Entomology, 39, 674-683. |
[31] | Schleuning M, Blüthgen N, Flörchinger M, Braun J, Schaefer HM, Böhning-Gaese K (2011) Specialization and interaction strength in a tropical plant-frugivore network differ among forest strata. Ecology, 92, 26-36. |
[32] |
Shi L, Wang RW, Zhu LX, Zeng WM, Xu WL, Zheng Q (2011) Varying coefficient analysis for indeterminate species interactions with non-parametric estimation, exemplifying with a fig-fig wasp system. Chinese Science Bulletin, 56, 2545-2552.
DOI URL |
[33] |
Stouffer DB, Bascompte J (2010) Understanding food-web persistence from local to global scales. Ecology Letters, 13, 154-161.
DOI URL |
[34] |
Wang H, Ridley J, Dunn DW, Wang RW, Cook JM, Yu DW (2013) Biased oviposition and biased survival together help resolve a fig-wasp conflict. Oikos, 122, 533-540.
DOI URL |
[35] | Wang ZJ (2010) Impact of Non-pollinating Fig Wasps on the Fig-fig Wasps Mutualism in Three Monoecious Ficus. PhD dissertation, University of the Chinese Academy of Sciences, Beijing. (in Chinese with English abstract) |
[ 王振吉 (2010) 非传粉榕小蜂对三种雌雄同株榕树-榕蜂互利共生系统的影响. 博士学位论文, 中国科学院大学, 北京.] | |
[36] |
Wang ZJ, Zhang FP, Peng YQ, Yang DR (2009) Reproductive strategy and impact on the fig-pollinator mutualism of one non-pollinating fig wasp species. Biodiversity Science, 17, 168-173. (in Chinese with English abstract)
DOI URL |
[ 王振吉, 张凤萍, 彭艳琼, 杨大荣 (2009) 一种非传粉榕小蜂的繁殖策略及其对榕-蜂互利共生系统的影响. 生物多样性, 17, 168-173.]
DOI URL |
|
[37] | Wang ZM, Hu HY, Niu LM, Huang DW (2010) Population dynamics of 16 fig wasp species in Ficus benjamina. Acta Ecologica Sinica, 30, 3858-3864. (in Chinese with English abstract) |
[ 王仲敏, 胡好远, 牛黎明, 黄大卫 (2010) 垂叶榕上16种榕小蜂的种群动态. 生态学报, 30, 3858-3864.] | |
[38] | Wasserman S, Faust K (1994) Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge. |
[39] |
Weiblen GD (2002) How to be a fig wasp. Annual Review of Entomology, 47, 299-330.
DOI URL |
[40] |
Williams RJ, Martinez ND (2000) Simple rules yield complex food webs. Nature, 404, 180-183.
DOI URL |
[41] | Woodward G, Brown LE, Edwards FK, Hudson LN, Milner AM, Reuman DC, Ledger ME (2012) Climate change impacts in multispecies systems: Drought alters food web size structure in a field experiment. Philosophical Transactions of the Royal Society of London, 367, 2990-2997. |
[42] | Zhang KY (1963) The climatic characteristics of southern Yunnan region and its formation mechanism. Acta Meteorologica Sinica, 33, 218-230. (in Chinese) |
[ 张克映 (1963) 滇南气候的特征及其形成因子的初步分析. 气象学报, 33, 218-230.] |
[1] | Yongjie Niu, Quanhui Ma, Yu Zhu, Hairong Liu, Jiale Lü, Yuanchun Zou, Ming Jiang. Research progress on the impact of nitrogen deposition on grassland insect diversity [J]. Biodiv Sci, 2023, 31(9): 23130-. |
[2] | Zhirong Feng, Youcheng Chen, Yanqiong Peng, Li Li, Bo Wang. Ecological network analysis: From metacommunity to metanetwork [J]. Biodiv Sci, 2023, 31(8): 23171-. |
[3] | Wenting Wang, Rong Wang, Cuiping Niu, Yang Bai, Xiaodong Yang. Soil multitrophic ecological network structure of agroforestry rubber plantation in Xishuangbanna [J]. Biodiv Sci, 2023, 31(6): 22626-. |
[4] | Yexi Zhao, Jiayu Zhang, Zihan Li, Qinmijia Xie, Xin Deng, Nan Wang. Use of native and alien plants during night roosting by urban birds in Beijing [J]. Biodiv Sci, 2023, 31(3): 22399-. |
[5] | Xueqin Deng, Tong Liu, Tianshi Liu, Kai Xu, Song Yao, Xiaoqun Huang, Zhishu Xiao. Seasonal variation of daily activity rhythm of leopard cats (Prionailurus bengalensis) and their potential prey in Neixiang Baotianman National Nature Reserve of Henan Province, China [J]. Biodiv Sci, 2022, 30(9): 22263-. |
[6] | Hualin Yang, Yuehong Cheng, Tianxiang Zhou, Xi Feng, Qiang Hu, Guiquan Zhang, Jian Yang, Jindong Zhang, Bin Wang, Caiquan Zhou. Multi-scale habitat selection of Chinese monal (Lophophorus lhuysii) in Wolong National Nature Reserve, Sichuan [J]. Biodiv Sci, 2022, 30(7): 21535-. |
[7] | Peng Xu, Xiaoying Rong, Chaohong Liu, Fang Du, Benfeng Yin, Ye Tao, Yuanming Zhang. Effects of extreme drought on community and ecological network of soil fungi in a temperate desert [J]. Biodiv Sci, 2022, 30(3): 21327-. |
[8] | Zhengliang Huang, Hanlun Liu, Chengjin Chu, Yuanzhi Li. Advances in intransitive competition between organisms [J]. Biodiv Sci, 2022, 30(2): 21282-. |
[9] | Xiaotong Liu, Yijia Tian, Hanwen Liu, Cuiying Liang, Siwei Jiang, Wenju Liang, Xiaoke Zhang. Seasonal variation in cropland soil nematode community composition in the lower reaches of Liaohe Plain [J]. Biodiv Sci, 2022, 30(12): 22222-. |
[10] | Shaopeng Wang, Mingyu Luo, Yanhao Feng, Chengjin Chu, Dayong Zhang. Theoretical advances in biodiversity research [J]. Biodiv Sci, 2022, 30(10): 22410-. |
[11] | Yuanzhi Li, Junli Xiao, Hanlun Liu, Youshi Wang, Chengjin Chu. Advances in higher-order interactions between organisms [J]. Biodiv Sci, 2020, 28(11): 1333-1344. |
[12] | Biyue Yan, Fuchun Tong, Luhui Kuang, Zhijian Mou, Wenjia Wu, Hongyue Cai, Jun Wang, Shuguang Jian, Hai Ren, Zhanfeng Liu. The influence of harmful plant Wedelia biflora expansion on terrestrial mollusks in Xisha Islands [J]. Biodiv Sci, 2020, 28(10): 1182-1191. |
[13] | Wang Fengzhen, Tang Yi. Determination of key species in the food web and their impact on the robustness [J]. Biodiv Sci, 2019, 27(10): 1132-1137. |
[14] | Shuying Li, Jiabao Zhu, Xianyong Lu, Furu Cheng, Shufeng Zheng, Jinjie Cui, Junyu Luo, Yan Ma. The diversity of insect communities and its dynamic changes in transgenic RRM2 (RNA recognition motif 2) cotton fields [J]. Biodiv Sci, 2018, 26(11): 1190-1203. |
[15] | Yili Guo, Dongxing Li, Bin Wang, Kundong Bai, Wusheng Xiang, Xiankun Li. C, N and P stoichiometric characteristics of soil and litter fall for six common tree species in a northern tropical karst seasonal rainforest in Nonggang, Guangxi, southern China [J]. Biodiv Sci, 2017, 25(10): 1085-1094. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn