生物多样性 ›› 2023, Vol. 31 ›› Issue (12): 23363. DOI: 10.17520/biods.2023363
宋亮1,*(), 吴毅1, 胡海霞1,2, 刘文耀1, 中村彰宏1, 陈亚军1, 马克平3
收稿日期:
2023-09-26
接受日期:
2023-10-31
出版日期:
2023-12-20
发布日期:
2023-11-30
通讯作者:
E-mail: 作者简介:
第一联系人:#共同第一作者
基金资助:
Liang Song1,*(), Yi Wu1, Haixia Hu1,2, Wenyao Liu1, Akihiro Nakamura1, Yajun Chen1, Keping Ma3
Received:
2023-09-26
Accepted:
2023-10-31
Online:
2023-12-20
Published:
2023-11-30
Contact:
E-mail: About author:
First author contact:#Co-first authors
摘要:
林冠是生物圈中物种最为丰富的生境之一。长期以来, 由于森林三维空间复杂性和林冠访问技术的限制, 人们对林冠生物多样性、林冠的结构、功能和生态过程知之甚少。塔吊的应用突破了技术瓶颈, 给林冠科学研究带来了深刻的变革。20世纪80年代以来, 基于全球的林冠塔吊, 国际上先后发起了林冠与土壤节肢动物多样性调查计划、林冠生物学计划、林冠CO2富集和增温实验等一系列科学研究计划, 回答了林冠“有什么、在哪里、怎样变”等基本问题, 极大地推动了林冠科学的发展。本综述首先介绍了林冠访问技术及发展历程。随后, 较为系统地梳理了基于塔吊平台发起的林冠研究计划, 并从林冠生物多样性格局、林冠生态过程和林冠对全球变化的响应与适应3方面总结了相关研究进展。最后, 从林冠访问技术所驱动的重大发现、林冠科学的主要研究框架、林冠科学的地域性与局限性等方面阐述了林冠科学研究计划带来的重要启示, 并提出今后的林冠研究应更多关注“林冠-地面-土壤” 3个层次相互关联形成的整体结构和功能系统, 通过多元异构数据融合和人工智能技术, 从多尺度、全方位解析全球变化背景下, 整体森林的生物多样性格局、生态过程及其服务功能的响应与维持机制。
宋亮, 吴毅, 胡海霞, 刘文耀, 中村彰宏, 陈亚军, 马克平 (2023) 基于塔吊的林冠科学研究进展及展望. 生物多样性, 31, 23363. DOI: 10.17520/biods.2023363.
Liang Song, Yi Wu, Haixia Hu, Wenyao Liu, Akihiro Nakamura, Yajun Chen, Keping Ma (2023) Research progress and prospects of forest canopy science based on canopy cranes. Biodiversity Science, 31, 23363. DOI: 10.17520/biods.2023363.
图1 塔吊在林冠研究中的应用。(A)西双版纳补蚌地区热带雨林林冠全景(邓云供图); (B)塔吊的起重臂搭载吊篮能够重复、安全、精确地进入林冠绝大部分空间位置(金立旺供图); (C)研究人员在热带雨林外层林冠取样(金立旺供图)。
Fig. 1 Tower crane applied in the study of forest canopies. (A) Panorama view of the rainforest canopy at the crane site in Bubeng in Xishuangbanna, Southwest China; (B) The canopy crane can allow repeatable, safe, non-destructive visit in anywhere of the forest canopy; (C) The staff in the gondola were sampling in the dipterocarp forest canopy.
时间 Time | 林冠访问工具 Tools | 人物 People | 地点 Location | 基本特征 Characteristics | 参考文献 Reference |
---|---|---|---|---|---|
1878 | 望远镜 Telescope | Alfred R. Wallace | 基于地面对林冠的初步认知 Preliminary understanding of forest canopy based on ground observation | Lowman, | |
1926 | 长梯 Spike ladder | W. C. Allee | 巴拿马巴罗科罗拉多岛 Panama Barro Colorado Island (BCI) | 实测林冠垂直梯度的小气候 Measuring vertical gradient microclimate of the forest canopy | Hingston, |
1929 | 抛绳枪 + 观察座椅 Line throwing gun and observation chair | R. W. G. Hingston | 英属圭亚那 British Guyana | 研究林冠昆虫、鸟类及哺乳类生物 Study on canopy insects, birds and mammals | Hingston, |
1958 | 林冠铁塔 High tower | 乌干达Mpanga森林保护区 Uganda Mpanga Forest Reserve | 研究热带雨林内温湿度垂直梯度和昆虫多样性 Study on temperature and humidity and insect diversity along the vertical gradient of tropical rainforests | Haddow et al, | |
1968 | 林冠走廊 Canopy walkway | Ilar Muul | 马来西亚 Malaysia | 研究热带雨林中动物传播疾病及其对军队的影响。截至2009年, 全球有51座林冠走廊 Study of animal-borne diseases in tropical rainforests and their impacts on the military. Until | Muul & Liat, Lowman, Ramlan et al, |
1978 | 单绳攀爬技术 Single rope technique | Donald R. Perry | 哥斯达黎加La Selva生态站 La Selva Biological Station, Costa Rica | 研究散生巨树生态学 Study on the ecology of emergent and canopy trees | Perry, |
1981 | 林冠吊杆 Canopy boom | Peter Ashton | 马来西亚巴索森林保护区 Malaysia Pasoh Forest Reserve | 研究龙脑香植物传粉生物学 Study on pollination biology of dipterocarp plants | Lowman, |
1982 | 林冠喷雾设备 Canopy fogging apparatus | Terry Erwin | 巴拿马巴罗科罗拉多岛 Panama BCI | 研究热带森林的林冠昆虫多样性 Studying canopy insect diversity in tropical forests | Erwin, |
1986 | 飞艇(热气球) + 林冠筏等系列外挂设备 Airship (hot-air balloon), canopy raft and other external equipment | Francis Hallé, Gilles Ebersolt | 法属圭亚那(1986、1989、1996)、喀麦隆(1991)、加蓬(1999)、马达加斯加(2001)、巴拿马BCI ( | 外层林冠(林冠-大气交互面), 可一次性搭载74名科学家在林冠层开展工作 Studying outer canopies (canopy- atmospheric interface), which can carry 74 scientists to work in the canopy at a time | Opération Canopée http://www.radeau-des-cimes.org/?lang=en; Mitchell et al, |
1990 | 林冠塔吊 Canopy crane | Alan Smith | 截至2023年, 全球共建成22座林冠塔吊(3座已停运), 其中7座位于热带森林 Until | 依托塔吊先后开展了IBISCA、FACE、TCBP等林冠研究计划 Canopy research programs such as IBISCA, FACE, and TCBP have been carried out successively using canopy cranes | 吴毅等, |
2001 | Biotopia研究中心(构想) Biotopia Research Center (conceptual idea) | Andrew Mitchell | 集成塔吊、走廊、林冠筏、铁塔、单绳等各种工具为一体 Canopy access techniques including crane, walkway, craft, tower, and single rope technique were combined | Stork & Best, | |
2014 | 林冠研究永久访问系统 Canopy Operation Permanent Access System (COPAS) | G. Gottsberger | 法属圭亚那Nouragues生态站Nouragues Ecology Station, French Guyana | 3座45 m高的铁塔, 通过缆绳连接, 构成边长为180 m的等边三角形, 覆盖森林面积1.4 ha Three 45 m high towers, connected by cables, form an equilateral triangle with a side length of 180 m, covering a forest area of 1.4 ha | Basset et al, http://www.nouragues.cnrs.fr/spip.php?rubrique4 |
2015 | 无人机和激光雷达 Drones and light detection and ranging (LiDAR) | Greg Asner, Roberta Martin | 美国亚利桑那州立大学 Arizona State University, USA | 结合激光雷达(LiDAR)与高保真成像光谱(HiFIS), 通过计算森林冠层含水量的损失来量化干旱程度 Combined with LiDAR and HiFIS, the degree of drought was quantified by calculating the loss of forest canopy water content | Asner et al, |
表1 林冠访问技术发展概况
Table1 The chronological progress of the forest canopy access techniques
时间 Time | 林冠访问工具 Tools | 人物 People | 地点 Location | 基本特征 Characteristics | 参考文献 Reference |
---|---|---|---|---|---|
1878 | 望远镜 Telescope | Alfred R. Wallace | 基于地面对林冠的初步认知 Preliminary understanding of forest canopy based on ground observation | Lowman, | |
1926 | 长梯 Spike ladder | W. C. Allee | 巴拿马巴罗科罗拉多岛 Panama Barro Colorado Island (BCI) | 实测林冠垂直梯度的小气候 Measuring vertical gradient microclimate of the forest canopy | Hingston, |
1929 | 抛绳枪 + 观察座椅 Line throwing gun and observation chair | R. W. G. Hingston | 英属圭亚那 British Guyana | 研究林冠昆虫、鸟类及哺乳类生物 Study on canopy insects, birds and mammals | Hingston, |
1958 | 林冠铁塔 High tower | 乌干达Mpanga森林保护区 Uganda Mpanga Forest Reserve | 研究热带雨林内温湿度垂直梯度和昆虫多样性 Study on temperature and humidity and insect diversity along the vertical gradient of tropical rainforests | Haddow et al, | |
1968 | 林冠走廊 Canopy walkway | Ilar Muul | 马来西亚 Malaysia | 研究热带雨林中动物传播疾病及其对军队的影响。截至2009年, 全球有51座林冠走廊 Study of animal-borne diseases in tropical rainforests and their impacts on the military. Until | Muul & Liat, Lowman, Ramlan et al, |
1978 | 单绳攀爬技术 Single rope technique | Donald R. Perry | 哥斯达黎加La Selva生态站 La Selva Biological Station, Costa Rica | 研究散生巨树生态学 Study on the ecology of emergent and canopy trees | Perry, |
1981 | 林冠吊杆 Canopy boom | Peter Ashton | 马来西亚巴索森林保护区 Malaysia Pasoh Forest Reserve | 研究龙脑香植物传粉生物学 Study on pollination biology of dipterocarp plants | Lowman, |
1982 | 林冠喷雾设备 Canopy fogging apparatus | Terry Erwin | 巴拿马巴罗科罗拉多岛 Panama BCI | 研究热带森林的林冠昆虫多样性 Studying canopy insect diversity in tropical forests | Erwin, |
1986 | 飞艇(热气球) + 林冠筏等系列外挂设备 Airship (hot-air balloon), canopy raft and other external equipment | Francis Hallé, Gilles Ebersolt | 法属圭亚那(1986、1989、1996)、喀麦隆(1991)、加蓬(1999)、马达加斯加(2001)、巴拿马BCI ( | 外层林冠(林冠-大气交互面), 可一次性搭载74名科学家在林冠层开展工作 Studying outer canopies (canopy- atmospheric interface), which can carry 74 scientists to work in the canopy at a time | Opération Canopée http://www.radeau-des-cimes.org/?lang=en; Mitchell et al, |
1990 | 林冠塔吊 Canopy crane | Alan Smith | 截至2023年, 全球共建成22座林冠塔吊(3座已停运), 其中7座位于热带森林 Until | 依托塔吊先后开展了IBISCA、FACE、TCBP等林冠研究计划 Canopy research programs such as IBISCA, FACE, and TCBP have been carried out successively using canopy cranes | 吴毅等, |
2001 | Biotopia研究中心(构想) Biotopia Research Center (conceptual idea) | Andrew Mitchell | 集成塔吊、走廊、林冠筏、铁塔、单绳等各种工具为一体 Canopy access techniques including crane, walkway, craft, tower, and single rope technique were combined | Stork & Best, | |
2014 | 林冠研究永久访问系统 Canopy Operation Permanent Access System (COPAS) | G. Gottsberger | 法属圭亚那Nouragues生态站Nouragues Ecology Station, French Guyana | 3座45 m高的铁塔, 通过缆绳连接, 构成边长为180 m的等边三角形, 覆盖森林面积1.4 ha Three 45 m high towers, connected by cables, form an equilateral triangle with a side length of 180 m, covering a forest area of 1.4 ha | Basset et al, http://www.nouragues.cnrs.fr/spip.php?rubrique4 |
2015 | 无人机和激光雷达 Drones and light detection and ranging (LiDAR) | Greg Asner, Roberta Martin | 美国亚利桑那州立大学 Arizona State University, USA | 结合激光雷达(LiDAR)与高保真成像光谱(HiFIS), 通过计算森林冠层含水量的损失来量化干旱程度 Combined with LiDAR and HiFIS, the degree of drought was quantified by calculating the loss of forest canopy water content | Asner et al, |
[1] | Anhuf D, Winkler H (1999) Geographical and ecological settings of the Surumoni-crane-project (Upper Orinoco, Estado Amazonas, Venezuela). Anzeiger Abt. I, 135, 3-23. |
[2] | Asner GP, Brodrick PG, Anderson CB, Vaughn N, Knapp DE, Martin RE (2016) Progressive forest canopy water loss during the 2012-2015 California drought. Proceedings of the National Academy of Sciences, USA, 113, E249-E255. |
[3] |
Asner GP, Martin RE, Knapp DE, Tupayachi R, Anderson CB, Sinca F, Vaughn NR, Llactayo W (2017) Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation. Science, 355, 385-389.
DOI PMID |
[4] |
Bader MKF, Leuzinger S, Keel SG, Siegwolf RTW, Hagedorn F, Schleppi P, Körner C (2013) Central European hardwood trees in a high-CO2 future: Synthesis of an 8-year forest canopy CO2 enrichment project. Journal of Ecology, 101, 1509-1519.
DOI URL |
[5] |
Bader MKF, Siegwolf R, Körner C (2010) Sustained enhancement of photosynthesis in mature deciduous forest trees after 8 years of free air CO2 enrichment. Planta, 232, 1115-1125.
DOI URL |
[6] |
Barker MG, Sutton SL (1997) Low‐tech methods for forest canopy access. Biotropica, 29, 243-247.
DOI URL |
[7] |
Basset Y, Cizek L, Cuénoud P, Didham RK, Guilhaumon F, Missa O, Novotny V, Ødegaard F, Roslin T, Schmidl J, Tishechkin AK, Winchester NN, Roubik DW, Aberlenc HP, Bail J, Barrios H, Bridle JR, Castaño-Meneses G, Corbara B, Curletti G, da Rocha WD, De Bakker D, Delabie JHC, Dejean A, Fagan LL, Floren A, Kitching RL, Medianero E, Miller SE, de Oliveira EG, Orivel J, Pollet M, Rapp M, Ribeiro SP, Roisin Y, Schmidt JB, Sørensen L, Leponce M (2012) Arthropod diversity in a tropical forest. Science, 338, 1481-1484.
DOI PMID |
[8] | Basset Y, Cizek L, Cuénoud P, Didham RK, Novotny V, Ødegaard F, Roslin T, Tishechkin AK, Schmidl J, Winchester NN, Roubik DW, Aberlenc HP, Bail J, Barrios H, Bridle JR, Castaño-Meneses G, Corbara B, Curletti G, da Rocha WD, De Bakker D, Delabie JHC, Dejean A, Fagan LL, Floren A, Kitching RL, Medianero E, de Oliveira EG, Orivel J, Pollet M, Rapp M, Ribeiro SP, Roisin Y, Schmidt JB, Sørensen L, Lewinsohn TM, Leponce M (2015) Arthropod distribution in a tropical rainforest: Tackling a four dimensional puzzle. PLoS ONE, 10, e0144110. |
[9] | Basset Y, Corbara B, Barrios H, Cuénoud P, Leponce M, Aberlenc H, Bail J, Bito D, Bridle J, Meneses GC, Čížek L, Remice AC, Curletti G, Delabie J, Dejean A, Didham R, Dufrêne M, Fagan L, Floren A, Frame D, Hallé F, Hardy O, Hernández A, Kitching R, Lewinsohn T, Lewis O, Manumbor M, Medianero E, Missa O, Mitchell A, Mogia M, Novotný V, Ødegaard F, Oliveira EG, Orivel J, Ozanne C, Pascal O, Pinzon S, Rapp M, Ribeiro S, Roisin Y, Roslin T, Roubik D, Samaniego M, Schmidl J, Sørensen LL, Tishechkin A, Osselaer CV, Winchester N (2007) IBISCA-Panama, a large-scale study of arthropod beta-diversity and vertical stratification in a lowland rainforest: Rationale, study sites and field protocols. Bulletin of the Institute of Entomology, Royal Belgian Academy of Natural Sciences, 77, 39-69. |
[10] | Basset Y, Horlyck V, Wright SJ (2003) Studying Forest Canopies from Above:The International Canopy Crane Network. United Nations Environmental Programme. Smithsonian Tropical Research Institute and UNEP, New York. |
[11] | Batke S (2012) Epiphytes: A study of the history of forest canopy research. The Plymouth Student Scientist, 5, 253-268. |
[12] | Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM (2015) Accelerated modern human-induced species losses: Entering the sixth mass extinction. Science Advances, 1, e1400253. |
[13] |
Cernusak LA, Winter K, Dalling JW, Holtum JAM, Jaramillo C, Korner C, Leakey ADB, Norby RJ, Poulter B, Turner BL, Wright SJ (2013) Tropical forest responses to increasing atmospheric CO2: Current knowledge and opportunities for future research. Functional Plant Biology, 40, 531-551.
DOI PMID |
[14] |
Chung H, Muraoka H, Nakamura M, Han S, Muller O, Son Y (2013) Experimental warming studies on tree species and forest ecosystems: A literature review. Journal of Plant Research, 126, 447-460.
DOI PMID |
[15] | Corlett RT, Primack RB (2011) Tropical Rain Forests: An Ecological and Biogeographical Comparison, 2nd edn, Wiley-Blackwell, Chichester. |
[16] |
Crous KY, Cheesman AW, Middleby K, Rogers EIE, Wujeska-Klause A, Bouet AYM, Ellsworth DS, Liddell MJ, Cernusak LA, Barton CVM (2023) Similar patterns of leaf temperatures and thermal acclimation to warming in temperate and tropical tree canopies. Tree Physiology, 43, 1383-1399.
DOI URL |
[17] | Devy MS, Ganesh T (2003) Canopy science and its relevance in India. Current Science, 85, 581-584. |
[18] | Didham RK, Fagan LL (2003) Project IBISCA—Investigating the biodiversity of soil and canopy arthropods. The Weta, 26, 1-6. |
[19] | Domec JC, Lachenbruch B, Meinzer FC, Woodruff DR, Warren JM, McCulloh KA (2008) Maximum height in a conifer is associated with conflicting requirements for xylem design. Proceedings of the National Academy of Sciences, USA, 105, 12069-12074. |
[20] |
Ellsworth DS, Anderson IC, Crous KY, Cooke J, Drake JE, Gherlenda AN, Gimeno TE, MacDonald CA, Medlyn BE, Powell JR (2017) Elevated CO2 does not increase eucalypt forest productivity on a low-phosphorus soil. Nature Climate Change, 7, 279-282.
DOI |
[21] |
Erwin TL (1983) Tropical forest canopies: The last biotic frontier. Bulletin of the Entomological Society of America, 29, 14-20.
DOI URL |
[22] | Facey SL, Fidler DB, Rowe RC, Bromfield LM, Nooten SS, Staley JT, Ellsworth DS, Johnson SN (2017) Atmospheric change causes declines in woodland arthropods and impacts specific trophic groups. Agricultural and Forest Entomology, 19, 101-112. |
[23] |
Gherlenda AN, Crous KY, Moore BD, Haigh AM, Johnson SN, Riegler M (2016) Precipitation, not CO2 enrichment, drives insect herbivore frass deposition and subsequent nutrient dynamics in a mature Eucalyptus woodland. Plant and Soil, 399, 29-39.
DOI URL |
[24] |
Gotsch SG, Nadkarni N, Amici A (2016) The functional roles of epiphytes and arboreal soils in tropical montane cloud forests. Journal of Tropical Ecology, 32, 455-468.
DOI URL |
[25] |
Grushka MM, Adams J, Lowman M, Lin GH, Marino BDV (1999) The Biosphere 2 canopy access system. Ecological Engineering, 13, 313-320.
DOI URL |
[26] |
Haddow AJ, Corbet PS (1961) Entomological studies from a high tower in Mpanga forest, Uganda. Transactions of the Royal Entomological Society of London, 113, 284-300.
DOI URL |
[27] |
Hasegawa S, MacDonald CA, Power SA (2016) Elevated carbon dioxide increases soil nitrogen and phosphorus availability in a phosphorus-limited Eucalyptus woodland. Global Change Biology, 22, 1628-1643.
DOI PMID |
[28] | Hines S, Richardson S (2011) Era of canopy crane ending; Certain research and education activities remain. What’s Up? 17, 2. |
[29] |
Hingston RWG (1930) The Oxford University Expedition to British Guiana. Geographical Journal, 76, 1-20.
DOI URL |
[30] | Hopkin M (2005) Biodiversity and climate form focus of forest canopy plan. Nature, 436, 452. |
[31] |
Hosaka T, Yumoto T, Chen YY, Sun IF, Wright SJ, Noor NSM (2011) Abundance of insect seed predators and intensity of seed predation on Shorea (Dipterocarpaceae) in two consecutive masting events in Peninsular Malaysia. Journal of Tropical Ecology, 27, 651-655.
DOI URL |
[32] |
Hu HX, Mo YX, Shen T, Wu Y, Shi XM, Ai YY, Lu HZ, Zakari S, Li S, Song L (2022) Simulated high-intensity phorophyte removal mitigates the robustness of epiphyte community and destroys commensal network structure. Forest Ecology and Management, 526, 120586.
DOI URL |
[33] |
Hu HX, Shen T, Quan DL, Nakamura A, Song L (2021) Structuring interaction networks between epiphytic bryophytes and their hosts in Yunnan, SW China. Frontiers in Forests and Global Change, 4, 716278.
DOI URL |
[34] | Inoue T, Yumoto T, Hamid AA, Seng LH, Ogino K (1995) Construction of a canopy observation system in a tropical rainforest of Sarawak. Selbyana, 16, 100-111. |
[35] |
Kitching RL (2006) Crafting the pieces of the diversity jigsaw puzzle. Science, 313, 1055-1057.
PMID |
[36] |
Klein T, Siegwolf RTW, Körner C (2016) Belowground carbon trade among tall trees in a temperate forest. Science, 352, 342-344.
DOI PMID |
[37] |
Körner C (2009) Responses of humid tropical trees to rising CO2. Annual Review of Ecology, Evolution, and Systematics, 40, 61-79.
DOI URL |
[38] |
Körner C, Asshoff R, Bignucolo O, Hättenschwiler S, Keel SG, Peláez-Riedl S, Pepin S, Siegwolf RTW, Zotz G (2005) Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science, 309, 1360-1362.
PMID |
[39] |
Leponce M, Corbara B, Delabie JHC, Orivel J, Aberlenc HP, Bail J, Barrios H, Campos RI, do Nascimento IC, Compin A, Didham RK, Floren A, Medianero E, Ribeiro SP, Roisin Y, Schmidl J, Tishechkin AK, Winchester NN, Basset Y, Dejean A (2021) Spatial and functional structure of an entire ant assemblage in a lowland Panamanian rainforest. Basic and Applied Ecology, 56, 32-44.
DOI URL |
[40] | Linsenmair KE, Davis AJ, Fiala B, Speight MR (2001) Tropical Forest Canopies: Ecology and Management. Springer, Dordrecht. |
[41] |
Liu WY, Ma WZ, Yang LP (2006) Advances in ecological studies on epiphytes in forest canopies. Chinese Journal of Plant Ecology, 30, 522-533. (in Chinese with English abstract)
DOI URL |
[刘文耀, 马文章, 杨礼攀 (2006) 林冠附生植物生态学研究进展. 植物生态学报, 30, 522-533.]
DOI |
|
[42] |
Lowman MD (1984) An assessment of techniques for measuring herbivory: Is rainforest defoliation more intense than we thought? Biotropica, 16, 264-268.
DOI URL |
[43] | Lowman MD (2009) Canopy research in the twenty-first century: A review of arboreal ecology. Tropical Ecology, 50, 125-136. |
[44] |
Lowman MD (2020) Life in the treetops—An overview of forest canopy science and its future directions. Plants, People, Planet, 3, 16-21.
DOI URL |
[45] | Lowman MD, Devy S, Ganesh T (2013) Treetops at Risk: Challenges of Global Canopy Ecology and Conservation. Springer, New York. |
[46] |
Lowman MD, Moffett M (1993) The ecology of tropical rain forest canopies. Trends in Ecology & Evolution, 8, 104-107.
DOI URL |
[47] | Lowman MD, Nadkarni NM (1995) Forest Canopies. Academic Press, San Diego. |
[48] | Lowman MD, Rinker HB (2004) Forest Canopies, 2nd edn. Elsevier Academic Press, London. |
[49] |
Lowman MD, Schowalter TD (2012) Plant science in forest canopies—The first 30 years of advances and challenges (1980-2010). New Phytologist, 194, 12-27.
DOI URL |
[50] | Lowman MD, Schowalter TD, Franklin JF (2012) Methods in Forest Canopy Research. University of California Press, Oakland. |
[51] |
Ma KP (2014) Rapid development of biodiversity informatics in China. Biodiversity Science, 22, 251-252. (in Chinese)
DOI |
[马克平 (2014) 生物多样性信息学在中国快速发展. 生物多样性, 22, 251-252.]
DOI |
|
[52] |
Ma KP (2015) Biodiversity monitoring in China: From CForBio to Sino BON. Biodiversity Science, 23, 1-2. (in Chinese)
DOI |
[马克平 (2015) 中国生物多样性监测网络建设:从CForBio到Sino BON. 生物多样性, 23, 1-2.]
DOI |
|
[53] |
Ma KP (2016) Hot topics for biodiversity science. Biodiversity Science, 24, 1-2. (in Chinese)
DOI |
[马克平 (2016) 生物多样性科学的热点问题. 生物多样性, 24, 1-2.]
DOI |
|
[54] |
Midgley JJ (2003) Is bigger better in plants? The hydraulic costs of increasing size in trees. Trends in Ecology & Evolution, 18, 5-6.
DOI URL |
[55] |
Mitchell A (2001) Introduction—Canopy science: Time to shape up. Plant Ecology, 153, 5-11.
DOI URL |
[56] | Mitchell AW, Secoy K, Jackson T (2002) The Global Canopy Handbook:Techniques of Access and Study in the Forest Roof. University of Oxford, Oxford. |
[57] |
Moffett MW (2000) What’s “Up”? A critical look at the basic terms of canopy biology. Biotropica, 32, 569-596.
DOI URL |
[58] |
Monteiro JAF, Zotz G, Körner C (2009) Tropical epiphytes in a CO2-rich atmosphere. Acta Oecologica, 35, 60-68.
DOI URL |
[59] | Morawetz W (2001) The Surumoni Project:The botanical approach toward gaining an interdisciplinary understanding of the functions of the rain forest canopy. In: Biodiversity (eds Barthlott W, Winiger M, Biedinger N), pp. 71-80. Springer, Berlin. |
[60] |
Muul I, Liat LB (1970) Vertical zonation in a tropical rain forest in Malaysia: Method of study. Science, 169, 788-789.
PMID |
[61] |
Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853-858.
DOI |
[62] |
Nadkarni NM (1981) Canopy roots: Convergent evolution in rainforest nutrient cycles. Science, 214, 1023-1024.
PMID |
[63] |
Nadkarni NM (1984) Epiphyte biomass and nutrient capital of a neotropical elfin forest. Biotropica, 16, 249-256.
DOI URL |
[64] | Nadkarni NM, Parker GG, Ford ED, Cushing JB, Stallman C (1996) The international canopy network: A pathway for interdisciplinary exchange of scientific information on forest canopies. Northwest Science, 70, 104-108. |
[65] |
Nadkarni NM, Parker GG, Lowman MD (2011) Forest canopy studies as an emerging field of science. Annals of Forest Science, 68, 217-224.
DOI URL |
[66] | Nakamura A, Kitching RL, Cao M, Creedy TJ, Fayle TM, Freiberg M, Hewitt CN, Itioka T, Koh LP, Ma KP, Malhi Y, Mitchell A, Novotny V, Ozanne CMP, Song L, Wang H, Ashton LA (2017) Forests and their canopies: Achievements and horizons in canopy science. Trends in Ecology & Evolution, 32, 438-451. |
[67] |
Nakamura M, Makoto K, Tanaka M, Inoue T, Son Y, Hiura T (2016) Leaf flushing and shedding, bud and flower production, and stem elongation in tall birch trees subjected to increases in aboveground temperature. Trees, 30, 1535-1541.
DOI URL |
[68] |
Nakamura M, Muller O, Tayanagi S, Nakaji T, Hiura T (2010) Experimental branch warming alters tall tree leaf phenology and acorn production. Agricultural and Forest Meteorology, 150, 1026-1029.
DOI URL |
[69] |
Nakamura M, Nakaji T, Muller O, Hiura T (2015) Different initial responses of the canopy herbivory rate in mature oak trees to experimental soil and branch warming in a soil-freezing area. Oikos, 124, 1071-1077.
DOI URL |
[70] |
Norby RJ, De Kauwe MG, Domingues TF, Duursma RA, Ellsworth DS, Goll DS, Lapola DM, Luus KA, MacKenzie AR, Medlyn BE, Pavlick R, Rammig A, Smith B, Thomas R, Thonicke K, Walker AP, Yang XJ, Zaehle S (2016) Model-data synthesis for the next generation of forest free-air CO2 enrichment (FACE) experiments. New Phytologist, 209, 17-28.
DOI URL |
[71] | Novotny V, Drozd P, Miller SE, Kulfan M, Janda M, Basset Y, Weiblen GD (2006) Why are there so many species of herbivorous insects in tropical rainforests? Science, 313, 1115-1118. |
[72] | Novotny V, Drozd P, Miller SE, Kulfan M, Janda M, Basset Y, Weiblen GD (2007) Response to comment on “Why are there so many species of herbivorous insects in tropical rainforests?”. Science, 315, 1666. |
[73] |
Ochoa-Hueso R, Hughes J, Delgado-Baquerizo M, Drake JE, Tjoelker MG, Piñeiro J, Power SA (2017) Rhizosphere-driven increase in nitrogen and phosphorus availability under elevated atmospheric CO2 in a mature Eucalyptus woodland. Plant and Soil, 416, 283-295.
DOI |
[74] | Opération Canopée (2015) Pertinence of the Study of Forest Canopies for the Conservation of Biodiversity in the Indo-Burma Hotspot. http://www.radeau-des-cimes.org/wp-content/uploads/2016/06/OperationCanopee_IndoBurmaPertinence_ENG_Reduced.pdf. (accessed on 2023-09-26) |
[75] |
Osada N (2021) Differential springtime branch warming controls intra-crown nitrogen allocation and leaf photosynthetic traits in understory saplings of a temperate deciduous species. Oecologia, 196, 331-340.
DOI PMID |
[76] |
Ozanne CMP, Anhuf D, Boulter SL, Keller M, Kitching RL, Körner C, Meinzer FC, Mitchell AW, Nakashizuka T, Dias PL, Stork NE, Wright SJ, Yoshimura M (2003) Biodiversity meets the atmosphere: A global view of forest canopies. Science, 301, 183-186.
DOI PMID |
[77] |
Parker GG, Smith AP, Hogan KP (1992) Access to the upper forest canopy with a large tower crane. BioScience, 42, 664-670.
DOI URL |
[78] | Peng SL, Ren H (2002) Promoting sustainable development of forestry through forest canopy research—Introduction to the 3rd International Canopy Conference. Acta Ecologica Sinica, 22, 1371-1372. (in Chinese) |
[彭少麟, 任海 (2002) 通过森林冠层研究促进林业可持续发展——第3届国际冠层大会介绍. 生态学报, 22, 1371-1372.] | |
[79] |
Pepin S, Körner C (2002) Web-FACE: A new canopy free-air CO2 enrichment system for tall trees in mature forests. Oecologia, 133, 1-9.
DOI URL |
[80] |
Perry DR (1978) A method of access into the crowns of emergent and canopy trees. Biotropica, 10, 155-157.
DOI URL |
[81] |
Pihlblad J, Andresen LC, MacDonald CA, Ellsworth DS, Carrillo Y (2023) The influence of elevated CO2 and soil depth on rhizosphere activity and nutrient availability in a mature Eucalyptus woodland. Biogeosciences, 20, 505-521.
DOI URL |
[82] | Ramlan MA, Aziz A, Yahya NA, Kadir AA, Yacob MR (2012) Potential of canopy tourism in Malaysia. Malaysian Forester, 75, 87-96. |
[83] |
Ribeiro SP, Basset Y (2007) Gall-forming and free-feeding herbivory along vertical gradients in a lowland tropical rainforest: The importance of leaf sclerophylly. Ecography, 30, 663-672.
DOI URL |
[84] |
Ribeiro SP, Basset Y (2016) Effects of sclerophylly and host choice on gall densities and herbivory distribution in an Australian subtropical forest. Austral Ecology, 41, 219-226.
DOI URL |
[85] |
Roisin Y, Dejean A, Corbara B, Orivel J, Samaniego M, Leponce M (2006) Vertical stratification of the termite assemblage in a neotropical rainforest. Oecologia, 149, 301-311.
PMID |
[86] |
Roslin T (2003) Not so quiet on the high frontier. Trends in Ecology & Evolution, 18, 376-379.
DOI URL |
[87] |
Roslin T, Hardwick B, Novotny V, Petry WK, Andrew NR, Asmus A, Barrio IC, Basset Y, Boesing AL, Bonebrake TC, Cameron EK, Dáttilo W, Donoso DA, Drozd P, Gray CL, Hik DS, Hill SJ, Hopkins T, Huang S, Koane B, Koane B, Laird-Hopkins B, Laukkanen L, Lewis OT, Milne S, Mwesige I, Nakamura A, Nell CS, Nichols E, Prokurat A, Sam K, Schmidt NM, Slade A, Slade V, Suchanková A, Teder T, van Nouhuys S, Vandvik V, Weissflog A, Zhukovich V, Slade EM (2017) Higher predation risk for insect prey at low latitudes and elevations. Science, 356, 742-744.
DOI PMID |
[88] | Roubik DW, Sakai S, Karim AAH (2005) Pollination Ecology and the Rain Forest: Sarawak Studies Springer, New York. |
[89] |
Ryan MG, Phillips N, Bond BJ (2006) The hydraulic limitation hypothesis revisited. Plant, Cell and Environment, 29, 367-381.
DOI URL |
[90] |
Ryan MG, Yoder BJ (1997) Hydraulic limits to tree height and tree growth. BioScience, 47, 235-242.
DOI URL |
[91] |
Sabot MEB, De Kauwe MG, Pitman AJ, Ellsworth DS, Medlyn BE, Caldararu S, Zaehle S, Crous KY, Gimeno TE, Wujeska-Klause A, Mu MY, Yang JY (2022) Predicting resilience through the lens of competing adjustments to vegetation function. Plant, Cell and Environment, 45, 2744-2761.
DOI URL |
[92] |
Sakai S (2002) General flowering in lowland mixed dipterocarp forests of South-east Asia. Biological Journal of the Linnean Society, 75, 233-247.
DOI URL |
[93] |
Sakai S, Momose K, Yumoto T, Nagamitsu T, Nagamasu H, Hamid AA, Nakashizuka T (1999) Plant reproductive phenology over four years including an episode of general flowering in a lowland dipterocarp forest, Sarawak, Malaysia. American Journal of Botany, 86, 1414-1436.
PMID |
[94] | Sapp J (2016) Coexistence:The Ecology and Evolution of Tropical Biodiversity. Oxford University Press, Oxford. |
[95] | Scheffers BR, De Meester L, Bridge TCL, Hoffmann AA, Pandolfi JM, Corlett RT, Butchart SHM, Pearce-Kelly P, Kovacs KM, Dudgeon D, Pacifici M, Rondinini C, Foden WB, Martin TG, Mora C, Bickford D, Watson JEM (2016) The broad footprint of climate change from genes to biomes to people. Science, 354, aaf7671. |
[96] |
Schleppi P, Körner C, Klein T (2019) Increased nitrogen availability in the soil under mature Picea abies trees exposed to elevated CO2 concentrations. Frontiers in Forests and Global Change, 2, 00059.
DOI URL |
[97] |
Shaw D, Greene S (2003) Wind river canopy crane research facility and wind river experimental forest. Bulletin of the Ecological Society of America, 84, 115-121.
DOI URL |
[98] |
Shen H, Cai JN, Li MJ, Chen Q, Ye WH, Wang ZF, Lian JY, Song L (2017) On Chinese forest canopy biodiversity monitoring. Biodiversity Science, 25, 229-236. (in Chinese with English abstract)
DOI |
[沈浩, 蔡佳宁, 李萌姣, 陈青, 叶万辉, 王峥峰, 练琚愉, 宋亮 (2017) 中国森林冠层生物多样性监测. 生物多样性, 25, 229-236.]
DOI |
|
[99] | Shen T, Corlett RT, Collart F, Kasprzyk T, Guo XL, Patiño J, Su Y, Hardy OJ, Ma WZ, Wang J, Wei YM, Mouton L, Li Y, Song L, Vanderpoorten A (2022a) Microclimatic variation in tropical canopies: A glimpse into the processes of community assembly in epiphytic bryophyte communities. Journal of Ecology, 12, 3023-3038. |
[100] |
Shen T, Corlett RT, Song L, Ma WZ, Guo XL, Song Y, Wu Y (2018) Vertical gradient in bryophyte diversity and species composition in tropical and subtropical forests in Yunnan, SW China. Journal of Vegetation Science, 29, 1075-1087.
DOI URL |
[101] |
Shen T, Song L, Collart F, Guisan A, Su Y, Hu HX, Wu Y, Dong JL, Vanderpoorten A (2022b) What makes a good phorophyte? Predicting occupancy, species richness and abundance of vascular epiphytes in a lowland seasonal tropical forest. Frontiers in Forests and Global Change, 5, 1007473.
DOI URL |
[102] |
Shen T, Song L, Corlett RT, Guisan A, Wang J, Ma WZ, Mouton L, Vanderpoorten A, Collart F (2023) Disentangling the roles of chance, abiotic factors and biotic interactions among epiphytic bryophyte communities in a tropical rainforest (Yunnan, China). Plant Biology, 25, 880-891.
DOI PMID |
[103] | Sievert R, Jaffe R, Morawetz W (2007) Comparing the ant fauna in a tropical and a temperate forest canopy. Ecotropicos, 20, 74-81. |
[104] |
Stork NE (2005) Canopy science. Trends in Ecology & Evolution, 20, 284-284.
DOI URL |
[105] |
Stork NE (2007a) Australian tropical forest canopy crane: New tools for new frontiers. Austral Ecology, 32, 4-9.
DOI URL |
[106] |
Stork NE (2007b) Dynamics and processes in the canopy of an Australian tropical rainforest. Austral Ecology, 32, 2-3.
DOI URL |
[107] | Stork NE, Best V (1994) European science foundation—Results of a survey of European canopy research in the tropics. Selbyana, 15, 51-62. |
[108] |
Stork NE, Grimbacher PS, Storey R, Oberprieler RG, Reid C, Slipinski SA (2008) What determines whether a species of insect is described? Evidence from a study of tropical forest beetles. Insect Conservation and Diversity, 1, 114-119.
DOI URL |
[109] |
Stork NE, Stone M, Sam L (2016) Vertical stratification of beetles in tropical rainforests as sampled by light traps in North Queensland, Australia. Austral Ecology, 41, 168-178.
DOI URL |
[110] |
Stork NE, Wright SJ, Mulkey SS (1997) Craning for a better view: The canopy crane network. Trends in Ecology & Evolution, 12, 418-420.
DOI URL |
[111] | Suchanek TH, Mooney HA, Franklin JF, Gucinski H, Ustin SL (2004) Carbon dynamics of an old-growth forest. Ecosystems, 7, 421-426. |
[112] |
Sun IF, Chen YY, Hubbell SP, Wright SJ, Noor N (2007) Seed predation during general flowering events of varying magnitude in a Malaysian rain forest. Journal of Ecology, 95, 818-827.
DOI URL |
[113] |
Sutton SL (2001) Alice grows up: Canopy science in transition from Wonderland to Reality. Plant Ecology, 153, 13-21.
DOI URL |
[114] | Thomas JA, Telfer MG, Roy DB, Preston CD, Greenwood JJD, Asher J, Fox R, Clarke RT, Lawton JH (2004) Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science, 303, 1879-1881. |
[115] | Tng DYP, Apgaua DMG, Campbell MJ, Cox CJ, Crayn DM, Ishida FY, Laidlaw MJ, Liddell MJ, Seager M, Laurance SGW (2016) Vegetation and floristics of a lowland tropical rainforest in northeast Australia. Biodiversity Data Journal, 4, e7599. |
[116] |
Toberman H, Chen CR, Xu ZH (2011) Rhizosphere effects on soil nutrient dynamics and microbial activity in an Australian tropical lowland rainforest. Soil Research, 49, 652-660.
DOI URL |
[117] | Unterseher M, Morawetz W, Klotz S, Arndt E (2007) The Canopy of a Temperate Floodplain Forest: Results from Five Years of Research at the Leipzig Canopy Crane. University of Leipzig, Leipzig. |
[118] |
Van Mantgem PJ, Stephenson NL, Byrne JC, Daniels LD, Franklin JF, Fulé PZ, Harmon ME, Larson AJ, Smith JM, Taylor AH, Veblen TT (2009) Widespread increase of tree mortality rates in the western United States. Science, 323, 521-524.
DOI PMID |
[119] | Volf M, Klimeš P, Lamarre GPA, Redmond CM, Seifert CL, Abe T, Auga J, Anderson-Teixeira K, Basset Y, Beckett S, Butterill PT, Drozd P, Gonzalez-Akre E, Kaman O, Kamata N, Laird-Hopkins B, Libra M, Manumbor M, Miller SE, Molem K, Mottl O, Murakami M, Nakaji T, Plowman NS, Pyszko P, Šigut M, Šipos J, Tropek R, Weiblen GD, Novotny V (2019) Quantitative assessment of plant-arthropod interactions in forest canopies: A plot-based approach. PLoS ONE, 14, e0222119. |
[120] | Wardhaugh CW (2013) The importance of flowers for beetle biodiversity and abundance. In: Treetops at Risk (eds Lowman M, Devy S, Ganesh T), pp. 275-288. Springer, New York. |
[121] |
Wardhaugh CW, Edwards W, Stork NE (2013a) Body size variation among invertebrates inhabiting different canopy microhabitat: Flower visitors are smaller. Ecological Entomology, 38, 101-111.
DOI URL |
[122] |
Wardhaugh CW, Edwards W, Stork NE (2013b) Variation in beetle community structure across five microhabitats in Australian tropical rainforest trees. Insect Conservation and Diversity, 6, 463-472.
DOI URL |
[123] |
Wardhaugh CW, Edwards W, Stork NE (2015) The specialization and structure of antagonistic and mutualistic networks of beetles on rainforest canopy trees. Biological Journal of the Linnean Society, 114, 287-295.
DOI URL |
[124] |
Wardhaugh CW, Stork NE, Edwards W (2012a) Feeding guild structure of beetles on Australian tropical rainforest trees reflects microhabitat resource availability. Journal of Animal Ecology, 81, 1086-1094.
DOI URL |
[125] |
Wardhaugh CW, Stork NE, Edwards W (2013c) Specialization of rainforest canopy beetles to host trees and microhabitats: Not all specialists are leaf‐feeding herbivores. Biological Journal of the Linnean Society, 109, 215-228.
DOI URL |
[126] |
Wardhaugh CW, Stork NE, Edwards W (2014) Canopy invertebrate community composition on rainforest trees: Different microhabitats support very different invertebrate communities. Austral Ecology, 39, 367-377.
DOI URL |
[127] | Wardhaugh CW, Stork NE, Edwards W, Grimbacher PS (2012b) The overlooked biodiversity of flower-visiting invertebrates. PLoS ONE, 7, e45796. |
[128] |
Wu Y, Liu WY, Song L, Chen X, Lu HZ, Li S, Shi XM (2016) Advances in ecological studies of epiphytes using canopy cranes. Chinese Journal of Plant Ecology, 40, 508-522. (in Chinese with English abstract)
DOI |
[吴毅, 刘文耀, 宋亮, 陈曦, 卢华正, 李苏, 石贤萌 (2016) 基于林冠塔吊的附生植物生态学研究进展. 植物生态学报, 40, 508-522.]
DOI |
|
[129] |
Xiao ZS, Zhang ZB, Krebs CJ (2013) Long-term seed survival and dispersal dynamics in a rodent-dispersed tree: Testing the predator satiation hypothesis and the predator dispersal hypothesis. Journal of Ecology, 101, 1256-1264.
DOI URL |
[130] | Yang J, Chen WH, Shui YM, Sheng JS (2008) Investigating methods of epiphytes in forest canopy. Journal of Wuhan Botanical Research, 26, 661-667. (in Chinese with English abstract) |
[杨洁, 陈文红, 税玉民, 盛家舒 (2008) 林冠附生植物观测方法概述. 武汉植物学研究, 26, 661-667.] | |
[131] | Yumoto T, Inoue T, Hamid AA (Turner IM, 1996) Monitoring and inventorying system in canopy biology program in Sarawak, Malaysia. In:Biodiversity and the Dynamics of Ecosystems. Proceedings of an International Workshop (eds Diong CH, Lim SSL, Ng PKL), pp. 203-215. National University of Singapore, Singapore. |
[132] | Yumoto T, Nakashizuka T (2005) The canopy biology program in Sarawak:Scope, methods, and merit. In: Pollination Ecology and the Rain Forest (eds Roubik DW, Sakai S, Karim HAA), pp. 13-21. Springer, New York. |
[133] |
Zellweger F, De Frenne P, Lenoir J, Vangansbeke P, Verheyen K, Bernhardt-Röemermann M, Baeten L, Hédl R, Berki I, Brunet J, Van Calster H, Chudomelová M, Decocq G, Dirnböeck T, Durak T, Heinken T, Jaroszewicz B, Kopecký M, Máliš F, Macek M, Malicki M, Naaf T, Nagel TA, Ortmann-Ajkai A, Petřík P, Pielech R, Reczyńska K, Schmidt W, Standovár T, Świerkosz K, Teleki B, Vild O, Wulf M, Coomes D (2020) Forest microclimate dynamics drive plant responses to warming. Science, 368, 772-775.
DOI PMID |
[134] |
Zhang L, Chen YJ, Hao GY, Ma KP, Bongers F, Sterck FJ (2020) Conifer and broadleaved trees differ in branch allometry but maintain similar functional balances. Tree Physiology, 40, 511-519.
DOI PMID |
[135] |
Zhang L, Chen YJ, Ma KP, Bongers F, Sterck FJ (2019) Fully exposed canopy tree and liana branches in a tropical forest differ in mechanical traits but are similar in hydraulic traits. Tree Physiology, 39, 1713-1724.
DOI PMID |
[136] | Zheng G, Li SQ (2015) Arthropods from Forest Canopies. Science Press, Beijing. (in Chinese) |
[郑国, 李枢强 (2015) 森林冠层节肢动物. 科学出版社, 北京.] | |
[137] |
Zhu Y, Mi XC, Ma KP (2009) A mechanism of plant species coexistence: The negative density-dependent hypothesis. Biodiversity Science, 17, 594-604. (in Chinese with English abstract)
DOI |
[祝燕, 米湘成, 马克平 (2009) 植物群落物种共存机制: 负密度制约假说. 生物多样性, 17, 594-604.]
DOI |
[1] | 顾燚芸, 薛嘉祈, 高金会, 谢心仪, 韦铭, 雷进宇, 闻丞. 一种基于公众科学数据的区域性鸟类多样性评价方法[J]. 生物多样性, 2024, 32(7): 24080-. |
[2] | 马骅, 李常青, 余品锋, 陈杰, 贺天耀, 王可洪. 澎溪河消落带大型土壤动物群落分布格局及其影响因素[J]. 生物多样性, 2024, 32(7): 24117-. |
[3] | 王艳丽, 张英, 戚春林, 张昌达, 史佑海, 杜彦君, 丁琼. 海南热带雨林国家公园生物多样性热点与保护空缺区域识别: 基于大型真菌与植物视角[J]. 生物多样性, 2024, 32(7): 24081-. |
[4] | 田瑜, 李俊生. 《昆明-蒙特利尔全球生物多样性框架》“3030”目标的内涵及实现路径分析[J]. 生物多样性, 2024, 32(6): 24086-. |
[5] | 姜熠辉, 刘岳, 曾旭, 林喆滢, 王楠, 彭吉豪, 曹玲, 曾聪. 东海六个国家级海洋保护区鱼类多样性和连通性[J]. 生物多样性, 2024, 32(6): 24128-. |
[6] | 连佳丽, 陈婧, 杨雪琴, 赵莹, 罗叙, 韩翠, 赵雅欣, 李建平. 荒漠草原植物多样性和微生物多样性对降水变化的响应[J]. 生物多样性, 2024, 32(6): 24044-. |
[7] | 赵富伟, 李颖硕, 陈慧. 新时期我国生物多样性法制建设思考[J]. 生物多样性, 2024, 32(5): 24027-. |
[8] | 鄢德奎. 中国生物多样性保护政策的共同要素、不足和优化建议[J]. 生物多样性, 2024, 32(5): 23293-. |
[9] | 马碧玉. 印度《生物多样性法》修订述要及对我国完善生物多样性保护法制的启示[J]. 生物多样性, 2024, 32(5): 23412-. |
[10] | 董云伟, 鲍梦幻, 程娇, 陈义永, 杜建国, 高养春, 胡利莎, 李心诚, 刘春龙, 秦耿, 孙进, 王信, 杨光, 张崇良, 张雄, 张宇洋, 张志新, 战爱斌, 贺强, 孙军, 陈彬, 沙忠利, 林强. 中国海洋生物地理学研究进展和热点: 物种分布模型及其应用[J]. 生物多样性, 2024, 32(5): 23453-. |
[11] | 蔡颖莉, 朱洪革, 李家欣. 中国生物多样性保护政策演进、主要措施与发展趋势[J]. 生物多样性, 2024, 32(5): 23386-. |
[12] | 艾妍雨, 胡海霞, 沈婷, 莫雨轩, 杞金华, 宋亮. 附生维管植物多样性及其与宿主特征的相关性: 以哀牢山中山湿性常绿阔叶林为例[J]. 生物多样性, 2024, 32(5): 24072-. |
[13] | 刘荆州, 钱易鑫, 张燕雪丹, 崔凤. 基于潜在迪利克雷分布(LDA)模型的旗舰物种范式研究进展与启示[J]. 生物多样性, 2024, 32(4): 23439-. |
[14] | 吴乐婕, 刘泽康, 田星, 张群, 李博, 吴纪华. 海三棱藨草基因型多样性对种群营养生长和繁殖策略的影响[J]. 生物多样性, 2024, 32(4): 23478-. |
[15] | 李雪萌, 蒋际宝, 张曾鲁, 刘晓静, 王亚利, 吴宜钊, 李银生, 邱江平, 赵琦. 宝天曼国家级自然保护区蚯蚓物种多样性及其影响因素[J]. 生物多样性, 2024, 32(4): 23352-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn