Biodiv Sci ›› 2019, Vol. 27 ›› Issue (7): 772-777. DOI: 10.17520/biods.2019067
Special Issue: 传粉生物学
• Original Papers • Previous Articles Next Articles
Ningna Lu1,2,*(), Zhenheng Liu3, Yan Ma2, Guangmei Lu2, Xiuxiang Meng1,*(
)
Received:
2019-03-08
Accepted:
2019-06-20
Online:
2019-07-20
Published:
2019-08-21
Contact:
Ningna Lu, Xiuxiang Meng
Ningna Lu, Zhenheng Liu, Yan Ma, Guangmei Lu, Xiuxiang Meng. Phenotypic selection analysis of flower traits in Delphinium kamaonense var. glabrescens (Ranunculaceae)[J]. Biodiv Sci, 2019, 27(7): 772-777.
萼片长 Sepal length (mm) | 萼片宽 Sepal width (mm) | 花距长 Spur length (mm) | |
---|---|---|---|
花高 Flower height (cm) | 0.192 | 0.128 | -0.035 |
萼片长 Sepal length (mm) | 0.715*** | 0.569*** | |
萼片宽 Sepal width (mm) | 0.483*** |
Table 1 Pearson’s correlation coefficients among the floral traits of Delphinium kamaonense var. glabrescens. n = 50; *** P < 0.001.
萼片长 Sepal length (mm) | 萼片宽 Sepal width (mm) | 花距长 Spur length (mm) | |
---|---|---|---|
花高 Flower height (cm) | 0.192 | 0.128 | -0.035 |
萼片长 Sepal length (mm) | 0.715*** | 0.569*** | |
萼片宽 Sepal width (mm) | 0.483*** |
载荷 Loading | |||
---|---|---|---|
PC1 | PC2 | PC3 | |
萼片长Sepal length | 0.818 | 0.388 | 0.152 |
萼片宽Sepal width | 0.936 | 0.171 | 0.031 |
花距长Spur length | 0.309 | 0.944 | -0.044 |
花高Flower height | 0.091 | -0.027 | 0.994 |
解释方差 Percentage variance explained (%) | 41.22% | 26.77% | 25.35% |
Table 2 Loadings of floral traits of Delphinium kamaonense var. glabrescens on the first three components (PCs) produced by a principle components analysis with a varimax rotation.
载荷 Loading | |||
---|---|---|---|
PC1 | PC2 | PC3 | |
萼片长Sepal length | 0.818 | 0.388 | 0.152 |
萼片宽Sepal width | 0.936 | 0.171 | 0.031 |
花距长Spur length | 0.309 | 0.944 | -0.044 |
花高Flower height | 0.091 | -0.027 | 0.994 |
解释方差 Percentage variance explained (%) | 41.22% | 26.77% | 25.35% |
线性选择差 Linear selection differential (Mean ± SE) | 线性选择梯度 Linear selection gradient (Mean ± SE) | ||
---|---|---|---|
花特征 Floral traits | 萼片长 Sepal length | 0.284 ± 0.058† | -0.017 ± 0.071 |
萼片宽 Sepal width | 0.286 ± 0.072† | 0.024 ± 0.068 | |
花距长 Spur length | 0.438 ± 0.055** | 0.143 ± 0.059* | |
花高 Flower height | 0.184 ± 0.064 | 0.065 ± 0.05 | |
花特征主成分 Floral trait components (PCs) | PC1 | 0.159 ± 0.051 | 0.058 ± 0.047 |
PC2 | 0.242 ± 0.065 | 0.131 ± 0.047** | |
PC3 | 0.174 ± 0.064 | 0.057 ± 0.049 |
Table 3 Phenotypic selection on floral traits and the first three components (PCs) of Delphinium kamaonense var. glabrescens through female fitness. N = 50; ** P < 0.01; * P < 0.05; † P < 0.1.
线性选择差 Linear selection differential (Mean ± SE) | 线性选择梯度 Linear selection gradient (Mean ± SE) | ||
---|---|---|---|
花特征 Floral traits | 萼片长 Sepal length | 0.284 ± 0.058† | -0.017 ± 0.071 |
萼片宽 Sepal width | 0.286 ± 0.072† | 0.024 ± 0.068 | |
花距长 Spur length | 0.438 ± 0.055** | 0.143 ± 0.059* | |
花高 Flower height | 0.184 ± 0.064 | 0.065 ± 0.05 | |
花特征主成分 Floral trait components (PCs) | PC1 | 0.159 ± 0.051 | 0.058 ± 0.047 |
PC2 | 0.242 ± 0.065 | 0.131 ± 0.047** | |
PC3 | 0.174 ± 0.064 | 0.057 ± 0.049 |
[1] | Aigner PA ( 2005) Variation in pollination performance gradients in a Dudleya species complex: Can generalization promote floral divergence? Functional Ecology, 19, 681-689. |
[2] | Alexandersson R, Johnson SD ( 2002) Pollinator-mediated selection on floral tube length in a hawkmoth-pollinated Gladiolus (Iridaceae). Proceedings of the Royal Society B: Biological Sciences, 269, 631-636. |
[3] | Bloch D, Erhardt A ( 2008) Selection toward shorter flowers by butterflies whose probosces are shorter than floral tubes. Ecology, 89, 2453-2460. |
[4] | Boberg E, Ågren J ( 2009) Despite their apparent integration, spur length but not perianth size affects reproductive success in the moth-pollinated orchid Platanthera bifolia. Functional Ecology, 23, 1022-1028. |
[5] | Campbell DR ( 2009) Using phenotypic manipulations to study multivariate selection of floral trait associations. Annals of Botany, 103, 1557-1566. |
[6] | Campbell DR, Waser NM, Price MV ( 1996) Mechanisms of hummingbird-mediated selection for flower width in Ipomopsis aggregata. Aquatic Ecology, 77, 1463-1472. |
[7] | Clements FE, Long FL ( 1923) 5. Pollinators and flowers visited & 6. flowers and their visitors. In: Experimental Pollination: An Outline of the Ecology of Flowers and Insects, pp. 249- 261. Carnegie Institute of Washington Publication, Utah State University, Logan. |
[8] | Cuartas-Domínguez M, Medel R ( 2010) Pollinator-mediated selection and experimental manipulation of the flower phenotype in Chloraea bletioides. Functional Ecology, 24, 1219-1227. |
[9] | Darwin CR ( 1862) On the Various Contrivances by Which British and Foreign Orchids Are Fertilised by Insects, and on the Good Effects of Intercrossing, pp. 365. John Murray, London. |
[10] | Dudash MR, Hassler C, Stevens PM, Fenster CB ( 2011) Experimental floral and inflorescence trait manipulations affect pollinator preference and function in a hummingbird-pollinated plant. American Journal of Botany, 98, 275-282. |
[11] | Ellis AG, Johnson SD ( 2010) Gender differences in the effects of floral spur length manipulation on fitness in a hermaphrodite orchid. International Journal of Plant Sciences, 171, 1010-1019. |
[12] | Fenster CB, Armbruster WS, Dudash MR ( 2009) Specialization of flowers: Is floral orientation an overlooked first step? New Phytologist, 183, 502-506. |
[13] | Fenster CB, Cheely G, Dudash MR, Reynolds RT ( 2006) Nectar reward and advertisement in hummingbird-pollinated Silene virginica (Caryophyllaceae). American Journal of Botany, 93, 1800-1807. |
[14] | Harder LD, Johnson SD ( 2009) Darwin’s beautiful contrivances: Evolutionary and functional evidence for floral adaptation. New Phytologist, 183, 530-545. |
[15] | Herrera CM ( 2001) Deconstructing a floral phenotype: Do pollinators select for corolla integration in Lavandula latifolia? Journal of Evolutionary Biology, 14, 574-584. |
[16] | Herrera CM, Castellanos MC, Medrano M, Harder LD, Barrett SCH ( 2006) Geographical context of floral evolution: Towards an improved research programme in floral diversification. In: Ecology and Evolution of Flowers, pp. 278-294. Oxford University Press, Oxford. |
[17] | Johnson SD, Steiner KE ( 1997) Long-tongued fly pollination and evolution of floral spur length in the Disa draconis complex (Orchidaceae). Evolution, 51, 45-53. |
[18] | Kay KM, Sargent RD ( 2009) The role of animal pollination in plant speciation: Integrating ecology, geography, and genetics. Annual Review of Ecology, Evolution and Systematics, 40, 637-656. |
[19] | Kingsolver JG, Hoekstra HE, Hoekstra JM, Berrigan D ( 2001) The strength of phenotypic selection in natural populations. The American Naturalist, 157, 245-261. |
[20] | Klinkhamer PGL, de Jong TJ ( 1993) Attractiveness to pollinators: A plant’s dilemma. Oikos, 66, 180-184. |
[21] | Lande R, Arnold SJ ( 1983) The measurement of selection on correlated characters. Evolution, 37, 1210-1226. |
[22] | Maad J ( 2000) Phenotypic selection in hawkmoth-pollinated Platanthera bifolia: Targets and fitness surfaces. Evolution, 54, 112-123. |
[23] | Meléndez-Ackerman E, Campbell DR ( 1998) Adaptive significance of flower color and inter-trait correlations in an Ipomopsis hybrid zone. Evolution, 52, 1293-1303. |
[24] | Nilsson LA ( 1988) The evolution of flowers with deep corolla tubes. Nature, 334, 147-149. |
[25] | O’Connell LM, Johnston MO ( 1998) Male and female pollination success in a deceptive orchid, a selection study. Ecology, 79, 1246-1260. |
[26] | Reynolds RJ, Dudash MR, Fenster CB ( 2010) Multi-year study of multivariate linear and nonlinear phenotypic selection on floral traits of hummingbird-pollinated Silene virginica. Evolution, 64, 358-369. |
[27] | Schemske DW, Bradshaw HD ( 1999) Pollinator preference and the evolution of floral traits in monkey flowers (Mimulus). Proceedings of the National Academy of Sciences, USA, 96, 11910-11915. |
[28] | Sletvold N, Grindeland JM, Ågren J ( 2010) Pollinator-mediated selection on floral display, spur length and flowering phenology in the deceptive orchid Dactylorhiza lapponica. New Phytologist, 188, 385-392. |
[29] | Wang XJ, Zhang LC, Zhao ZG ( 2010) The pattern of seed reproduction and its response to resources in Pedicularis semitorta individuals. Acta Prataculturae Sinica, 19, 236-242. (in Chinese with English abstract) |
[ 王晓娟, 张龙冲, 赵志刚 ( 2010) 半扭卷马先蒿个体内的种子生产模式及其对资源的响应. 草业学报, 19, 236-242.] | |
[30] | Zhang C, Zha SQ, Yang YP, Duan YW ( 2012) Effects of the yellow barbs of the staminodes on reproductive success of Delphinium caeruleum (Ranunculaceae). Biodiversity Science, 20, 348-353. (in Chinese with English abstract) |
[ 张婵, 查绍琴, 杨永平, 段元文 ( 2012) 蓝翠雀花退化雄蕊上的黄色髯毛对其繁殖成功的影响. 生物多样性, 20, 348-353.] | |
[31] | Zhao ZG, Lu NN, Conner JK ( 2016) Adaptive pattern of nectar volume within inflorescences: Bumblebee foraging behavior and pollinator-mediated natural selection. Scientific Reports, 6, 34499. |
[32] | Zhao ZG, Huang SQ ( 2013) Differentiation of floral traits associated with pollinator preference in a generalist-pollinated herb, Trollius ranunculoides (Ranunculaceae). International Journal of Plant Sciences, 174, 637-646. |
[33] | Zhao ZG, Wang YK ( 2015) Selection by pollinators on floral traits in generalized Trollius ranunculoides (Ranunculaceae) along altitudinal gradients. PLoS ONE, 10, e0118299. |
[1] | Ruiwu Wang, Minlan Li, Jiaxu Han, Chao Wang. Fitness relativity and path-dependent selection [J]. Biodiv Sci, 2022, 30(1): 21323-. |
[2] | Xiaofeng Yang, Xiaomeng Li, Wanjin Liao. Advances in the genetic regulating pathways of plant flowering time [J]. Biodiv Sci, 2021, 29(6): 825-842. |
[3] | Wenzhao Hu, Jimin Zhao, Yanwen Zhang. Fitness advantage and maintenance mechanisms of dimorphic mixed- mating plants [J]. Biodiv Sci, 2019, 27(4): 468-474. |
[4] | Wensheng Yu, Yaolin Guo, Jiajia Jiang, Keke Sun, Ruiting Ju. Comparison of the life history of a native insect Laelia coenosa with a native plant Phragmites australis and an invasive plant Spartina alterniflora [J]. Biodiv Sci, 2019, 27(4): 433-438. |
[5] | Chengjin Chu, Youshi Wang, Yu Liu, Lin Jiang, Fangliang He. Advances in species coexistence theory [J]. Biodiv Sci, 2017, 25(4): 345-354. |
[6] | Yuliang Jiang, Kundong Bai, Yili Guo, Bin Wang, Dongxing Li, Xiankun Li, Zhishang Liu. Floral traits of woody plants and their habitat differentiations in a northern tropical karst forest [J]. Biodiv Sci, 2016, 24(2): 148-156. |
[7] | Chan Zhang, Shaoqin Zha, Yongping Yang, Yuanwen Duan. Effects of the yellow barbs of the staminodes on reproductive success of Delphinium caeruleum (Ranunculaceae) [J]. Biodiv Sci, 2012, 20(3): 348-353. |
[8] | Lele Liu, Zuojun Liu, Guozhen Du, Zhigang Zhao. Floral traits, pollinator assemblages, and phenotypic selection at different flowering time for Trollius ranunculoides [J]. Biodiv Sci, 2012, 20(3): 317-323. |
[9] | Bao-Rong Lu, Hui Xia, Wei Wang, Xiao Yang. Impacts of natural hybridization and introgression on biological invasion of plant species [J]. Biodiv Sci, 2010, 18(6): 577-589. |
[10] | Bao-Rong Lu, Hui Xia, Xiao Yang, Xin Jin, Ping Liu, Wei Wang. [J]. Biodiv Sci, 2009, 17(4): 362-377. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn