生物多样性 ›› 2023, Vol. 31 ›› Issue (11): 23249. DOI: 10.17520/biods.2023249
收稿日期:
2023-07-07
接受日期:
2023-10-25
出版日期:
2023-11-20
发布日期:
2023-11-10
通讯作者:
* E-mail: 基金资助:
Shaofan Luo1,2, Kai Jiang1, Weichang Huang1,2,*()
Received:
2023-07-07
Accepted:
2023-10-25
Online:
2023-11-20
Published:
2023-11-10
Contact:
* E-mail: 摘要:
花距常被认为是植物适应传粉者而出现的一个关键创新性状。花距在被子植物中广泛分布, 并且不同物种花距形态存在较大差异。已有研究集中于探讨花距与传粉者间复杂的关系。本文介绍了花距的概念和功能, 并且描述了花距的形态、长度、颜色和内含物等特征的多样性; 阐述了造成种内和种间花距形态差异的原因; 总结了花距在形成和发育过程中一系列细胞和关键分子机制。结合花距在被子植物中的分布和花距形成位置的多样性以及发育分子机制, 阐明花距可能是多次起源, 具有趋同进化特征, 但是形成和发育方式在进化上不保守。最后, 本文提出了花距未来研究的方向: (1)构建被子植物花距表型数据库, 为花距的系统研究提供基础数据; (2)通过基因工程等方法构建花距突变体库, 进一步验证花距变异对物种多样性的贡献; (3)使用多组学的方法, 深入开展花距形成和发育分子机制的研究。
罗韶凡, 蒋凯, 黄卫昌 (2023) 植物花距表型趋同进化和发育机制多样化的研究进展. 生物多样性, 31, 23249. DOI: 10.17520/biods.2023249.
Shaofan Luo, Kai Jiang, Weichang Huang (2023) Advances in the convergent evolution of phenotypes and diversification of developmental mechanisms of floral spurs. Biodiversity Science, 31, 23249. DOI: 10.17520/biods.2023249.
图1 有距植物在被子植物中的分布(参考APG IV分类系统以及毛茛目和唇形目内的系统发育关系, Hoot et al, 2015; The Angiosperm Phylogeny Group, 2016; Liu et al, 2020)。支长不代表真实时间尺度, 仅为美观考虑。A: 彗星兰; B: 距花万寿竹; C: 砂贝母; D: 紫堇; E: 淫羊藿; F: 加拿大耧斗菜; G: 紫花地丁; H: 距瓣豆; I: 矮小萼囊花; J: 萼距花; K: 旱金莲; L: 小萼凤仙花; M: 花锚; N: 蔓柳穿鱼; O: 心形双距花; P: 爱丝捕虫堇; Q: 露滴草; R: 角花; S: 长距忍冬; T: 半边莲; U: 奇异金鸾花。
Fig. 1 Distribution of plants with floral spur in the phylogenetic tree of angiosperms (Reference to the APG IV classification system and phylogenetic relationships within Ranunculales and Lamiales). Clade lengths do not represent true time scales only for aesthetic reasons. A, Angraecum eburneum; B, Disporum calcaratum; C, Fritillaria karelinii; D, Corydalis edulis; E, Epimedium brevicornu; F, Aquilegia canadensis; G, Viola philippica; H, Centrosema pubescens; I, Vochysia pygmaea; J, Cuphea hookeriana; K, Tropaeolum majus; L, Impatiens parvisepala; M, Halenia corniculata; N, Cymbalaria muralis; O, Diascia cordata; P, Pinguicula esseriana; Q, Sesamothamnus lugardi; R, Platostoma calcaratum; S, Lonicera calcarata; T, Heterotoma lobelioides; U, Goodenia paradoxa.
图2 190种彗星兰亚族物种对应的距长分布图。A-C分别表示3种彗星兰传粉者。A: Angraecum cadetii的传粉者Glomeremus sp. (Micheneau et al, 2010); B: A. bracteosum的传粉者Zosterops olivaceus (Micheneau et al, 2008), C: A. sesquipedale的传粉者Xanthopan praedicta (Minet et al, 2021)。红色字体表示该传粉者口器或头部长度, 绿色字体表示对应的植物距长。
Fig. 2 Bar plot of the corresponding floral spur lengths for 190 species of the Angraecinae. A-C indicate the pollinators of three Angraecum species, respectively. A, Glomeremus sp., pollinator of Angraecum cadetii (Micheneau et al, 2010); B, Zosterops olivaceus, pollinator of A. bracteosum (Micheneau et al, 2008), and C, Xanthopan praedicta, pollinator of A. sesquipedale (Minet et al, 2021). The red font indicates the length of arthropod mouthparts or head of that pollinator, and green font indicates the corresponding floral spur length.
物种 Species | 基因名称 Gene name | 所属基因家族 Gene family | 功能 Function | 参考文献 Reference |
---|---|---|---|---|
金鱼草 Antirrhinum majus | AmHirz AmIna | KNOTTED 1-like homeobox (KNOX) | 在花瓣管处分化出类似距的结构 Spur-like structures outgrowth from the petal tube | Golz et al, |
柳穿鱼 Linaria vulgaris | LvHirz LvIna | KNOTTED 1-like homeobox (KNOX) | 在转基因烟草的花瓣上诱导出类似距的结构 Induced spur-like structures on the petals of transgenic tobacco | Box et al, |
耧斗菜 Aquilegia spp. | AqTCP4 | TEOSINTE BRANCHED1/ CYCLOIDEA/PCF (TCP) | 抑制距的细胞增殖 Restraining cell proliferation in spur | Yant et al, |
POPOVICH (POP) | C2H2 zinc-finger | 调控距早期发育的细胞增殖的过程, 同时对蜜腺的发育也起关键作用 Regulating the process of cell proliferation in early development and also plays a key role in the development of the nectaries | Ballerini et al, | |
ARF6/8 | AUXIN RESPONSE FACTOR (ARF) | 控制距表皮细胞各向异性生长 Regulating anisotropic growth of the spur epidermal cells | Zhang et al, | |
STY | STYLISH (SHORT INTERNODES/STY) | 控制距内蜜腺发育 Controlling of nectary development within the spur | Min et al, | |
AqBEH1 AqBEH3 AqBEH4 | BRI1-EMS-SUPRESSOR1 (BES1) / BRASSINAZOLE-RESISTANT1 (BRZ1) | 控制距表皮细胞各向异性伸长 Regulating anisotropic growth of the spur epidermal cells | Conway et al, |
表1 花距形成和发育过程中关键调控基因
Table 1 Key regulatory genes in floral spur formation and development
物种 Species | 基因名称 Gene name | 所属基因家族 Gene family | 功能 Function | 参考文献 Reference |
---|---|---|---|---|
金鱼草 Antirrhinum majus | AmHirz AmIna | KNOTTED 1-like homeobox (KNOX) | 在花瓣管处分化出类似距的结构 Spur-like structures outgrowth from the petal tube | Golz et al, |
柳穿鱼 Linaria vulgaris | LvHirz LvIna | KNOTTED 1-like homeobox (KNOX) | 在转基因烟草的花瓣上诱导出类似距的结构 Induced spur-like structures on the petals of transgenic tobacco | Box et al, |
耧斗菜 Aquilegia spp. | AqTCP4 | TEOSINTE BRANCHED1/ CYCLOIDEA/PCF (TCP) | 抑制距的细胞增殖 Restraining cell proliferation in spur | Yant et al, |
POPOVICH (POP) | C2H2 zinc-finger | 调控距早期发育的细胞增殖的过程, 同时对蜜腺的发育也起关键作用 Regulating the process of cell proliferation in early development and also plays a key role in the development of the nectaries | Ballerini et al, | |
ARF6/8 | AUXIN RESPONSE FACTOR (ARF) | 控制距表皮细胞各向异性生长 Regulating anisotropic growth of the spur epidermal cells | Zhang et al, | |
STY | STYLISH (SHORT INTERNODES/STY) | 控制距内蜜腺发育 Controlling of nectary development within the spur | Min et al, | |
AqBEH1 AqBEH3 AqBEH4 | BRI1-EMS-SUPRESSOR1 (BES1) / BRASSINAZOLE-RESISTANT1 (BRZ1) | 控制距表皮细胞各向异性伸长 Regulating anisotropic growth of the spur epidermal cells | Conway et al, |
[1] | Armbruster WS, Muchhala N (2009) Associations between floral specialization and species diversity: Cause, effect, or correlation? Evolutionary Ecology, 23, 159-179. |
[2] |
Ballerini ES, Kramer EM, Hodges SA (2019) Comparative transcriptomics of early petal development across four diverse species of Aquilegia reveal few genes consistently associated with nectar spur development. BMC Genomics, 20, 668.
DOI |
[3] | Ballerini ES, Min Y, Edwards MB, Kramer EM, Hodges SA (2020) POPOVICH, encoding a C2H 2 zinc-finger transcription factor, plays a central role in the development of a key innovation, floral nectar spurs, in Aquilegia. Proceedings of the National Academy of Sciences, USA, 117, 22552-22560. |
[4] |
Barton MK (2010) Twenty years on: The inner workings of the shoot apical meristem, a developmental dynamo. Developmental Biology, 341, 95-113.
DOI PMID |
[5] |
Bell AK, Roberts DL, Hawkins JA, Rudall PJ, Box MS, Bateman RM (2009) Comparative micromorphology of nectariferous and nectarless labellar spurs in selected clades of subtribe Orchidinae (Orchidaceae). Botanical Journal of the Linnean Society, 160, 369-387.
DOI URL |
[6] |
Boberg E, Ågren J (2009) Despite their apparent integration, spur length but not perianth size affects reproductive success in the moth-pollinated orchid Platanthera bifolia. Functional Ecology, 23, 1022-1028.
DOI URL |
[7] |
Box MS, Dodsworth S, Rudall PJ, Bateman RM, Glover BJ (2011) Characterization of Linaria KNOX genes suggests a role in petal-spur development. The Plant Journal, 68, 703-714.
DOI URL |
[8] |
Box MS, Dodsworth S, Rudall PJ, Bateman RM, Glover BJ (2012) Flower-specific KNOX phenotype in the orchid Dactylorhiza fuchsii. Journal of Experimental Botany, 63, 4811-4819.
DOI URL |
[9] |
Brzosko E, Mirski P (2021) Floral nectar chemistry in orchids: A short review and meta-analysis. Plants, 10, 2315.
DOI URL |
[10] |
Cacho NI, Berry PE, Olson ME, Steinmann VW, Baum DA (2010) Are spurred cyathia a key innovation? Molecular systematics and trait evolution in the slipper spurges (Pedilanthus clade: Euphorbia, Euphorbiaceae). American Journal of Botany, 97, 493-510.
DOI URL |
[11] | Cai B, Wei CM, Liu J, Li XY, Li Y, Huang HQ, Huang MJ (2023) Cloning and expression analysis of GIF genes related to spur development in Impatiens uliginosa. Plant Physiology Journal, 59, 1117-1124. (in Chinese with English abstract) |
[蔡斌, 魏春梅, 刘婕, 李新艺, 李洋, 黄海泉, 黄美娟 (2023) 滇水金凤花距发育相关基因GIF的克隆及表达分析. 植物生理学报, 59, 1117-1124.] | |
[12] |
Castañeda-Zárate M, Johnson SD, van der Niet T (2021) Food reward chemistry explains a novel pollinator shift and vestigialization of long floral spurs in an orchid. Current Biology, 31, 238-246.
DOI URL |
[13] |
Conway SJ, Walcher-Chevillet CL, Salome Barbour K, Kramer EM (2021) Brassinosteroids regulate petal spur length in Aquilegia by controlling cell elongation. Annals of Botany, 128, 931-942.
DOI URL |
[14] |
Crane PR, Herendeen P, Friis EM (2004) Fossils and plant phylogeny. American Journal of Botany, 91, 1683-1699.
DOI PMID |
[15] |
Cullen E, Fernández-Mazuecos M, Glover BJ (2018) Evolution of nectar spur length in a clade of Linaria reflects changes in cell division rather than in cell expansion. Annals of Botany, 122, 801-809.
DOI PMID |
[16] | Dilcher D (2000) Toward a new synthesis: Major evolutionary trends in the angiosperm fossil record. Proceedings of the National Academy of Sciences, USA, 97, 7030-7036. |
[17] | Edwards MB, Ballerini ES, Kramer EM (2022) Complex developmental and transcriptional dynamics underlie pollinator-driven evolutionary transitions in nectar spur morphology in Aquilegia (columbine). American Journal of Botany, 109, 1360-1381. |
[18] | Edwards MB, Choi GPT, Derieg NJ, Min Y, Diana AC, Hodges SA, Mahadevan L, Kramer EM, Ballerini ES (2021) Genetic architecture of floral traits in bee- and hummingbird-pollinated sister species of Aquilegia (columbine). Evolution, 75, 2197-2216. |
[19] |
Fahn A (1979) Ultrastructure of nectaries in relation to nectar secretion. American Journal of Botany, 66, 977-985.
DOI URL |
[20] |
Fernández-Mazuecos M, Blanco-Pastor JL, Juan AN, Carnicero P, Forrest A, Alarcón M, Vargas P, Glover BJ (2019) Macroevolutionary dynamics of nectar spurs, a key evolutionary innovation. New Phytologist, 222, 1123-1138.
DOI PMID |
[21] | Figueiredo ACS, Pais MS (1992) Ultrastructural aspects of the nectary spur of Limodorum abortivum (L) Sw. (Orchidaceae). Annals of Botany, 70, 325-331. |
[22] | Gao J, Yang X, Zhao W, Lang TG, Samuelsson T (2015) Evolution, diversification, and expression of KNOX proteins in plants. Frontiers in Plant Science, 6, 882. |
[23] |
Golz JF, Keck EJ, Hudson A (2002) Spontaneous mutations in KNOX genes give rise to a novel floral structure in Antirrhinum. Current Biology, 12, 515-522.
DOI URL |
[24] |
Gómez JM, Perfectti F, Armas C, Narbona E, González-Megías A, Navarro L, DeSoto L, Torices R (2020) Within- individual phenotypic plasticity in flowers fosters pollination niche shift. Nature Communications, 11, 4019.
DOI PMID |
[25] |
The Angiosperm Phylogeny Group, Chase MW, Christenhusz MJM, Fay MF, Byng JW, Judd WS, Soltis DE, Mabberley DJ, Sennikov AN, Soltis PS, Stevens PF (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 181, 1-20.
DOI URL |
[26] |
Hay A, Tsiantis M (2010) KNOX genes: Versatile regulators of plant development and diversity. Development, 137, 3153-3165.
DOI URL |
[27] | Hodges SA (1997) Floral nectar spurs and diversification. International Journal of Plant Sciences, 158, S81-S88. |
[28] | Hodges SA, Kramer EM (2007) Columbines. Current Biology, 17, R992-R994. |
[29] | Hodges SA, Michael AL (1995) Spurring plant diversification:Are floral nectar spurs a key innovation? Proceedings of the Royal Society B: Biological Sciences, 262, 343-348. |
[30] |
Hollens H, van der Niet T, Cozien R, Kuhlmann M (2017) A spurious inference: Pollination is not more specialized in long-spurred than in spurless species in Diascia-Rediviva mutualisms. Flora, 232, 73-82.
DOI URL |
[31] |
Hoot SB, Wefferling KM, Wulff JA (2015) Phylogeny and character evolution of Papaveraceae s. L. (Ranunculales). Systematic Botany, 40, 474-488.
DOI URL |
[32] | Kay KM, Voelckel C, Yang JY, Hufford KM, Kaska DD, Hodges SA (2006) Floral characters and species diversification. In: Ecologyand Evolution of Flowers (HarderLD,eds Barrett SCH), pp. 311-325. Oxford University Press, Oxford. |
[33] |
Koopman MM, Ayers TJ (2005) Nectar spur evolution in the Mexican lobelias (Campanulaceae: Lobelioideae). American Journal of Botany, 92, 558-562.
DOI PMID |
[34] | Kurzweil H (1999) Floral ontogeny of orchids: A review. Beitrage zur Biologie der Pflanzen, 71, 45-100. |
[35] | La Croix IF, La Croix EAS, La Croix TM (1991) Orchids of Malaŵi: The Epiphytic and Terrestrial Orchids from South and East Central Africa. Balkema, Rotterdam. |
[36] |
Li XB, Zhang R, Patena W, Gang SS, Blum SR, Ivanova N, Yue R, Robertson JM, Lefebvre PA, Fitz-Gibbon ST, Grossman AR, Jonikas MC (2016) An indexed, mapped mutant library enables reverse genetics studies of biological processes in Chlamydomonas reinhardtii. The Plant Cell, 28, 367-387.
DOI URL |
[37] | Little KJ, Dieringer G, Romano M (2005) Pollination ecology, genetic diversity and selection on nectar spur length in Platanthera lacera (Orchidaceae). Plant Species Biology, 20, 183-190. |
[38] |
Liu B, Tan YH, Liu S, Olmstead RG, Min DZ, Chen ZD, Joshee N, Vaidya BN, Chung RCK, Li B (2020) Phylogenetic relationships of Cyrtandromoea and Wightia revisited: A new tribe in Phrymaceae and a new family in Lamiales. Journal of Systematics and Evolution, 58, 1-17.
DOI URL |
[39] |
Ma Q, Zhang WH, (Jenny) Xiang QY (2017) Evolution and developmental genetics of floral display—A review of progress. Journal of Systematics and Evolution, 55, 487-515.
DOI URL |
[40] | Mack JLK, Davis AR (2015) The relationship between cell division and elongation during development of the nectar-yielding petal spur in Centranthus ruber (Valerianaceae). Annals of Botany, 115, 641-649. |
[41] |
Martínez-Salazar S, González F, Alzate JF, Pabón-Mora N (2021) Molecular framework underlying floral bilateral symmetry and nectar spur development in Tropaeolum, an atypical member of the Brassicales. American Journal of Botany, 108, 1315-1330.
DOI URL |
[42] |
Martins DJ, Johnson SD (2007) Hawkmoth pollination of aerangoid orchids in Kenya, with special reference to nectar sugar concentration gradients in the floral spurs. American Journal of Botany, 94, 650-659.
DOI PMID |
[43] |
Mayhew PJ (2007) Why are there so many insect species? Perspectives from fossils and phylogenies. Biological Reviews, 82, 425-454.
PMID |
[44] |
Micheneau C, Fournel J, Humeau L, Pailler T (2008) Orchid-bird interactions: A case study from Angraecum (Vandeae, Angraecinae) and Zosterops (white-eyes, Zosteropidae) on Reunion Island. Botany, 86, 1143-1151.
DOI URL |
[45] |
Micheneau C, Fournel J, Warren BH, Hugel S, Gauvin- Bialecki A, Pailler T, Strasberg D, Chase MW (2010) Orthoptera, a new order of pollinator. Annals of Botany, 105, 355-364.
DOI PMID |
[46] | Miller AH (1949) Some ecologic and morphologic considerations in the evolution of higher taxonomic categories. In: OrnithologieAls Biologische Wissenschaft (MayrE,eds Schüz E), pp. 84-88. Carl Winter, Heidelberg. |
[47] |
Miller AH, Stroud JT, Losos JB (2023) The ecology and evolution of key innovations. Trends in Ecology & Evolution, 38, 122-131.
DOI URL |
[48] |
Min Y, Bunn JI, Kramer EM (2019) Homologs of the STYLISH gene family control nectary development in Aquilegia. New Phytologist, 221, 1090-1100.
DOI PMID |
[49] | Minet J, Basquin P, Haxaire J, Lees DC, Rougerie R (2021) A new taxonomic status for Darwin’s “predicted” pollinator: Xanthopan praedicta stat. nov. Antenor, 8, 69-86. |
[50] |
Moon J, Hake S (2011) How a leaf gets its shape. Current Opinion in Plant Biology, 14, 24-30.
DOI PMID |
[51] |
Netz C, Renner SS (2017) Long-spurred Angraecum orchids and long-tongued sphingid moths on Madagascar: A time frame for Darwin’s predicted Xanthopan/Angraecum coevolution. Biological Journal of the Linnean Society, 122, 469-478.
DOI URL |
[52] | Nicolson SW, Nepi M, Pacini E (2007) Nectaries and Nectar. Springer, Dordrecht. |
[53] |
Onstein RE (2020) Darwin’s second ‘abominable mystery’: Trait flexibility as the innovation leading to angiosperm diversity. New Phytologist, 228, 1741-1747.
DOI URL |
[54] |
Płachno BJ, Stpiczyńska M, Adamec L, Miranda VFO, Świątek P (2018) Nectar trichome structure of aquatic bladderworts from the section Utricularia (Lentibulariaceae) with observation of flower visitors and pollinators. Protoplasma, 255, 1053-1064.
DOI |
[55] | Puzey JR, Gerbode SJ, Hodges SA, Kramer EM, Mahadevan L (2012) Evolution of spur-length diversity in Aquilegia petals is achieved solely through cell-shape anisotropy. Proceedings of the Royal Society B: Biological Sciences, 279, 1640-1645. |
[56] |
Rausher M (2008) Evolutionary transitions in floral color. International Journal of Plant Sciences, 169, 7-21.
DOI URL |
[57] | Royal Botanic Gardens, Kew (2016) State of the World’s Plants 2016. file:///C:/Users/Yurong%20Zhou/Downloads/s |
[otwp_2016. pdf. (accessed on 2023-05-07) | |
[58] | Sano R, Juárez CM, Hass B, Sakakibara K, Ito M, Banks JA, Hasebe M (2005) KNOX homeobox genes potentially have similar function in both diploid unicellular and multicellular meristems, but not in haploid meristems. Evolution & Development, 7, 69-78. |
[59] |
Sauquet H, von Balthazar M, Magallón S, Doyle JA, Endress PK, Bailes EJ, Barroso de Morais E, Bull-Hereñu K, Carrive L, Chartier M, Chomicki G, Coiro M, Cornette R, El Ottra JHL, Epicoco C, Foster CSP, Jabbour F, Haevermans A, Haevermans T, Hernández R, Little SA, Löfstrand S, Luna JA, Massoni J, Nadot S, Pamperl S, Prieu C, Reyes E, dos Santos P, Schoonderwoerd KM, Sontag S, Soulebeau A, Staedler Y, Tschan GF, Wing-Sze Leung A, Schönenberger J (2017) The ancestral flower of angiosperms and its early diversification. Nature Communications, 8, 16047.
DOI PMID |
[60] |
Silvestro D, Zizka G, Schulte K (2014) Disentangling the effects of key innovations on the diversification of Bromelioideae (Bromeliaceae). Evolution, 68, 163-175.
DOI PMID |
[61] | Simpson GG (1953) The Major Features of Evolution. Columbia University Press, New York. |
[62] |
Sletvold N, Agren J (2011) Nonadditive effects of floral display and spur length on reproductive success in a deceptive orchid. Ecology, 92, 2167-2174.
PMID |
[63] |
Soltis PS, Soltis DE (2014) Flower diversity and angiosperm diversification. Methods in Molecular Biology, 1110, 85-102.
DOI PMID |
[64] |
Stpiczyńska M (2003a) Floral longevity and nectar secretion of Platanthera chlorantha (Custer) Rchb. (Orchidaceae). Annals of Botany, 92, 191-197.
DOI URL |
[65] |
Stpiczyńska M (2003b) Nectar resorption in the spur of Platanthera chlorantha Custer (Rchb.) Orchidaceae— Structural and microautoradiographic study. Plant Systematics and Evolution, 238, 119-126.
DOI URL |
[66] |
Streisfeld MA, Kohn JR (2007) Environment and pollinator- mediated selection on parapatric floral races of Mimulus aurantiacus. Journal of Evolutionary Biology, 20, 122-132.
PMID |
[67] |
Travers SE, Temeles EJ, Pan I (2003) The relationship between nectar spur curvature in jewelweed (Impatiens capensis) and pollen removal by hummingbird pollinators. Canadian Journal of Botany, 81, 164-170.
DOI URL |
[68] |
Tucker SC, Hodges SA (2005) Floral ontogeny of Aquilegia, Semiaquilegia, and Enemion (Ranunculaceae). International Journal of Plant Sciences, 166, 557-574.
DOI URL |
[69] |
van der Niet T, Johnson SD (2012) Phylogenetic evidence for pollinator-driven diversification of angiosperms. Trends in Ecology & Evolution, 27, 353-361.
DOI URL |
[70] |
Vlašánková A, Padyšáková E, Bartoš M, Mengual X, Janečková P, Janeček Š (2017) The nectar spur is not only a simple specialization for long-proboscid pollinators. New Phytologist, 215, 1574-1581.
DOI PMID |
[71] |
von Hagen KB, Kadereit JW (2003) The diversification of Halenia (Gentianaceae): Ecological opportunity versus key innovation. Evolution, 57, 2507-2518.
PMID |
[72] | Wang Q, Li YX, Pu XZ, Zhu LY, Tang Z, Liu Q (2013) Pollinators and nectar robbers cause directional selection for large spur circle in Impatiens oxyanthera (Balsaminaceae). Plant Systematics and Evolution, 299, 1263-1274. |
[73] |
Wasserthal LT (1997) The pollinators of the Malagasy star orchids Angraecum sesquipedale, A. sororium and A. compactum and the evolution of extremely long spurs by pollinator shift. Botanica Acta, 110, 343-359.
DOI URL |
[74] |
Weber UK, Nuismer SL, Espíndola A (2020) Patterns of floral morphology in relation to climate and floral visitors. Annals of Botany, 125, 433-445.
DOI PMID |
[75] | Wei CM, Cai B, Tao YD, Li LJ, Zhao QY, Zhou M, Huang MJ, Huang HQ (2022a) Cloning and expression analysis of GRF genes related to spur development in Impatiens uliginosa Franch. Plant Science Journal, 40, 669-676. (in Chinese with English abstract) |
[魏春梅, 蔡斌, 陶宇蝶, 李林菊, 赵秋燕, 周敏, 黄美娟, 黄海泉 (2022a) 滇水金凤花距发育相关基因GRF的克隆及表达分析. 植物科学学报, 40, 669-676.] | |
[76] | Wei CM, Li Y, Meng DC, Li ZF, Li XY, Huang MJ, Huang HQ (2022b) Cloning and expression analysis of TIP genes related to petal spur development in Impatiens uliginosa. Plant Physiology Journal, 58, 1757-1765. (in Chinese with English abstract) |
[魏春梅, 李洋, 孟丹晨, 李泽凤, 李新艺, 黄美娟, 黄海泉 (2022b) 滇水金凤花距发育相关基因TIP的克隆及表达分析. 植物生理学报, 58, 1757-1765.] | |
[77] |
Whittall JB, Hodges SA (2007) Pollinator shifts drive increasingly long nectar spurs in columbine flowers. Nature, 447, 706-709.
DOI |
[78] |
Wright GA, Schiestl FP (2009) The evolution of floral scent: The influence of olfactory learning by insect pollinators on the honest signalling of floral rewards. Functional Ecology, 23, 841-851.
DOI URL |
[79] |
Xie SY, Hou XQ, Zhang XH (2022) Are the spurs more complex than other petal types in Epimedium? Evidence from development, micromorphology, and nectary structure. Flora, 293, 152101.
DOI URL |
[80] | Yang JY, Tong ZK, Wen YH, Wang Q, Huang MJ, Yan B, Huang HQ (2023) Cloning and expression analysis of Aux/IAA genes related to spur development in Impatiens uliginosa. Plant Physiology Journal, 59, 899-908. (in Chinese with English abstract) |
[杨建园, 童桢开, 闻永慧, 汪琼, 黄美娟, 鄢波, 黄海泉 (2023) 滇水金凤花距发育相关基因Aux/IAA的克隆及表达分析. 植物生理学报, 59, 899-908.] | |
[81] | Yant L, Collani S, Puzey J, Levy C, Kramer EM (2015) Molecular basis for three-dimensional elaboration of the Aquilegia petal spur. Proceedings of the Royal Society B: Biological Sciences, 282, 20142778. |
[82] |
Young HJ (2008) Selection on spur shape in Impatiens capensis. Oecologia, 156, 535-543.
DOI URL |
[83] |
Zhang HP, Wen SJ, Wang H, Ren ZX (2023) Floral nectar reabsorption and a sugar concentration gradient in two long-spurred Habenaria species (Orchidaceae). BMC Plant Biology, 23, 331.
DOI |
[84] |
Zhang R, Min Y, Holappa LD, Walcher-Chevillet CL, Duan XS, Donaldson E, Kong HZ, Kramer EM (2020) A role for the Auxin Response Factors ARF6 and ARF8 homologs in petal spur elongation and nectary maturation in Aquilegia. New Phytologist, 227, 1392-1405.
DOI PMID |
[1] | 丁翔, 余元钧, 宋希强, 罗毅波. 具有泛化访花者的海芋特化传粉系统[J]. 生物多样性, 2024, 32(6): 24069-. |
[2] | 巴苏艳, 赵春艳, 刘媛, 方强. 通过虫体花粉识别构建植物‒传粉者网络: 人工模型与AI模型高度一致[J]. 生物多样性, 2024, 32(6): 24088-. |
[3] | 谢华, 杨培, 李宗波. 鸡嗉子榕传粉榕小蜂表皮碳氢化合物的性二型及季节变化[J]. 生物多样性, 2024, 32(6): 24001-. |
[4] | 舒为杰, 何花, 曾罗, 谷志容, 谭敦炎, 杨晓琛. 雌雄异株物种一把伞南星雌雄株空间分布及性别二态性[J]. 生物多样性, 2024, 32(6): 24084-. |
[5] | 热依拉穆·麦麦提吐尔逊, 艾沙江·阿不都沙拉木. 石榴花瓣和雄蕊对其传粉过程与繁殖成功的影响[J]. 生物多样性, 2023, 31(7): 22633-. |
[6] | 赵秋杰, 郭辉军, 孟广涛, 钟明川, 尹俊, 刘倬橙, 李品荣, 陈力, 陶毅, 秋生, 王红, 赵延会. 放牧对蜜蜂的影响及其生态修复建议[J]. 生物多样性, 2023, 31(5): 23037-. |
[7] | 黄曼娟, 汪雪敏, 苗白鸽, 彭艳琼. 栉颚榕小蜂在雌花期榕果内产卵及主动传粉行为的多样性[J]. 生物多样性, 2023, 31(5): 23060-. |
[8] | 刘德鑫, 王青锋, 杨春锋. 天南星科植物的花多样性与传粉策略[J]. 生物多样性, 2022, 30(3): 21426-. |
[9] | 谢正华, 王有琼, 曹军, 王健敏, 安建东. 传粉昆虫下降背景下的授粉生态弹性: 内涵、机制和展望[J]. 生物多样性, 2021, 29(7): 980-994. |
[10] | 胡德美, 姚仁秀, 陈燕, 游贤松, 王顺雨, 汤晓辛, 王晓月. 青篱柴通过促进亲和花粉生长而提高传粉精确性[J]. 生物多样性, 2021, 29(7): 887-896. |
[11] | 施雨含, 任宗昕, 王维嘉, 徐鑫, 刘杰, 赵延会, 王红. 中国-喜马拉雅三种黄耆属植物与其传粉熊蜂的空间分布预测[J]. 生物多样性, 2021, 29(6): 759-769. |
[12] | 施雨含, 任宗昕, 赵延会, 王红. 气候变化对植物-传粉昆虫的分布区和物候及其互作关系的影响[J]. 生物多样性, 2021, 29(4): 495-506. |
[13] | 张慧, 刘倩, 黄晓磊. 社会性昆虫级型和行为分化机制研究进展[J]. 生物多样性, 2021, 29(4): 507-516. |
[14] | 李慢如, 张玲. 桑寄生植物繁殖物候研究概述[J]. 生物多样性, 2020, 28(7): 833-841. |
[15] | 余元钧, 罗火林, 刘南南, 熊冬金, 罗毅波, 杨柏云. 气候变化对中国大黄花虾脊兰及其传粉者适生区的影响[J]. 生物多样性, 2020, 28(7): 769-778. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn