生物多样性 ›› 2017, Vol. 25 ›› Issue (5): 481-489. DOI: 10.17520/biods.2017006
收稿日期:
2017-01-03
接受日期:
2017-04-06
出版日期:
2017-05-20
发布日期:
2017-06-06
通讯作者:
李捷
基金资助:
Wumei Xu1,2, Xiuqin Ci1,2, Jie Li1,*()
Received:
2017-01-03
Accepted:
2017-04-06
Online:
2017-05-20
Published:
2017-06-06
Contact:
Li Jie
摘要:
遗传多样性与物种多样性是生物多样性的两个基本层次。近年来的研究表明, 环境特征可能对种群遗传多样性与群落物种多样性产生平行效应。本文对遗传多样性与物种多样性关联模型中环境特征对遗传多样性与物种多样性的平行效应部分进行了具体化介绍。基于群落形成的四个基本过程, 即突变与物种形成、选择、漂变和扩散, 探讨了环境特征对遗传多样性与物种多样性产生平行效应的理论基础。在全球变化的大背景下, 研究环境特征对遗传多样性与物种多样性的平行效应及这两个维度多样性对全球变化响应的异同具有重要的生态学与保护生物学意义。然而, 目前大多数生物多样性研究仍然只基于物种多样性一个维度, 在同一系统中同时对遗传多样性与物种多样性进行整合研究的工作仍然较少。希望通过本文的总结与讨论,能对国内遗传多样性与物种多样性整合研究起到参考与促进作用。
徐武美, 慈秀芹, 李捷 (2017) 浅析环境特征对遗传多样性与物种多样性的平行效应. 生物多样性, 25, 481-489. DOI: 10.17520/biods.2017006.
Wumei Xu, Xiuqin Ci, Jie Li (2017) Parallel effects of environmental properties on genetic diversity and species diversity. Biodiversity Science, 25, 481-489. DOI: 10.17520/biods.2017006.
图1 环境特征对遗传多样性与物种多样性的平行效应理论模型(参考Vellend和Geber, 2005)
Fig. 1 A theoretical model which depict the parallel effects of environmental properties on genetic diversity and species diversity (refer to Vellend & Geber, 2005)
生态过程 Ecological processes | 遗传多样性 Genetic diversity | 物种多样性 Species diversity |
---|---|---|
突变与物种形成 Mutation and speciation | 新等位基因的产生 The creation of new alleles | 新物种的形成 The creation of new species |
漂变 Drift | 种群内等位基因频率的随机变化 Random changes in the relative frequencies of alleles within a population | 群落内物种相对多度的随机变化 Random changes in the relative abundance of species within a community |
扩散 Dispersal | 种群间等位基因的移动 Movement of alleles among populations | 群落间物种的移动 Movement of species among communities |
选择 Selection | 仅对种群内某些等位基因有利的生态过程 Processes that favour particular alleles over others within a population | 仅对群落内某些物种有利的生态过程 Processes that favour particular species over others within a community |
表1 不同生态过程对遗传多样性与物种多样性的平行效应(参考Vellend和Geber, 2005)
Table 1 The parallel effects of different ecological processes on genetic diversity and species diversity (refer to Vellend & Geber, 2005)
生态过程 Ecological processes | 遗传多样性 Genetic diversity | 物种多样性 Species diversity |
---|---|---|
突变与物种形成 Mutation and speciation | 新等位基因的产生 The creation of new alleles | 新物种的形成 The creation of new species |
漂变 Drift | 种群内等位基因频率的随机变化 Random changes in the relative frequencies of alleles within a population | 群落内物种相对多度的随机变化 Random changes in the relative abundance of species within a community |
扩散 Dispersal | 种群间等位基因的移动 Movement of alleles among populations | 群落间物种的移动 Movement of species among communities |
选择 Selection | 仅对种群内某些等位基因有利的生态过程 Processes that favour particular alleles over others within a population | 仅对群落内某些物种有利的生态过程 Processes that favour particular species over others within a community |
图2 根据平衡理论所预测的遗传多样性与物种多样性的正相关性(参考Vellend, 2003)。假设岛屿A、B、C、D与大陆的距离相同, 而岛屿面积为D > A > B > C; 岛屿B、E、F、G具有相同的面积且距离大陆的距离(隔离程度)为G > F > E > B。假定岛屿之间不存在物种与基因流, 根据平衡理论预测, 生境面积(图2a)与隔离程度(图2b)是种群遗传多样性与群落物种多样性呈正相关的驱动因素
Fig. 2 The predicted positive correlation between genetic diversity and species diversity according to the equilibrium theory (refer to Vellend, 2003). We assume that the island A, B, C, D have the same distance to the mainland while the area is D > A > B > C; the island B, E, F, G have the same area while the distances to the mainland are G > F > E > B. We also assume that there is no gene and species flow among the islands. Based on the predictions of the equilibrium theory, habitat area (Fig. 2a) and degree of isolation (Fig. 2b) are the drivers of the positive correlation between genetic diversity and species diversity.
图3 基于Tilman资源竞争模型的资源可利用性与异质性对种群遗传多样性与群落物种多样性的影响(参考Vellend和Geber, 2005)。ZNGI为零增长线, 如果两个物种或同一物种不同基因型的ZNGI线相交, 表明它们可能稳定共存, 但取决于资源可利用性在二维空间的分布状况。方框内表示在不同资源可利用性水平下可共存的物种或基因型。群落1(C1)具有较低的环境异质性, 在这种环境下, 只有物种S1的一个基因型G2 (S1, G2)存在竞争优势并长期存在; 群落2 (C2)具有较高的环境异质性, 在这种环境下, 所有物种的所有基因型都能够长期稳定共存。黑色箭头表示资源可利用性的增加方向, 随着群落内资源可利用性的不断增加, 二维资源可利用区域不断向上或向右移动, 最终由于资源可利用性增加而导致种群遗传多样性与群落物种多样性一同降低。
Fig. 3 The predicted effects of resource availability and heterogeneity on genetic diversity within a population and species diversity within a community based on the Tilman (1982) model (refer to Vellend & Geber, 2005). ZNGI indicates the zero-net-growth-isoclines, all points on the isocline, the reproductive rate of a species equals its mortality. The intersection point between the ZNGIs indicates the potential stable coexistence among the species with different genotypes which depend on the status of resource distribution within the community. The species/genotypes listed in boxes indicate those that will coexist at equilibrium given different possible resource supply points. In this model, community 1 (C1) with a low resource heterogeneity and only genotype 2 in species 1 (S1, G2) can survive and exclude the others; while in community two (C2), the high resource heterogeneity allow all the two genotypes (G1 and G2) in each of two species (S1 and S2) coexisted within the community. The black arrows indicate the directions for the increased resource availability, with the resource availability increased, both genetic diversity within population and species diversity within community decreased in parallel eventually.
图4 根据进化速率假设所预测的遗传多样性与物种多样性的纬度梯度分布格局(参考Rohde, 1992; Gaston, 2000; Araujo & Costa-Pereira, 2013; Dowle et al, 2013)
Fig. 4 The latitudinal patterns of genetic diversity and species diversity based on the predictions of evolutionary speed hypothesis (refer to Rohde, 1992; Gaston, 2000; Araujo & Costa-Pereira, 2013; Dowle et al, 2013)
[1] | Adams RI, Hadly EA (2013) Genetic diversity within vertebrate species is greater at lower latitudes. Evolutionary Ecology, 27, 133-143. |
[2] | Antonovics J (1976) The input from population genetics: “the new ecological genetics”. Systematic Botany, 1, 233-245. |
[3] | Araujo MS, Costa-Pereira R (2013) Latitudinal gradients in intraspecific ecological diversity. Biology Letters, 9, 20130778. |
[4] | Avolio ML, Smith MD (2013) Correlations between genetic and species diversity: effects of resource quantity and heterogeneity. Journal of Vegetation Science, 24, 1185-1194. |
[5] | Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecology Letters, 15, 365-377. |
[6] | Bertin A, Gouin N, Baumel A, Gianoli E, Serratosa J, Osorio R, Manel S (2016) Genetic variation of loci potentially under selection confounds species-genetic diversity correlations in a fragmented habitat. Molecular Ecology, 26, 431-443. |
[7] | Biswas SR, Mallik AU (2010) Disturbance effects on species diversity and functional diversity in riparian and upland plant communities. Ecology, 91, 28-35. |
[8] | Chu CJ, Maestre FT, Xiao S, Weiner J, Wang YS, Duan ZH, Wang G (2008) Balance between facilitation and resource competition determines biomass-density relationships in plant populations. Ecology Letters, 11, 1189-1197. |
[9] | Clark CM, Tilman D (2008) Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature, 451, 712-715. |
[10] | Cleary DF, Fauvelot C, Genner MJ, Menken SB, Mooers AO (2006) Parallel responses of species and genetic diversity to El Nino Southern Oscillation-induced environmental destruction. Ecology Letters, 9, 304-310. |
[11] | Connell JH (1978) Diversity in tropical rain forests and coral reefs-high diversity of trees and corals is maintained only in a non-equilibrium state. Science, 199, 1302-1310. |
[12] | Dowle EJ, Morgan-Richards M, Trewick SA (2013) Molecular evolution and the latitudinal biodiversity gradient. Heredity, 110, 501-510. |
[13] | Ellegren H, Galtier N (2016) Determinants of genetic diversity. Nature Reviews Genetics, 17, 422-433. |
[14] | Eo SH, Wares JP, Carroll JP (2008) Population divergence in plant species reflects latitudinal biodiversity gradients. Biology Letters, 4, 382-384. |
[15] | Evanno G, Castella E, Antoine C, Paillat G, Goudet J (2009) Parallel changes in genetic diversity and species diversity following a natural disturbance. Molecular Ecology, 18, 1137-1144. |
[16] | Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution, and Systematics, 34, 487-515. |
[17] | Fourtune L, Paz-Vinas I, Loot G, Prunier JG, Blanchet S (2016) Lessons from the fish: a multi-species analysis reveals common processes underlying similar species-genetic diversity correlations. Freshwater Biology, 61, 1830-1845. |
[18] | Frey D, Arrigo N, Granereau G, Sarr A, Felber F, Kozlowski G (2016) Parallel declines in species and genetic diversity driven by anthropogenic disturbance: a multispecies approach in a French Atlantic dune system. Evolutionary Applications, 9, 479-488. |
[19] | Gaston KJ (2000) Global patterns in biodiversity. Nature, 405, 220-227. |
[20] | Ge F (2008) Modern Ecology. Science Press, Beijing. |
(in Chinese) [戈峰 (主编) (2008) 现代生态学. 科学出版社, 北京. ] | |
[21] | Gram WK, Sork VL (2001) Association between environmental and genetic heterogeneity in forest tree populations. Ecology, 82, 2012-2021. |
[22] | Grime JP (1973) Competitive exclusion in herbaceous vegetation. Nature, 242, 344-347. |
[23] | Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen EI, Ewers RM, Foster BL, Jenkins CN, King AJ, Laurance WF, Levey DJ, Margules CR, Melbourne BA, Nicholls AO, Orrock JL, Song DX, Townshend JR (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances, 1, e1500052. |
[24] | Harpole WS, Tilman D (2007) Grassland species loss resulting from reduced niche dimension. Nature, 446, 791-793. |
[25] | Hautier Y, Niklaus PA, Hector A (2009) Competition for light causes plant biodiversity loss after eutrophication. Science, 324, 636-638. |
[26] | He T, Lamont BB, Krauss SL, Enright NJ, Miller BP (2008) Covariation between intraspecific genetic diversity and species diversity within a plant functional group. Journal of Ecology, 96, 956-961. |
[27] | Huang Y, Tran I, Agrawal AF (2016) Does genetic variation maintained by environmental heterogeneity facilitate adaptation to novel selection? The American Naturalist, 188, 27-37. |
[28] | Inza MV, Zelener N, Fornes L, Gallo LA (2012) Effect of latitudinal gradient and impact of logging on genetic diversity of Cedrela lilloi along the Argentine Yungas Rainforest. Ecology and Evolution, 2, 2722-2736. |
[29] | Jarzyna MA, Jetz W (2016) Detecting the multiple facets of biodiversity. Trends in Ecology and Evolution, 31, 527-538. |
[30] | Lamy T, Jarne P, Laroche F, Pointier JP, Huth G, Segard A, David P (2013) Variation in habitat connectivity generates positive correlations between species and genetic diversity in a metacommunity. Molecular Ecology, 22, 4445-4456. |
[31] | Laroche F, Jarne P, Lamy T, David P, Massol F (2015) A neutral theory for interpreting correlations between species and genetic diversity in communities. The American Naturalist, 185, 59-69. |
[32] | Leonardi S, Piovani P, Scalfi M, Piotti A, Giannini R, Menozzi P (2012) Effect of habitat fragmentation on the genetic diversity and structure of peripheral populations of beech in central Italy. Journal of Heredity, 103, 408-417. |
[33] | Liu XJ, Zhang Y, Han WX, Tang AH, Shen JL, Cui ZL, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang FS (2013) Enhanced nitrogen deposition over China. Nature, 494, 459-462. |
[34] | Lundholm JT (2009) Plant species diversity and environmental heterogeneity: spatial scale and competing hypotheses. Journal of Vegetation Science, 20, 377-391. |
[35] | MacArthur RH, Wilson EO (1963) An equilibrium theory of insular zoogeography. Evolution, 17, 373-387. |
[36] | Moritz C (2002) Strategies to protect biological diversity and the evolutionary processes that sustain it. Systematic Biology, 51, 238-254. |
[37] | Pauls SU, Nowak C, Balint M, Pfenninger M (2013) The impact of global climate change on genetic diversity within populations and species. Molecular Ecology, 22, 925-946. |
[38] | Peakall R, Smouse PE (2012) GenAlEx 65: genetic analysis in Excel—Population genetic software for teaching and research—an update. Bioinformatics, 28, 2537-2539. |
[39] | Pope LC, Riginos C, Ovenden J, Keyse J, Blomberg SP (2015) Population genetic diversity in the Australian “seascape”: a bioregion approach. PLoS ONE, 10, e0136275. |
[40] | Ravenscroft CH, Whitlock R, Fridley JD (2015) Rapid genetic divergence in response to 15 years of simulated climate change. Global Change Biology, 21, 4165-4176. |
[41] | Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conservation Biology, 17, 230-237. |
[42] | Ricklefs RE (1977) Environmental heterogeneity and plant species diversity: a hypothesis. The American Naturalist, 111, 376-381. |
[43] | Rohde K (1992) Latitudinal gradients in species diversity: the search for the primary cause. Oikos, 65, 514-527. |
[44] | Schrey AW, Grispo M, Awad M, Cook M, McCoy ED, Mushinsky H, Albayrak T, Bensch S, Burke T, Butler LK, Dor R, Fokidis HB, Jensen H, Imboma T, Kessler-Rios MM, Marzal A, Stewart IRK, Westerdahl H, Westneat DF, Zehtindjiev P, Martin LB (2011) Broad-scale latitudinal patterns of genetic diversity among native European and introduced house sparrow (Passer domesticus) populations. Molecular Ecology, 20, 1133-1143. |
[45] | Silvertown J, Biss PM, Freeland J (2009) Community genetics: resource addition has opposing effects on genetic and species diversity in a 150-year experiment. Ecology Letters, 12, 165-170. |
[46] | Stein A, Gerstner K, Kreft H (2014) Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters, 17, 866-880. |
[47] | Stevens RD, Gavilanez MM, Tello JS, Ray DA (2012) Phylogenetic structure illuminates the mechanistic role of environmental heterogeneity in community organization. Journal of Animal Ecology, 81, 455-462. |
[48] | Struebig MJ, Kingston T, Petit EJ, Le Comber SC, Zubaid A, Mohd-Adnan A, Rossiter SJ (2011) Parallel declines in species and genetic diversity in tropical forest fragments. Ecology Letters, 14, 582-590. |
[49] | Taberlet P, Zimmermann NE, Englisch T, Tribsch A, Holderegger R, Alvarez N, Niklfeld H, Coldea G, Mirek Z, Moilanen A, Ahlmer W, Marsan PA, Bona E, Bovio M, Choler P, Cieslak E, Colli L, Cristea V, Dalmas JP, Frajman B, Garraud L, Gaudeul M, Gielly L, Gutermann W, Jogan N, Kagalo AA, Korbecka G, Kupfer P, Lequette B, Letz DR, Manel S, Mansion G, Marhold K, Martini F, Negrini R, Nino F, Paun O, Pellecchia M, Perico G, Piekos-Mirkowa H, Prosser F, Puscas M, Ronikier M, Scheuerer M, Schneeweiss GM, Schonswetter P, Schratt-Ehrendorfer L, Schupfer F, Selvaggi A, Steinmann K, Thiel-Egenter C, van Loo M, Winkler M, Wohlgemuth T, Wraber T, Gugerli F, IntraBioDiv Consortium, Vellend M (2012) Genetic diversity in widespread species is not congruent with species richness in alpine plant communities. Ecology Letters, 15, 1439-1448. |
[50] | Thom D, Seidl R (2015) Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biological Reviews, 91, 760-781. |
[51] | Tilman D (1982) Resource Competition and Community Structure. Princeton University Press, Princeton. |
[52] | Vellend M (2003) Island biogeography of genes and species. The American Naturalist, 162, 358-365. |
[53] | Vellend M (2004) Parallel effects of land-use history on species diversity and genetic diversity of forest herbs. Ecology, 85, 3043-3055. |
[54] | Vellend M (2010) Conceptual synthesis in community ecology. Quarterly Review of Biology, 85, 183-206. |
[55] | Vellend M (2016) The Theory of Ecological Communities. Princeton University Press, Princeton. |
[56] | Vellend M, Geber MA (2005) Connections between species diversity and genetic diversity. Ecology Letters, 8, 767-781. |
[57] | Vik U, Jorgensen MH, Kauserud H, Nordal I, Brysting AK (2010) Microsatellite markers show decreasing diversity but unchanged level of clonality in Dryas octopetala (Rosaceae) with increasing latitude. American Journal of Botany, 97, 988-997. |
[58] | Wassen MJ, Venterink HO, Lapshina ED, Tanneberger F (2005) Endangered plants persist under phosphorus limitation. Nature, 437, 547-550. |
[59] | Wei X, Jiang M (2012) Contrasting relationships between species diversity and genetic diversity in natural and disturbed forest tree communities. New Phytologist, 193, 779-786. |
[60] | Whittaker RH (1972) Evolution and measurement of species diversity. Taxon, 21, 213-251. |
[61] | Willig MR, Kaufman DM, Stevens RD (2003) Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annual Review of Ecology, Evolution, and Systematics, 34, 273-309. |
[62] | Xu WM, Song CY, Li QM (2015) Relationship between soil resource heterogeneity and tree diversity in Xishuangbanna tropical seasonal rainforest, Southwest China. Acta Ecologica Sinica, 35, 7756-7762. (in Chinese with English abstract) |
[徐武美, 宋彩云, 李巧明 (2015) 西双版纳热带季节雨林土壤养分空间异质性对乔木树种多样性的影响. 生态学报, 35, 7756-7762.] | |
[63] | Xu WM, Liu L, He T, Cao M, Sha LQ, Hu YH, Li QM, Li J (2016a) Soil properties drive a negative correlation between species diversity and genetic diversity in a tropical seasonal rainforest. Scientific Reports, 6, 20652. |
[64] | Xu WM, Ci XQ, Song CY, He TH, Zhang WF, Li QM, Li J (2016b) Soil phosphorus heterogeneity promotes tree species diversity and phylogenetic clustering in a tropical seasonal rainforest. Ecology and Evolution, 6, 8719-8726. |
[65] | Yang ZY, Liu XQ, Zhou MH, Ai D, Wang G, Wang YS, Chu CJ, Lundholm JT (2015) The effect of environmental heterogeneity on species richness depends on community position along the environmental gradient. Scientific Reports, 5, 15723. |
[66] | Yeaman S, Jarvis A (2006) Regional heterogeneity and gene flow maintain variance in a quantitative trait within populations of lodgepole pine. Proceedings of the Royal Society B: Biological Sciences, 273, 1587-1593. |
[67] | Yuan ZY, Jiao F, Li YH, Kallenbach RL (2016) Anthropogenic disturbances are key to maintaining the biodiversity of grasslands. Scientific Reports, 6, 22132. |
[68] | Zhang QG, Zhang DY, Ge JP, Zhao GL, Yu ZL (2014) Progress and hotspot in integrative biodiversity research — A review for “Shuangqing Forum, No. 88”. Chinese Bulletin of Life Sciences, 26, 97-99. (in Chinese) |
[张全国, 张大勇, 葛剑平, 赵桂玲, 于振良 (2014) 生物多样性整合研究的进展及热点——第88期“双清论坛”综述. 生命科学, 26, 97-99.] | |
[69] | Zhu BR, Zhang DY (2011) A process-based theoretical framework for community ecology. Biodiversity Science, 19, 389-399. (in Chinese with English abstract) |
[朱璧如, 张大勇 (2011) 基于过程的群落生态学理论框架. 生物多样性, 19, 389-399.] |
[1] | 马海港 范鹏来. 被动声学监测技术在陆生哺乳动物研究中的应用、进展和展望[J]. 生物多样性, 2023, 31(1): 22374-. |
[2] | 王芸芸, 郝占庆. 被子植物性系统的多样性、生态功能及分布规律[J]. 生物多样性, 2022, 30(7): 22065-. |
[3] | 孙维悦, 舒江平, 顾钰峰, 莫日根高娃, 杜夏瑾, 刘保东, 严岳鸿. 基于保护基因组学揭示荷叶铁线蕨的濒危机制[J]. 生物多样性, 2022, 30(7): 21508-. |
[4] | 钱宏, 张健, 赵静超. 世界上已知维管植物有多少种? 基于多个全球植物数据库的整合[J]. 生物多样性, 2022, 30(7): 22254-. |
[5] | 王健铭, 曲梦君, 王寅, 冯益明, 吴波, 卢琦, 何念鹏, 李景文. 青藏高原北部戈壁植物群落物种、功能与系统发育β多样性分布格局及其影响因素[J]. 生物多样性, 2022, 30(6): 21503-. |
[6] | 李正飞, 蒋小明, 王军, 孟星亮, 张君倩, 谢志才. 雅鲁藏布江中下游底栖动物物种多样性及其影响因素[J]. 生物多样性, 2022, 30(6): 21431-. |
[7] | 姜晓燕, 高圣杰, 蒋燕, 田赟, 贾昕, 查天山. 毛乌素沙地植被不同恢复阶段植物群落物种多样性、功能多样性和系统发育多样性[J]. 生物多样性, 2022, 30(5): 21387-. |
[8] | 袁桃花, 李美君, 任柳伊, 黄榕鑫, 陈益, 白新祥. 中国野生凤仙花属物种多样性和地理分布数据集[J]. 生物多样性, 2022, 30(5): 22019-. |
[9] | 陶克涛, 白东义, 图格琴, 赵若阳, 安塔娜, 铁木齐尔·阿尔腾齐米克, 宝音德力格尔, 哈斯, 芒来, 韩海格. 基于基因组SNPs对东亚家马不同群体遗传多样性的评估[J]. 生物多样性, 2022, 30(5): 21031-. |
[10] | 崔静, 徐明芳, 章群, 李瑶, 曾晓舒, 李莎. 基于3种线粒体标记探讨中日沿海角木叶鲽遗传多样性差异[J]. 生物多样性, 2022, 30(5): 21485-. |
[11] | 张敏, 田春坡, 车先丽, 赵岩岩, 陈什旺, 周霞, 邹发生. 广东省鸟类新记录及其与自然和社会经济因素的关联性[J]. 生物多样性, 2022, 30(5): 21396-. |
[12] | 彭莳嘉, 罗源, 蔡宏宇, 张晓玲, 王志恒. 全球变化情景下的中国木本植物受威胁物种名录[J]. 生物多样性, 2022, 30(5): 21459-. |
[13] | 李海萍, 徐竹青, 龙志航. 大兴安岭地区重点保护和珍稀动物保护空缺分析[J]. 生物多样性, 2022, 30(2): 21294-. |
[14] | 陈胜仙, 张喜亭, 佘丹琦, 张衷华, 周志强, 王慧梅, 王文杰. 森林植物多样性、树种重要值与土壤理化性质对球囊霉素相关土壤蛋白的影响[J]. 生物多样性, 2022, 30(2): 21115-. |
[15] | 乔江, 贾国清, 周华明, 龚林, 蒋勇, 肖能文, 高晓奇, 温安祥, 王杰. 四川贡嘎山国家级自然保护区鸟兽多样性[J]. 生物多样性, 2022, 30(2): 20395-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn