生物多样性 ›› 2025, Vol. 33 ›› Issue (4): 24554. DOI: 10.17520/biods.2024554 cstr: 32101.14.biods.2024554
王顺雨1,2(), 李杨1,2(
), 吕晓琴1,3(
), 李欣1(
), 范权秀1(
), 王晓月1,3,*(
)(
)
收稿日期:
2024-12-09
接受日期:
2025-03-03
出版日期:
2025-04-20
发布日期:
2025-03-10
通讯作者:
*E-mail: wang.xiaoyue1989@163.com
基金资助:
Wang Shunyu1,2(), Li Yang1,2(
), Lü Xiaoqin1,3(
), Li Xin1(
), Fan Quanxiu1(
), Wang Xiaoyue1,3,*(
)(
)
Received:
2024-12-09
Accepted:
2025-03-03
Online:
2025-04-20
Published:
2025-03-10
Contact:
*E-mail: wang.xiaoyue1989@163.com
Supported by:
摘要:
植物开花过程中花色的变化作为一种指示信号会引导传粉者偏好访问变色前的花, 那么花色的变化能否影响昆虫盗蜜, 目前还不清楚。为了探究盗蜜者是否偏好变色前的花以及盗蜜对植物繁殖适合度的作用, 我们以忍冬属长距忍冬(Lonicera calcarata)为研究对象, 其花期3天, 花色从白变为黄, 再变为橘红, 野外记录访花昆虫的访问行为, 计算合法访问和盗蜜的频率; 统计不同居群3种颜色花的盗蜜率, 测量它们正常和盗蜜花朵的形态特征, 测量开花中正常和盗蜜花朵的花蜜现存量和糖浓度, 统计正常和盗蜜的花苞中花粉和胚珠总数, 进行不同人工授粉处理统计结实率。长距忍冬的访花者有尺蛾、蝶和熊蜂, 其中熊蜂可以合法地访花和对不同颜色的花盗蜜, 总的盗蜜频率高于合法访花频率; 橘红色和黄色花的盗蜜率、盗洞大小显著高于白色花; 盗蜜花的形态特征(尤其是唇瓣和花药)整体上小于正常花, 盗蜜减少单花的花蜜分泌量, 但不影响其糖浓度; 盗蜜不影响花苞中的花粉总数、胚珠数和植株的结实率。该研究表明盗蜜者熊蜂没有偏好访问变色前的花, 盗蜜会减少花蜜分泌量, 没有直接显著影响植物的雌雄适合度。植物花色变化对访花昆虫行为的影响需要更深入和持续的研究。
王顺雨, 李杨, 吕晓琴, 李欣, 范权秀, 王晓月 (2025) 熊蜂盗蜜的花色偏好及对长距忍冬繁殖适合度的影响. 生物多样性, 33, 24554. DOI: 10.17520/biods.2024554.
Wang Shunyu, Li Yang, Lü Xiaoqin, Li Xin, Fan Quanxiu, Wang Xiaoyue (2025) The color preference of bumblebee nectar robbing and its impact on the reproductive fitness of Lonicera calcarata. Biodiversity Science, 33, 24554. DOI: 10.17520/biods.2024554.
图1 长距忍冬的花序、单花以及昆虫的访花行为。A. 长距忍冬枝条白色、黄色和橘红色的花; B. 花蜜距被盗蜜现象(以白色花为例, 红色箭头指向盗洞); C. 花部特征测量方法的示意图(a: 上唇长; b: 上唇宽; c: 下唇长; d: 下唇宽; e: 花开口直径; f: 花筒直径; g: 花筒深; h: 花蜜距长; i: 花蜜距直径; j: 雌蕊长; k: 柱头直径; l: 柱头厚度; m: 雄蕊长; n: 花药长; o: 花药宽; p: 花药厚度; q: 盗洞长; r: 盗洞宽); D. 黑尾熊蜂从花冠开口进入花中吸取花蜜(合法地访花行为); E. 黑尾熊蜂将喙从花蜜距的基部盗洞深入蜜距, 直接盗取花蜜; F. Bombus eximius在合法地访花; G. B. eximius从花蜜距基部盗取花蜜; H. 楚南熊蜂合法地访花; I. 楚南熊蜂从花蜜距基部盗取花蜜; J. 完善绢粉蝶在合法地访花; K. 尺蛾类在合法地访花。
Fig. 1 Inflorescence and single flower of Lonicera calcarata and the visiting behavior of insects. A. White, yellow and orange-red flowers on the branch of L. calcarata; B. Nectar robbing phenomenon (using the white flower as an example, the hole marked with a red arrow); C. Diagram showing the measurement of floral traits (a, Upper lip length; b, Upper lip width; c, Lower lip length; d, Lower lip width; e, Floral opening diameter; f, Floral tube diamete; g, Floral tube depth; h, Nectar spur length; i, Nectar spur diameter; j, Pistil length; k, Stigma diameter; l, Stigma thickness; m, Stamen length; n, Anther length; o, Anther width; p, Anther thickness; q, Robbing hole’ length; r, Robbing hole’s width); D. Bombus melanurus forages the nectar through the corolla opening (legitimate visit); E. B. melanurus inserts its proboscis into the nectar spur’s base to rob nectar; F. B. eximius visits the flowers legitimately; G. B. eximius robs the nectar from the base of the nectar spur; H. B. sonani visits the flowers legitimately; I. B. sonani robs the nectar from the base of the nectar spur; J. Aporia agathon visits the flowers legitimately; K. Moths visits the flowers legitimately.
居群 Population | 位置 Location | 盗蜜率 Nectar robbing rate (%) | Wald χ2 | df | P | ||||
---|---|---|---|---|---|---|---|---|---|
纬度 Latitude (°N) | 经度 Longitude (°E) | 海拔 Altitude (m) | 白色花 White flowers | 黄色花 Yellow flowers | 橘红色花 Orange-red flowers | ||||
1 | 23.14 | 104.81 | 1,939 | 15.81 ± 5.30b | 58.53 ± 13.36a | 60.88 ± 14.68a | 12.107 | 2 | 0.002 |
2 | 23.24 | 104.91 | 1,953 | 41.67 ± 22.05b | 89.71 ± 7.55a | 96.97 ± 3.03a | 12.895 | 2 | 0.002 |
3 | 23.16 | 104.82 | 1,920 | 32.82 ± 3.41b | 80.16 ± 8.40a | 83.33 ± 9.62a | 26.701 | 2 | < 0.001 |
4 | 23.19 | 104.86 | 1,930 | 16.90 ± 6.91b | 34.17 ± 19.73a | 75.35 ± 9.01a | 22.566 | 2 | < 0.001 |
5 | 23.29 | 104.76 | 1,941 | 11.97 ± 4.93b | 65.19 ± 17.12a | 72.50 ± 7.25a | 56.944 | 2 | < 0.001 |
6 | 22.69 | 105.76 | 1,817 | 35.42 ± 7.38b | 32.97 ± 7.67ab | 58.78 ± 8.58a | 8.746 | 2 | 0.013 |
7 | 22.19 | 105.16 | 1,761 | 0.00 ± 0.00c | 20.00 ± 16.33b | 38.89 ± 18.59a | 42.372 | 2 | < 0.001 |
表1 长距忍冬7个野生居群的位置以及每一个居群中白色花、黄色花和橘红色花盗蜜率的比较(广义线性模型分析)。同一行中标注不同的小写字母的数值表示在该居群不同颜色花的盗蜜率存在显著性差异。
Table 1 The locations of the seven wild populations of Lonicera calcarata and comparison of nectar robbing rates of white, yellow, and orange-red flowers in each population (generalized linear model analysis). Different lower case letters in the same row indicate significant differences in nectar robbing rate among the different color flowers.
居群 Population | 位置 Location | 盗蜜率 Nectar robbing rate (%) | Wald χ2 | df | P | ||||
---|---|---|---|---|---|---|---|---|---|
纬度 Latitude (°N) | 经度 Longitude (°E) | 海拔 Altitude (m) | 白色花 White flowers | 黄色花 Yellow flowers | 橘红色花 Orange-red flowers | ||||
1 | 23.14 | 104.81 | 1,939 | 15.81 ± 5.30b | 58.53 ± 13.36a | 60.88 ± 14.68a | 12.107 | 2 | 0.002 |
2 | 23.24 | 104.91 | 1,953 | 41.67 ± 22.05b | 89.71 ± 7.55a | 96.97 ± 3.03a | 12.895 | 2 | 0.002 |
3 | 23.16 | 104.82 | 1,920 | 32.82 ± 3.41b | 80.16 ± 8.40a | 83.33 ± 9.62a | 26.701 | 2 | < 0.001 |
4 | 23.19 | 104.86 | 1,930 | 16.90 ± 6.91b | 34.17 ± 19.73a | 75.35 ± 9.01a | 22.566 | 2 | < 0.001 |
5 | 23.29 | 104.76 | 1,941 | 11.97 ± 4.93b | 65.19 ± 17.12a | 72.50 ± 7.25a | 56.944 | 2 | < 0.001 |
6 | 22.69 | 105.76 | 1,817 | 35.42 ± 7.38b | 32.97 ± 7.67ab | 58.78 ± 8.58a | 8.746 | 2 | 0.013 |
7 | 22.19 | 105.16 | 1,761 | 0.00 ± 0.00c | 20.00 ± 16.33b | 38.89 ± 18.59a | 42.372 | 2 | < 0.001 |
图2 长距忍冬访花昆虫完善绢粉蝶、蛾类、黑尾熊蜂、B. eximius和楚南熊蜂的合法访问(即完成传粉过程)和盗蜜行为的访问频率的比较。不同大写字母表明不同的访花昆虫之间的合法访问的频率有显著性差异, 不同小写字母表示不同访花昆虫的盗蜜频率有显著性差异。ns表示同一种昆虫的合法访问频率和盗蜜频率没有显著性差异(P > 0.05), ***表示该昆虫的盗蜜频率显著高于访花的频率(P < 0.001)。
Fig. 2 Comparison of the frequency of legitimate visits (completing the pollination process) and nectar robbing behavior of Aporia agathon, moths, Bombus melanurus, B. eximius and B. sonani on Lonicera calcarata. Different uppercase letters indicate significant difference in the frequency of legitimate visits among different insects, while different lowercase letters indicate significant difference in the frequency of nectar robbing behavior among different insects. “ns” indicates no significant difference between the frequency of legitimate visit and nectar robbing behavior of the same insect (P > 0.05), while *** indicates that the nectar robbing frequency is significantly higher than the frequency of legitimate visits of the same insect (P < 0.001).
![]() |
表2 长距忍冬白色 、黄色和橘红色盗蜜的和正常的未被盗蜜的花的花部特征以及这3种颜色花的花蜜距中盗洞长和宽的比较(平均值士标准误,单位: mm,广义线性模”型)。 同一颜色花中同一行不同的小写字母表示正常花和盗蜜花的该花部特征有显著性差异,较大的数值字体加粗表示。
Table 2 Comparison of floral characters between robbed and normal unrobbed flowers (white, yellow and orange-red) of Lonicera calcarata and nectar robbing hole size among these three colors flowers (mean土SE, units: mm, generalized linear model analysis). Different lowercase letters in the same row for one color flower indicate significant difference in the floral characters between robbed and normal flowers, with larger value in bold.
![]() |
图3 长距忍冬正常花和盗蜜花在开花过程中3个时期花蜜的现存量(A)和糖浓度(B)的比较。不同的大写字母表明正常未被盗蜜的长距忍冬花蜜的现存量或者糖浓度在不同时期存在显著差异, 不同的小写字母表明盗蜜的长距忍冬花蜜的现存量或者糖浓度在不同时期存在显著性差异。***表明同一时期不同处理间存在显著性差异(P < 0.001), ns表明同一时期不同处理之间不存在显著性差异(P > 0.05)。
Fig. 3 Comparison of nectar volume (A) and sugar concentration (B) during three flowering stages of normal and robbed Lonicera calcarata flowers. Different uppercase letters indicate significant difference in nectar volume or sugar concentration of normal L. calcarata flowers at different stages. Different lowercase letters indicate significant difference in nectar volume or sugar concentration of robbed L. calcarata at different stages. *** indicates a significant difference (P < 0.001) between two treatments at the same stage, and “ns” indicates no significant difference (P > 0.05) between two treatments at the same stage.
图4 长距忍冬盗蜜的花苞和正常花苞中花粉总数(A)和胚珠总数(B)的比较, 以及长距忍冬不同授粉处理结实率的比较(C)。正常花粉授到盗蜜的柱头(缩写为NP*RS), 正常花粉授到正常的柱头(缩写为NP*NS), 盗蜜的花粉授到正常的柱头(缩写为RP*NS)。“ns”表示不同处理之间没有显著性差异(P > 0.05)。
Fig. 4 Comparison of total number of pollen grains (A) and ovules (B) between normal and robbed flower buds of Lonicera calcarata, and comparison of seed sets among different pollination treatments (C). Normal pollen * robbed stigma, abbreviated to NP*RS; normal pollen*normal stigma, abbreviated to NP*NS; robbed pollen * normal stigma, abbreviated to RP*NS. “ns” indicates no significant difference between the different treatments (P > 0.05).
[1] | Carrió E, Güemes J (2019) Nectar robbing does not affect female reproductive success of an endangered Antirrhinum species, Plantaginaceae. Plant Ecology & Diversity, 12, 159-168. |
[2] | de Souza CV, Salvador MV, Tunes P, Di Stasi LC, Guimarães E (2019) I’ve been robbed! Can changes in floral traits discourage bee pollination? PLoS ONE, 14, e0225252. |
[3] | Deng H, Xiang GJ, Guo YH, Yang CF (2017) Study on the breeding system and floral color change of four Lonicera species in the Qinling Mountains. Plant Science Journal, 35, 1-12. (in Chinese with English abstract) |
[邓惠, 向甘驹, 郭友好, 杨春锋 (2017) 秦岭忍冬属4种植物的繁育系统及花色变化的研究. 植物科学学报, 35, 1-12.] | |
[4] | Eidesen PB, Little L, Müller E, Dickinson KJM, Lord JM (2017) Plant-pollinator interactions affect colonization efficiency: Abundance of blue-purple flowers is correlated with species richness of bumblebees in the Arctic. Biological Journal of the Linnean Society, 121, 150-162. |
[5] | Feng HH, Wang XY, Luo YB, Huang SQ (2023) Floral scent emission is the highest at the second night of anthesis in Lonicera japonica(Caprifoliaceae). Journal of Systematics and Evolution, 61, 530-537. |
[6] | Hazlehurst JA, Karubian JO (2016) Nectar robbing impacts pollinator behavior but not plant reproduction. Oikos, 125, 1668-1676. |
[7] | Heiling JM, Ledbetter TA, Richman SK, Ellison HK, Bronstein JL, Irwin RE (2018) Why are some plant-nectar robber interactions commensalisms? Oikos, 127, 1679-1689. |
[8] | Hou QZ, Ehmet N, Chen DW, Wang TH, Xu YF, Ma J, Sun K (2021) Corolla abscission triggered by nectar robbers positively affects reproduction by enhancing self-pollination in Symphytum officinale(Boraginaceae). Biology, 10, 903. |
[9] | Inouye DW (1983) The ecology of nectar robbing. In: The Biology of Nectaries (eds Bentley B, Elias T), pp. 153-173. Columbia University Press, New York. |
[10] | Irwin RE, Brody AK (1999) Nectar-robbing bumble bees reduce the fitness of Ipomopsis aggregata(Polemoniaceae). Ecology, 80, 1703-1712. |
[11] | Irwin RE, Bronstein JL, Manson JS, Richardson L (2010) Nectar robbing: Ecological and evolutionary perspectives. Annual Review of Ecology, Evolution, and Systematics, 41, 271-292. |
[12] | Irwin RE, Howell P, Galen C (2015) Quantifying direct vs. indirect effects of nectar robbers on male and female components of plant fitness. Journal of Ecology, 103, 1487-1497. |
[13] | Irwin RE, Maloof JE (2002) Variation in nectar robbing over time, space, and species. Oecologia, 133, 525-533. |
[14] | Li JJ, Lian XY, Ye CL, Wang L (2019) Analysis of flower color variations at different developmental stages in two honeysuckle (Lonicera japonica Thunb.)cultivars. HortScience, 54, 779-782. |
[15] | Mackin CR, Goulson D, Castellanos MC (2021) Novel nectar robbing negatively affects reproduction in Digitalis purpurea. Ecology and Evolution, 11, 13455-13463. |
[16] | Maidana-Tuco YN, Larrea-Alcázar DM, Pacheco LF (2024) Nectar robbing effects on pollinators of a key nectar source plant (Tecoma fulva, Bignoniaceae) in a dry tropical Andean valley. Biotropica, 56, e13319. |
[17] | Makino TT, Ohashi K (2017) Honest signals to maintain a long-lasting relationship: Floral colour change prevents plant-level avoidance by experienced pollinators. Functional Ecology, 31, 831-837. |
[18] | Maloof JE (2001) The effects of a bumble bee nectar robber on plant reproductive success and pollinator behavior. American Journal of Botany, 88, 1960-1965. |
[19] | Ohashi K, Makino TT, Arikawa K (2015) Floral colour change in the eyes of pollinators: Testing possible constraints and correlated evolution. Functional Ecology, 29, 1144-1155. |
[20] | Raine NE, Chittka L (2007) Flower constancy and memory dynamics in bumblebees (Hymenoptera: Apidae: Bombus). Entomologia Generalis, 29, 179-199. |
[21] | Richman SK, Barker JL, Baek M, Papaj DR, Irwin RE, Bronstein JL (2021) The sensory and cognitive ecology of nectar robbing. Frontiers in Ecology and Evolution, 9, 698137. |
[22] | Rojas-Nossa SV, Sánchez JM, Navarro L (2016) Effects of nectar robbing on male and female reproductive success of a pollinator-dependent plant. Annals of Botany, 117, 291-297. |
[23] | Rojas-Nossa SV, Sánchez JM, Navarro L (2021) Nectar robbing and plant reproduction: An interplay of positive and negative effects. Oikos, 130, 601-608. |
[24] | Sun SG, Liao K, Xia J, Guo YH (2005) Floral colour change in Pedicularis monbeigiana(Orobanchaceae). Plant Systematics and Evolution, 255, 77-85. |
[25] | Tie S, He YD, Lázaro A, Inouye DW, Guo YH, Yang CF (2023) Floral trait variation across individual plants within a population enhances defense capability to nectar robbing. Plant Diversity, 45, 315-325. |
[26] | Traveset A, Willson MF, Sabag C (1998) Effect of nectar-robbing birds on fruit set of Fuchsia magellanica in Tierra Del Fuego: A disrupted mutualism. Functional Ecology, 12, 459-464. |
[27] | Varma S, Rajesh TP, Manoj K, Asha G, Jobiraj T, Sinu PA (2020) Nectar robbers deter legitimate pollinators by mutilating flowers. Oikos, 129, 868-878. |
[28] | Wang XY, Yao RX, Lv XQ, Yi Y, Tang XX (2023) Nectar robbing by bees affects the reproductive fitness of the distylous plant Tirpitzia sinensis(Linaceae). Ecology and Evolution, 13, e10714. |
[29] | Weiss MR (1991) Floral colour changes as cues for pollinators. Nature, 354, 227-229. |
[30] | Weiss MR, Lamont BB (1997) Floral color change and insect pollination: A dynamic relationship. Israel Journal of Plant Sciences, 45, 185-199. |
[31] | Willmer P (2011) Pollination and Floral Ecology. Princeton University Press, Princeton. |
[32] | Yang QE, Sven L, Joanna O, Renata B (2011) Lonicera. In: Flora of China, Vol. 19 (eds Wu ZY, Raven PH, Hong DY), pp. 620-641. Science Press, Beijing & Missouri Botanical Garden Press, St. Louis. |
[33] | Ye ZM, Jin XF, Wang QF, Yang CF, Inouye DW (2017) Nectar replenishment maintains the neutral effects of nectar robbing on female reproductive success of Salvia przewalskii (Lamiaceae), a plant pollinated and robbed by bumble bees. Annals of Botany, 119, 1053-1059. |
[34] | Zhang YW, Wang Y, Guo YH (2006) The effects of nectar robbing on plant reproduction and evolution. Journal of Plant Ecology (Chinese Version), 30, 695-702. (in Chinese with English abstract) |
[张彦文, 王勇, 郭友好 (2006) 盗蜜行为在植物繁殖生态学中的意义. 植物生态学报, 30, 695-702.] | |
[35] | Zhu XF, Wan JP, Li QJ (2010) Nectar robbers pollinate flowers with sexual organs hidden within corollas in distylous Primula secundiflora (Primulaceae). Biology Letters, 6, 785-787. |
[36] | Zimmerman M, Cook S (1985) Pollinator foraging, experimental nectar-robbing and plant fitness in Impatiens capensis. American Midland Naturalist, 113, 84. |
[1] | 张婵, 赵苏雅, 张欣然, 王依凡, 王林林. 外来传粉者对本地植物‒传粉者相互作用的影响[J]. 生物多样性, 2025, 33(2): 24443-. |
[2] | 巴苏艳, 赵春艳, 刘媛, 方强. 通过虫体花粉识别构建植物‒传粉者网络: 人工模型与AI模型高度一致[J]. 生物多样性, 2024, 32(6): 24088-. |
[3] | 丁翔, 余元钧, 宋希强, 罗毅波. 具有泛化访花者的海芋特化传粉系统[J]. 生物多样性, 2024, 32(6): 24069-. |
[4] | 李慢如, 张玲. 桑寄生植物繁殖物候研究概述[J]. 生物多样性, 2020, 28(7): 833-841. |
[5] | 田昊, 廖万金. 克隆生长对被子植物传粉过程的影响[J]. 生物多样性, 2018, 26(5): 468-475. |
[6] | 童泽宇, 徐环李, 黄双全. 探讨监测传粉者的方法[J]. 生物多样性, 2018, 26(5): 433-444. |
[7] | 黄家兴, 安建东. 中国熊蜂多样性、人工利用与保护策略[J]. 生物多样性, 2018, 26(5): 486-497. |
[8] | 贾翔宇, 白彬, 张洁清, 黄艺. IPBES评估报告对全球生物多样性保护的影响——以美国传粉者保护政策为例[J]. 生物多样性, 2018, 26(5): 527-534. |
[9] | 黄建峰, 徐睿, 彭艳琼. 榕-传粉榕小蜂非一对一共生关系的研究进展[J]. 生物多样性, 2018, 26(3): 295-303. |
[10] | 田瑜, 兰存子, 徐靖, 李秀山, 李俊生. IPBES框架下的全球传粉评估及我国对策[J]. 生物多样性, 2016, 24(9): 1084-1090. |
[11] | 李海东, 任宗昕, 吴之坤, 许琨, 王红. 二型花柱植物海仙花报春花部性状随地理梯度的变异[J]. 生物多样性, 2015, 23(6): 747-758. |
[12] | 杜家潇, 孟璐, 孙海芹, 包颖. 盗蜜对角蒿传粉者行为和生殖成功的影响[J]. 生物多样性, 2015, 23(5): 658-664. |
[13] | 戴漂漂, 张旭珠, 刘云慧. 传粉动物多样性的保护与农业景观传粉服务的提升[J]. 生物多样性, 2015, 23(3): 408-418. |
[14] | 胡红岩, 陈欢, 徐环李. 毛乌素沙地固沙植物披针叶黄华主要传粉昆虫及其访花行为[J]. 生物多样性, 2012, 20(3): 354-359. |
[15] | 夏婧, 郭友好. 开花时间与伴生种对鹤首马先蒿传粉和生殖成功的影响[J]. 生物多样性, 2012, 20(3): 330-336. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn