生物多样性 ›› 2008, Vol. 16 ›› Issue (5): 437-445. DOI: 10.3724/SP.J.1003.2008.08119
所属专题: 物种形成与系统进化
收稿日期:
2008-05-21
接受日期:
2008-08-08
出版日期:
2008-09-20
发布日期:
2008-09-20
通讯作者:
邓建明
基金资助:
Qiang Zhang, Renyi Ma, Mingfei Ji, Jianming Deng*()
Received:
2008-05-21
Accepted:
2008-08-08
Online:
2008-09-20
Published:
2008-09-20
Contact:
Jianming Deng
摘要:
提出生物多样性分布格局的普适性理论和探索其内在形成机制一直是生态学家们研究的焦点之一。到目前为止, 已有很多假说被用来解释生物多样性分布规律, 但是这些假说的普适性均受到学者们的质疑。最新理论——代谢速率假说以能量相当法则和代谢分形分配网络模型为基础, 定量预测了个体及种群生态进化动态过程与群落生物多样性分布格局之间的关系, 以及物种丰富度和环境因子之间的关系。代谢速率假说解释了生物多样性的起源问题, 也回答了生物多样性如何维持的问题。该文重点综述了代谢生物多样性理论的发展及其相关研究进展。通过和其他假说比较、分析, 我们认为随着代谢理论假说的不断发展和完善, 代谢生物多样性理论将更具有普适性。同时我们也提出了进一步完善该假说需要解决的一些科学问题。
张强, 马仁义, 姬明飞, 邓建明 (2008) 代谢速率调控物种丰富度格局的研究进展. 生物多样性, 16, 437-445. DOI: 10.3724/SP.J.1003.2008.08119.
Qiang Zhang, Renyi Ma, Mingfei Ji, Jianming Deng (2008) Advances of species richness regulated by the metabolic rate. Biodiversity Science, 16, 437-445. DOI: 10.3724/SP.J.1003.2008.08119.
[1] | Algar AC, Kerr JT, Currie DJ (2007) A test of metabolic theory as the mechanism underlying broad-scale species richness gradients. Global Ecology and Biogeography, 16,170-178. |
[2] |
Allen AP, Brown JH, Gillooly JF (2002) Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science, 297,1545-1548.
DOI URL PMID |
[3] |
Allen AP, Gillooly JF (2006) Assessing latitudinal gradients in speciation rates and biodiversity at the global scale. Ecology Letters, 9,947-954.
DOI URL PMID |
[4] | Allen AP, Gillooly JF, Brown JH (2003) Response to comment on “Global biodiversity, biochemical kinetics and the energetic-equivalence rule”. Science, 299,346c. |
[5] | Allen AP, Gillooly JF, Brown JH (2007) Recasting the Species-Energy Hypothesis: the Different Roles of Kinetic and Potential Energy in Regulating Biodiversity. Scaling biodiversity (eds Storch D, Marquet PA, Brown JH), pp. 283-299. Cambridge University Press, Cambridge, UK. |
[6] | Allen AP, Gillooly JF, Savage VM, Brown JH (2006) Kinetic effects of temperature on rates of genetic divergence and speciation. Proceedings of the National Academy of Sciences,USA, 103,9130-9135. |
[7] | Anderson DR, Burnham KP (1994) AIC model selection in overdispersed capture-recapture data. Ecology, 75,1780-1793. |
[8] | Bai YF, Wu JG, Pan QM, Huang JH, Wang QB, Li FS, Buyantuyev A, Han XG (2007) Positive linear relationship between productivity and diversity: evidence from the Eurasian steppe. Journal of Applied Ecology, 44,1023-1034. |
[9] |
Barraclough TG, Savolainen V (2001) Evolutionary rates and species diversity in flowering plants. Evolution, 55,677-683.
URL PMID |
[10] | Brayard A, Escarguel G, Bucher H (2005) Latitudinal gradient of taxonomic richness: combined outcome of temperature and geographic mid-domains effects? Journal of Zoological Systematics and Evolutionary Research, 43,178-188. |
[11] |
Bromham L, Cardillo M (2003) Testing the link between the latitudinal gradient in species richness and rates of molecular evolution. Journal of Evolutionary Biology, 16,200-207.
DOI URL PMID |
[12] | Brown JH, Allen AP, Gillooly JF (2003) Heat and biodiversity: response. Science, 299,512-513. |
[13] | Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology, 85,1771-1789. |
[14] | Brunsdon C, Fotheringham AS, Charlton M (1996) Geographically weighted regression: a method for exploring spatial nonstationarity. Geographical Analysis, 28,281-298. |
[15] | Carnicer J, Brotons L, Sol D, Jordano P (2007) Community-based processes behind species richness gradients: contrasting abundance-extinction dynamics and sampling effects in areas of low and high productivity. Global Ecology and Biogeography, 16,709-719. |
[16] | Cassemiro FAS, Barreto BS, Rangel TFLVB, Diniz-Filho JAF (2007) Non-stationarity, diversity gradients and the metabolic theory of ecology. Global Ecology and Biogeography, 16,820-822. |
[17] |
Colwell RK, Lees DC (2000) The mid-domain effect: geometric constraints on the geography of species richness. Trends in Ecology and Evolution, 15,70-76.
URL PMID |
[18] | Colwell RK, Rahbek C, Gotelli NJ (2004) The mid-domain effect and species richness patterns: what have we learned so far? The American Naturalist, 163,e1-e23. |
[19] | Currie DJ, Mittelbach GG, Cornell HV, Field R, Guegan JF, Hawkins BA, Kaufman DM, Kerr JT, Oberdoeff T, O′Brien E, Turner JRG (2004) Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecology Letters, 7,1121-1134. |
[20] | Deng JM, Li T, Wang GX, Liu J, Yu ZL, Zhao CM, Ji MF, Zhang Q, Liu JQ (2008) Trade-offs between the metabolic rate and population density of plants. PLoS One, 3,e1799. |
[21] | Deng JM, Wang GX, Morris EC, Wei XP, Li DX, Chen BM, Zhao CM, Liu J, Wang Y (2006) Plant mass-density relationship along a moisture gradient in north-west China. Journal of Ecology, 94,953-958. |
[22] | Deng JM (邓建明), Wang GX (王根轩), Wei XP (魏小平) (2006) The advance of metabolic regulation studies for macroscopical ecology processes. Acta Ecologica Sinica (生态学报), 26,3413-3423. (in Chinese with English abstract) |
[23] | Dunn RR, McCain CM, Sanders NJ (2007) When does diversity fit null model predictions? Scale and range size mediate the mid-domain effect. Global Ecology and Biogeography, 16,305-312. |
[24] | Dynesius M, Jansson R (2000) Evolutionary consequences of changes in species’ geographical distributions driven by Milankovitch climate oscillations. Proceedings of the National Academy of Sciences,USA, 97,9115-9120. |
[25] | Ellison AM (2007) Metabolic theory and patterns of species richness. Ecology, 88,1889. |
[26] |
Emerson BC, Colm M (2005) Species diversity can drive speciation. Nature, 434,1015-1017.
URL PMID |
[27] | Enquist BJ, Brown JH, West GB (1998) Allometric scaling of plant energetics and population density. Nature, 395,163-165. |
[28] | Escarguel G, Brayard A, Bucher H (2008) Evolution rates do not drive latitudinal diversity gradients. Journal of Zoological Systematics and Evolutionary Research, 46,82-86. |
[29] | Evans KL, Gaston KJ (2005) Can the evolutionary-rates hypothesis explain species-energy relationships? Functional Ecology, 19,899-915. |
[30] |
Evans KL, Warren PH, Gaston KJ (2005) Species-energy relationships at the macroecological scale: a review of the mechanisms. Biological Reviews, 80,1-25.
DOI URL PMID |
[31] | Farrell BD, Mitter C, Futuyma DJ (1992) Diversification at the insect-plant interface. BioScience, 42,34-42. |
[32] | Fedorov AA (1966) The structure of tropical rain forest and speciation in the humid tropics. Journal of Ecology, 54,1-11. |
[33] | Feng JM (冯建孟), Wang XP (王襄平), Li J (李晶), Fang JY (方精云) (2006) Effects of area and mid-domain effect on altitudinal pattern of seed plants richness in Lijiang, Yunnan, China. Biodiversity Science (生物多样性), 14,107-113. (in Chinese with English abstract) |
[34] | Foody GM (2004) Spatial non-stationarity and scale-dependency in the relationship between species richness and environmental determinants for the sub-Saharan endemic avifauna. Global Ecology and Biogeography, 13,315-320. |
[35] | Foody GM (2005) Clarifications on local and global data analysis. Global Ecology and Biogeography, 14,99-100. |
[36] |
Gaston KJ (2000) Global patterns in biodiversity. Nature, 405,220-227.
URL PMID |
[37] |
Gillman LN, Wright SD (2006) The influence of productivity on the species richness of plants: a critical assessment. Ecology, 87,1234-1243.
URL PMID |
[38] |
Gillooly JF, Allen AP (2007) Linking global patterns in biodiversity to evolutionary dynamics using metabolic theory. Ecology, 88,1890-1894.
DOI URL PMID |
[39] | Gillooly JF, Allen AP, West GB, Brown JH (2005a) The rate of DNA evolution:effects of body size and temperature on the molecular clock. Proceedings of the National Academy of Sciences,USA, 102,140-145. |
[40] | Gillooly JF, Allen AP, Savage VM, West GB, Brown JH (2005b) Response to Clarke and Fraser:effects of temperature on metabolic rate. Functional Ecology, 20,400-404. |
[41] | Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science, 293,2248-2251. |
[42] | Han WX (韩文轩), Fang JY (方精云) (2003) Allometry and its application in ecological scaling. Acta Scientiarum Naturalium Universitatis Pekinensis (北京大学学报), 39,583-593. (in Chinese with English abstract) |
[43] | Han WX (韩文轩), Fang JY (方精云) (2008) Review on the mechanism models of allometric scaling laws: 3/4 vs.2/3 power. Journal of Plant Ecology (Chinese version)(植物生态学报), 32,951-960. (in Chinese with English abstract) |
[44] | Harrison S, Grace JB (2007) Biogeographic affinity helps explain productivity-richness relationships at regional and local scales. The American Naturalist, 170,S5-S15. |
[45] |
Hawkins BA, Albuquerque FS, Araújo MB, Beck J, Bini LM, Cabrero-Sańudo FJ, Castro-Parga I, Diniz-Filho JAF, Ferrer-Castán D, Field R, Gómez JF, Hortal J, Kerr JT, Kitching IJ, León-Cortés JL, Lobo JM, Montoya D, Moreno CJ, Olalla-tárraga MÁ, Pausas JG, Qian H, Rahbek C, Rodríguez MÁ, Sanders NJ, Williams P (2007a) A global evaluation of metabolic theory as an explanation for terrestrial species richness gradients. Ecology, 88,1877-1888.
DOI URL PMID |
[46] |
Hawkins BA, Diniz-Filho JAF, Bini LM, Araújo MB, Field R, Hortal J, Kerr JT, Rahbek C, Rodríguez MÁ, Sanders NJ (2007b) Metabolic theory and diversity gradients: where do we go from here? Ecology, 88,1898-1902.
URL PMID |
[47] | Hawkins BA, Diniz-Filho JAF, Weis AE (2005) The mid-domain effect and diversity gradients: is there anything to learn? The American Naturalist, 166,e140-e143. |
[48] | Hubbell SP (2001) The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press,Princeton,New Jersey. |
[49] | Jetz W, Rahbek C (2001) Geometric constraints explain much of the species richness pattern in African birds. Proceedings of the National Academy of Sciences,USA, 98,5661-5666. |
[50] | Jetz W, Rahbek C, Lichstein JW (2005) Local and global approaches to spatial data analysis in ecology. Global Ecology and Biogeography, 14,97-98. |
[51] |
Kaspari M, O′Donnell S, Kercher JR (2000) Energy, density, and constraints to species richness: ant assemblages along a productivity gradient. The American Naturalist, 155,280-293.
DOI URL PMID |
[52] | Kerr JT, Packer L (1997) Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature, 385,252-254. |
[53] | Kimura M (1983) The Neutral Theory of Molecular Evolution. Cambridge University Press,Cambridge. |
[54] | Laanisto L, Urbas P, Pärtel M (2008) Why does the unimodal species richness-productivity relationship not apply to woody species: a lack of clonality or a legacy of tropical evolutionary history? Global Ecology and Biogeography, 17,320-327. |
[55] | Lanfear R, Thomas JA, Welch JJ, Brey T, Bromham L (2007) Metabolic rate does not calibrate the molecular clock. Proceedings of the National Academy of Sciences,USA, 104,15388-15393. |
[56] |
Latimer AM (2007) Geography and resource limitation complicate metabolism-based predictions of species richness. Ecology, 88,1895-1898.
DOI URL PMID |
[57] | Ma WH (马文红), Fang JY (方精云) (2006) The relationship between species richness and productivity in four typical grasslands of northern China. Biodiversity Science (生物多样性), 14,21-28. (in Chinese with English abstract) |
[58] | McClain CR, White EP, Hurlbert AH (2007) Challenges in the application of geometric constraint models. Global Ecology and Biogeography, 16,257-264. |
[59] | Mittelbach GG, Schemske DW, Cornell HV, Allen AP, Brown JM, Bush MB, Harrison SP, Hurlbert AH, Knowlton N, Lessio HA, McCain CM, McCune AR, McDade LA, McPeek MA, Near TJ, Price TD, Ricklefs RE, Roy K, Sax DF, Schluter D, Sobel JM, Turelli M (2007) Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecology Letters, 10,315-331. |
[60] | Mittelbach GG, Steiner CF, Steiner SM, Gross KL, Reynolds HL, Waide RB, Willig MR, Dodson SI, Gough L (2001) What is the observed relationship between species richness and productivity? Ecology, 82,2381-2396. |
[61] |
Pärtel M, Laanisto L, Zobel M (2007) Contrasting plant productivity-diversity relationships across latitude: the role of evolutionary history. Ecology, 88,1091-1097.
URL PMID |
[62] | Pärtel M, Zobel M (2007) Dispersal limitation may result in the unimodal productivity-diversity relationship: a new explanation for a general pattern. Journal of Ecology, 95,90-94. |
[63] | Ricklefs RE (2004) A comprehensive framework for global patterns in biodiversity. Ecology Letters, 7,1-15. |
[64] | Rohde K (1992) Latitudinal gradients in species diversity: the search for the primary cause. Oikos, 65,514-527. |
[65] | Rosenzweig ML (1995) Species Diversity in Space and Time. Cambridge University Press, Cambridge,UK. |
[66] | Roy K, Goldberg EE (2007) Origination, extinction, and dispersal: integrative models for understanding present-day diversity gradients. The American Naturalist, 170,S71-S85. |
[67] | Sanders NS, Lessard JP, Fitzpatrick MC, Dunn R. (2007) Temperature, but not productivity or geometry, predicts elevational diversity gradients in ants across spatial grains. Global Ecology and Biogeography, 16,640-649. |
[68] | Savage V M, Gillooly JF, Brown JH, West GB, Charnov EL (2004) Effects of body size and temperature on population growth. The American Naturalist, 163,429-441. |
[69] | Scheiner SM, Willig MR (2005) Developing unified theories in ecology as exemplified with diversity gradients. The American Naturalist, 166,458-469. |
[70] |
Srivastava DS, Lawton JH (1998) Why more productive sites have more species: experimental test of theory using tree-hole communities. The American Naturalist, 152,510-529.
DOI URL PMID |
[71] | Stephens PR, Wiens JJ (2003) Explaining species richness from continents to communities: the time for speciation effect in emydid turtles. The American Naturalist, 161,112-128. |
[72] | Waide RB, Willig MR, Steiner CF, Mittelbach G, Gough L, Dodson SI, Juday GP, Parmenter R (1999) The relationship between productivity and species richness. Annual Review of Ecology and Systematics, 30,257-300. |
[73] | Wang Q, Ni J, Tenhunen J (2005) Application of a geographically-weighted regression analysis to estimate net primary production of Chinese forest ecosystems. Global Ecology and Biogeography, 14,379-393. |
[74] | West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science, 276,122-126. |
[75] | West GB, Brown JH, Enquist BJ (1999) A general model for the structure, function, and allometry of plant vascular systems. Nature, 400,664-667. |
[76] |
Wiens JJ, Donoghue MJ (2004) Historical biogeography, ecology and species richness. Trends in Ecology and Evolution, 19,639-644.
DOI URL PMID |
[77] | Willig MR, Kaufman DM, Stevens RD (2003) Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annual Review of Ecology,Evolution, and Systematics, 34,273-309. |
[78] | Wright DH (1983) Species-energy theory: an extension of species-area theory. Oikos, 41,496-506. |
[1] | 顾燚芸, 薛嘉祈, 高金会, 谢心仪, 韦铭, 雷进宇, 闻丞. 一种基于公众科学数据的区域性鸟类多样性评价方法[J]. 生物多样性, 2024, 32(7): 24080-. |
[2] | 马骅, 李常青, 余品锋, 陈杰, 贺天耀, 王可洪. 澎溪河消落带大型土壤动物群落分布格局及其影响因素[J]. 生物多样性, 2024, 32(7): 24117-. |
[3] | 王艳丽, 张英, 戚春林, 张昌达, 史佑海, 杜彦君, 丁琼. 海南热带雨林国家公园生物多样性热点与保护空缺区域识别: 基于大型真菌与植物视角[J]. 生物多样性, 2024, 32(7): 24081-. |
[4] | 田瑜, 李俊生. 《昆明-蒙特利尔全球生物多样性框架》“3030”目标的内涵及实现路径分析[J]. 生物多样性, 2024, 32(6): 24086-. |
[5] | 姜熠辉, 刘岳, 曾旭, 林喆滢, 王楠, 彭吉豪, 曹玲, 曾聪. 东海六个国家级海洋保护区鱼类多样性和连通性[J]. 生物多样性, 2024, 32(6): 24128-. |
[6] | 连佳丽, 陈婧, 杨雪琴, 赵莹, 罗叙, 韩翠, 赵雅欣, 李建平. 荒漠草原植物多样性和微生物多样性对降水变化的响应[J]. 生物多样性, 2024, 32(6): 24044-. |
[7] | 赵富伟, 李颖硕, 陈慧. 新时期我国生物多样性法制建设思考[J]. 生物多样性, 2024, 32(5): 24027-. |
[8] | 鄢德奎. 中国生物多样性保护政策的共同要素、不足和优化建议[J]. 生物多样性, 2024, 32(5): 23293-. |
[9] | 马碧玉. 印度《生物多样性法》修订述要及对我国完善生物多样性保护法制的启示[J]. 生物多样性, 2024, 32(5): 23412-. |
[10] | 蔡颖莉, 朱洪革, 李家欣. 中国生物多样性保护政策演进、主要措施与发展趋势[J]. 生物多样性, 2024, 32(5): 23386-. |
[11] | 艾妍雨, 胡海霞, 沈婷, 莫雨轩, 杞金华, 宋亮. 附生维管植物多样性及其与宿主特征的相关性: 以哀牢山中山湿性常绿阔叶林为例[J]. 生物多样性, 2024, 32(5): 24072-. |
[12] | 刘荆州, 钱易鑫, 张燕雪丹, 崔凤. 基于潜在迪利克雷分布(LDA)模型的旗舰物种范式研究进展与启示[J]. 生物多样性, 2024, 32(4): 23439-. |
[13] | 吴乐婕, 刘泽康, 田星, 张群, 李博, 吴纪华. 海三棱藨草基因型多样性对种群营养生长和繁殖策略的影响[J]. 生物多样性, 2024, 32(4): 23478-. |
[14] | 李雪萌, 蒋际宝, 张曾鲁, 刘晓静, 王亚利, 吴宜钊, 李银生, 邱江平, 赵琦. 宝天曼国家级自然保护区蚯蚓物种多样性及其影响因素[J]. 生物多样性, 2024, 32(4): 23352-. |
[15] | 郝操, 吴东辉, 莫凌梓, 徐国良. 越冬动物肠道微生物多样性及功能研究进展[J]. 生物多样性, 2024, 32(3): 23407-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn