生物多样性 ›› 2024, Vol. 32 ›› Issue (12): 24284. DOI: 10.17520/biods.2024284 cstr: 32101.14.biods.2024284
杜晴晴1,2,3(), 任思远4, Nicole Tsz Shun Yuan5, 祝燕1,2,*(
)(
)
收稿日期:
2024-07-01
接受日期:
2024-12-15
出版日期:
2024-12-20
发布日期:
2025-01-24
通讯作者:
E-mail: 基金资助:
Qingqing Du1,2,3(), Siyuan Ren4, Nicole Tsz Shun Yuan5, Yan Zhu1,2,*(
)(
)
Received:
2024-07-01
Accepted:
2024-12-15
Online:
2024-12-20
Published:
2025-01-24
Contact:
E-mail: Supported by:
摘要: 研究森林生产力对提升森林生态系统功能具有重要意义, 然而现有研究一般关注森林中树木的总体生产力, 对幼树、成树生产力的关注较少, 且较少探讨物种多样性和群落结构等因素对幼树、成树生产力的影响。本研究基于东灵山暖温带落叶阔叶林20 ha动态监测样地调查数据, 计算了物种丰富度、胸径变异系数和土壤养分等指数, 采用回归分析和结构方程模型分析, 分别探讨上述因素对总体、幼树和成树生产力的影响。结果表明, 树木的总体生产力受到总体初始生物量、总体物种丰富度和土壤养分显著的正影响, 受到胸径变异系数显著的负影响; 幼树生产力受到幼树初始生物量、幼树物种丰富度和胸径变异系数显著的正影响, 总体物种丰富度和土壤养分的影响不显著, 但随着土壤养分增加, 幼树物种丰富度对幼树生产力有显著正影响; 成树生产力受到成树初始生物量、总体物种丰富度和土壤养分显著的正影响, 受到胸径变异系数显著的负影响, 成树物种多样性的影响不显著, 但随着土壤养分增加, 成树物种丰富度对成树生产力有显著负影响。各个因素对成树生产力的影响作用与总体树木类似, 而在幼树中有所不同, 生态位互补效应假说和植被数量假说很好地解释了森林生产力的提高。本研究为森林中不同生活史阶段树木的科学经营管理提供了理论依据, 对暖温带次生林的森林抚育具有重要意义。
杜晴晴, 任思远, Nicole Tsz Shun Yuan, 祝燕 (2024) 北京东灵山暖温带落叶阔叶林幼树及成树生产力的影响因素. 生物多样性, 32, 24284. DOI: 10.17520/biods.2024284.
Qingqing Du, Siyuan Ren, Nicole Tsz Shun Yuan, Yan Zhu (2024) Factors affecting the productivity of sapling and adult trees in the warm temperate deciduous broad-leaved forest of Donglingshan, Beijing. Biodiversity Science, 32, 24284. DOI: 10.17520/biods.2024284.
生活型 Life form | 胸径 DBH (cm) | 物种数量 Species richness | 个体数量 Number of individuals | |
---|---|---|---|---|
幼树 Sapling trees | 乔木 Canopy tree | 1.0-10.0 | 19 | 22,173 |
小乔木 Understory tree | 1.0-5.0 | 4 | 315 | |
灌木 Shrub | 1.0-2.0 | 23 | 4,632 | |
成树 Adult trees | 乔木 Canopy tree | ≥ 10.0 | 19 | 8,852 |
小乔木 Understory tree | ≥ 5.0 | 6 | 142 | |
灌木 Shrub | ≥ 2.0 | 25 | 11,526 | |
总体树木 Total trees | 乔木 Canopy tree | / | 19 | 31,025 |
小乔木 Understory tree | / | 6 | 457 | |
灌木 Shrub | / | 28 | 16,158 |
表1 东灵山样地总体树木、幼树和成树基本信息统计
Table 1 Basic tree information of total trees, sapling trees, and adult trees in the Donglingshan plot
生活型 Life form | 胸径 DBH (cm) | 物种数量 Species richness | 个体数量 Number of individuals | |
---|---|---|---|---|
幼树 Sapling trees | 乔木 Canopy tree | 1.0-10.0 | 19 | 22,173 |
小乔木 Understory tree | 1.0-5.0 | 4 | 315 | |
灌木 Shrub | 1.0-2.0 | 23 | 4,632 | |
成树 Adult trees | 乔木 Canopy tree | ≥ 10.0 | 19 | 8,852 |
小乔木 Understory tree | ≥ 5.0 | 6 | 142 | |
灌木 Shrub | ≥ 2.0 | 25 | 11,526 | |
总体树木 Total trees | 乔木 Canopy tree | / | 19 | 31,025 |
小乔木 Understory tree | / | 6 | 457 | |
灌木 Shrub | / | 28 | 16,158 |
图1 总体物种丰富度、胸径变异系数、初始生物量和土壤养分与总体、幼树和成树生产力之间的双变量关系。数据在分析前都经过标准化, 减去平均值再除以标准差。土壤养分由5个土壤理化指标(SOM、TN、TP、TK、SW)主成分分析的PC1轴表示。实线代表关系显著, 虚线代表关系不显著, 灰色区域代表95%置信区间。Slope表示一元回归的斜率; P值表示整个模型的显著度。
Fig. 1 Bivariate relationships between species richness of total trees, coefficient of variation of the DBH, initial biomass, and soil nutrients with productivity. All data are standardized before analysis, subtracting the mean and dividing by the standard deviation. Soil nutrients are represented by the PC1 axis of the principal component analysis of five soil physicochemical indicators (SOM, TN, TP, TK, SW). The solid lines represent a significant relationship, the dashed lines represent a non-significant relationship, and the gray area represents the 95% confidence interval of the model. Slope represents the estimated coefficient of bivariate regression; P represents significance of the whole regression model.
图2 物种丰富度、胸径变异系数、初始生物量和土壤养分对总体、幼树和成树生产力的影响。AGBi_tot: 总体树木初始生物量; AGBi_sap: 幼树初始生物量; AGBi_adu: 成树初始生物量; SR_tot: 总体树木物种丰富度; SR_sap: 幼树物种丰富度; SR_adu: 成树物种丰富度; DBHcv: 胸径变异系数; PC1: 土壤养分主成分分析PC1轴。圆圈和短线分别代表标准化回归系数估计值和95%置信区间。实心圆圈代表效应显著, 空心不显著。“:”表示两个变量的交互作用。
Fig. 2 The effects of tree species richness, coefficient of variation of the DBH, initial biomass, and soil nutrients on the productivity of total trees, sapling trees, and adult trees. AGBi_tot, Initial biomass of total trees; AGBi_sap, Initial biomass of sapling trees; AGBi_adu, Initial biomass of adult trees; SR_tot, Species richness of total trees; SR_sap, Species richness of sapling trees; SR_adu, Species richness of adult trees; DBHcv, Coefficient of variation of DBH; PC1, PC1 axis of soil nutrient principal component analysis. The circles and short lines represent the estimated values of standardized regression coefficients and the 95% confidence interval, respectively. A solid circle means the effect is significant, while a hollow circle is not. “:” indicates the interaction of two variables.
图3 总体、幼树和成树生产力的直接和间接驱动因素的贝叶斯结构方程模型图。PC1: 土壤养分主成分分析PC1轴。红色和蓝色实线表示路径正显著和负显著, 灰色虚线表示路径不显著, 黑点表示交互效应。箭头线附近的数值表示标准化路径系数, 箭头宽度与标准化路径系数成正比, 并给出响应变量R2。指向其他箭头的箭头和黑点表示交互效应, 这表明一个变量会介导另外两个变量之间的关系。* P < 0.05; ** P < 0.01; *** P < 0.001。LOOIC: 留一法信息准则, 评估模型的预测性能。
Fig. 3 Bayesian structural equation models about the impact of direct and indirect drivers on productivity of total trees, sapling trees, and adult trees. PC1, PC1 axis of soil nutrient principal component analysis; SR_tot, Species richness of total trees; SR_sap, Species richness of sapling trees; SR_adu, Species richness of adult trees; DBHcv, Coefficient of variation of DBH; AGBi_tot, Initial biomass of total trees; AGBi_sap, Initial biomass of sapling trees; AGBi_adu, Initial biomass of adult trees; P_tot: Productivity of total trees; P_sap: Productivity of sapling trees; P_adu: Productivity of adult trees. Solid red and blue lines represent significant positive and negative paths, respectively, while gray dashed lines represent non-significant paths. Black dots represent interaction effects. Numerical values adjacent to arrow lines represent standardized path coefficients, with arrow width proportional to the coefficient, and response variables’ R2 are provided. Arrows and black dots pointing towards other arrows represent interactive effects, demonstrating one variable mediating the relationship between two other variables. * P < 0.05; ** P < 0.01; *** P < 0.001. LOOIC (leave-one-out information criterion) assess predictive performance of the models.
[1] | Ali A (2019) Forest stand structure and functioning: Current knowledge and future challenges. Ecological Indicators, 98, 665-677. |
[2] | Ali A, Lin SL, He JK, Kong FM, Yu JH, Jiang HS (2019) Big-sized trees overrule remaining trees’ attributes and species richness as determinants of aboveground biomass in tropical forests. Global Change Biology, 25, 2810-2824. |
[3] | Bertness MD, Callaway R (1994) Positive interactions in communities. Trends in Ecology & Evolution, 9, 191-193. |
[4] | Bourdier T, Cordonnier T, Kunstler G, Piedallu C, Lagarrigues G, Courbaud B (2016) Tree size inequality reduces forest productivity: An analysis combining inventory data for ten European species and a light competition model. PLoS ONE, 11, e0151852. |
[5] |
Brenes-Arguedas T, Roddy AB, Coley PD, Kursar TA (2011) Do differences in understory light contribute to species distributions along a tropical rainfall gradient? Oecologia, 166, 443-456.
DOI PMID |
[6] | Brown AJ, Payne CJ, White PS, Peet RK (2020) Shade tolerance and mycorrhizal type may influence sapling susceptibility to conspecific negative density dependence. Journal of Ecology, 108, 325-336. |
[7] | Caspersen JP, Thürig E, Rigling A, Zimmermann NE (2018) Complementarity of gymnosperms and angiosperms along an altitudinal temperature gradient. Oikos, 127, 1787-1799. |
[8] | Condit R (1995) Research in large, long-term tropical forest plots. Trends in Ecology & Evolution, 10, 18-22. |
[9] | Coomes DA, Lines ER, Allen RB (2011) Moving on from metabolic scaling theory: Hierarchical models of tree growth and asymmetric competition for light. Journal of Ecology, 99, 748-756. |
[10] |
Dănescu A, Albrecht AT, Bauhus J (2016) Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern Germany. Oecologia, 182, 319-333.
DOI PMID |
[11] |
del Río M, Schütze G, Pretzsch H (2014) Temporal variation of competition and facilitation in mixed species forests in Central Europe. Plant Biology, 16, 166-176.
DOI PMID |
[12] | DeMalach N, Zaady E, Weiner J, Kadmon R (2016) Size asymmetry of resource competition and the structure of plant communities. Journal of Ecology, 104, 899-910. |
[13] | Díaz S, Lavorel S, de Bello F, Quétier F, Grigulis K, Robson TM (2007) Incorporating plant functional diversity effects in ecosystem service assessments. Proceedings of the National Academy of Sciences, USA, 104, 20684-20689. |
[14] |
Feng YH, Schmid B, Loreau M, Forrester DI, Fei SL, Zhu JX, Tang ZY, Zhu JL, Hong PB, Ji CJ, Shi Y, Su HJ, Xiong XY, Xiao J, Wang SP, Fang JY (2022) Multispecies forest plantations outyield monocultures across a broad range of conditions. Science, 376, 865-868.
DOI PMID |
[15] |
Fichtner A, Härdtle W, Li Y, Bruelheide H, Kunz M,von Oheimb G (2017) From competition to facilitation: How tree species respond to neighbourhood diversity. Ecology Letters, 20, 892-900.
DOI PMID |
[16] |
Gamfeldt L, Snäll T, Bagchi R, Jonsson M, Gustafsson L, Kjellander P, Ruiz-Jaen MC, Fröberg M, Stendahl J, Philipson CD, Mikusiński G, Andersson E, Westerlund B, Andrén H, Moberg F, Moen J, Bengtsson J (2013) Higher levels of multiple ecosystem services are found in forests with more tree species. Nature Communications, 4, 1340.
DOI PMID |
[17] |
Huang YY, Chen YX, Castro-Izaguirre N, Baruffol M, Brezzi M, Lang A, Li Y, Härdtle W, von Oheimb G, Yang XF, Liu XJ, Pei KQ, Both S, Yang B, Eichenberg D, Assmann T, Bauhus J, Behrens T, Buscot F, Chen XY, Chesters D, Ding BY, Durka W, Erfmeier A, Fang JY, Fischer M, Guo LD, Guo DL, Gutknecht JLM, He JS, He CL, Hector A, Hönig L, Hu RY, Klein AM, Kühn P, Liang Y, Li S, Michalski S, Scherer-Lorenzen M, Schmidt K, Scholten T, Schuldt A, Shi XZ, Tan MZ, Tang ZY, Trogisch S, Wang ZW, Welk E, Wirth C, Wubet T, Xiang WH, Yu MJ, Yu XD, Zhang JY, Zhang SR, Zhang NL, Zhou HZ, Zhu CD, Zhu L, Bruelheide H, Ma KP, Niklaus PA, Schmid B (2018) Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science, 362, 80-83.
DOI PMID |
[18] | LaManna JA, Mangan SA, Alonso A, Bourg NA, Brockelman WY, Bunyavejchewin S, Chang LW, Chiang JM, Chuyong GB, Clay K, Condit R, Cordell S, Davies SJ, Furniss TJ, Giardina CP, Nimal Gunatilleke IU, Savitri Gunatilleke CV, He FL, Howe RW, Hubbell SP, Hsieh CF, Inman-Narahari FM, Janík D, Johnson DJ, Kenfack D, Korte L, Král K, Larson AJ, Lutz JA, McMahon SM, McShea WJ, Memiaghe HR, Nathalang A, Novotny V, Ong PS, Orwig DA, Ostertag R, Parker GG, Phillips RP, Sack L, Sun IF, Sebastián Tello J, Thomas DW, Turner BL, Vela Díaz DM, Vrška T, Weiblen GD, Wolf A, Yap S, Myers JA (2017) Plant diversity increases with the strength of negative density dependence at the global scale. Science, 356, 1389-1392. |
[19] | Liang JJ, Buongiorno J, Monserud RA, Kruger EL, Zhou M (2007) Effects of diversity of tree species and size on forest basal area growth, recruitment, and mortality. Forest Ecology and Management, 243, 116-127. |
[20] |
Liu HF, Li L, Sang WG (2011) Species composition and community structure of the Donglingshan forest dynamic plot in a warm temperate deciduous broad-leaved secondary forest, China. Biodiversity Science, 19, 232-242. (in Chinese with English abstract)
DOI |
[刘海丰, 李亮, 桑卫国 (2011) 东灵山暖温带落叶阔叶次生林动态监测样地: 物种组成与群落结构. 生物多样性, 19, 232-242.]
DOI |
|
[21] | Liu QJ, Meng SW, Zhou H (2017) Tree Volume Tables of China. China Forestry Publishing House, Beijing. (in Chinese) |
[刘琪璟, 孟胜旺, 周华 (2017) 中国立木材积表. 中国林业出版社, 北京.] | |
[22] |
Lohbeck M, Poorter L, Martínez-Ramos M, Bongers F (2015) Biomass is the main driver of changes in ecosystem process rates during tropical forest succession. Ecology, 96, 1242-1252.
PMID |
[23] | Long JN, Shaw JD (2010) The influence of compositional and structural diversity on forest productivity. Forestry, 289, 121-128. |
[24] | Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature, 412, 72-76. |
[25] |
Luo S, Phillips RP, Jo I, Fei SL, Liang JJ, Schmid B, Eisenhauer N (2023) Higher productivity in forests with mixed mycorrhizal strategies. Nature Communications, 14, 1377.
DOI PMID |
[26] | McCann KS (2000) The diversity-stability debate. Nature, 405, 228-233. |
[27] | Mina M, Huber MO, Forrester DI, Thürig E, Rohner B (2018) Multiple factors modulate tree growth complementarity in Central European mixed forests. Journal of Ecology, 106, 1106-1119. |
[28] |
Ouyang S, Xiang WH, Wang XP, Xiao WF, Chen L, Li SG, Sun H, Deng XW, Forrester DI, Zeng LX, Lei PF, Lei XD, Gou MM, Peng CH (2019) Effects of stand age, richness and density on productivity in subtropical forests in China. Journal of Ecology, 107, 2266-2277.
DOI |
[29] | Paquette A, Messier C (2011) The effect of biodiversity on tree productivity: From temperate to boreal forests. Global Ecology and Biogeography, 20, 170-180. |
[30] | Pinheiro J, Bates D,R Core Team (2022) nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-160. https://CRAN.R-project.org/package=nlme. (acce- ssed on 2024-05-01) |
[31] | Prado-Junior JA, Schiavini I, Vale VS, Arantes CS, van der Sande MT, Lohbeck M, Poorter L (2016) Conservative species drive biomass productivity in tropical dry forests. Journal of Ecology, 104, 817-827. |
[32] | Quesada CA, Phillips OL, Schwarz M, Czimczik CI, Baker TR, Patiño S, Fyllas NM, Hodnett MG, Herrera R, Almeida S, Alvarez Dávila E, Arneth A, Arroyo L, Chao KJ, Dezzeo N, Erwin T, di Fiore A, Higuchi N, Honorio Coronado E, Jimenez EM, Killeen T, Lezama AT, Lloyd G, López-González G, Luizão FJ, Malhi Y, Monteagudo A, Neill DA, Núñez Vargas P, Paiva R, Peacock J, Peñuela MC, Peña Cruz A, Pitman N, Priante Filho N, Prieto A, Ramírez H, Rudas A, Salomão R, Santos AJB, Schmerler J, Silva N, Silveira M, Vásquez R, Vieira I, Terborgh J, Lloyd J (2012) Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences, 9, 2203-2246. |
[33] | R Core Team (2022) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. |
[34] | Rosseel Y (2012) lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48, 1-36. |
[35] | Sohel MSI (2022) Systematic review and meta-analysis reveals functional traits and climate are good predictors of tropical tree water use. Trees, Forests and People, 8, 100226. |
[36] |
Sullivan MJP, Talbot J, Lewis SL, Phillips OL, Qie L, Begne SK, Chave J, Cuni-Sanchez A, Hubau W, Lopez-Gonzalez G, Miles L, Monteagudo-Mendoza A, Sonké B, Sunderland T, Ter Steege H, White LJT, Affum-Baffoe K, Aiba SI, de Almeida EC, Almeida de Oliveira E, Alvarez-Loayza P, Dávila EÁ, Andrade A, Aragão LEOC, Ashton P, Baker TR, Balinga M, Banin LF, Baraloto C, Bastin JF, Berry N, Bogaert J, Bonal D, Bongers F, Brienen R, Camargo JLC, Cerón C, Moscoso VC, Chezeaux E, Clark CJ, Pacheco ÁC, Comiskey JA, Valverde FC, Honorio Coronado EN, Dargie G, Davies SJ, De Canniere C, Marie Djuikouo K, Doucet JL, Erwin TL, Espejo JS, Ewango CEN, Fauset S, Feldpausch TR, Herrera R, Gilpin M, Gloor E, Hall JS, Harris DJ, Hart TB, Kartawinata K, Kho LK, Kitayama K, Laurance SGW, Laurance WF, Leal ME, Lovejoy T, Lovett JC, Lukasu FM, Makana JR, Malhi Y, Maracahipes L, Marimon BS, Junior BHM, Marshall AR, Morandi PS, Mukendi JT, Mukinzi J, Nilus R, Vargas PN, Pallqui Camacho NC, Pardo G, Peña-Claros M, Pétronelli P, Pickavance GC, Poulsen AD, Poulsen JR, Primack RB, Priyadi H, Quesada CA, Reitsma J, Réjou-Méchain M, Restrepo Z, Rutishauser E, Abu Salim K, Salomão RP, Samsoedin I, Sheil D, Sierra R, Silveira M, Ferry Slik JW, Steel L, Taedoumg H, Tan S, Terborgh JW, Thomas SC, Toledo M, Umunay PM, Gamarra LV, Vieira ICG, Vos VA, Wang O, Willcock S, Zemagho L (2017) Diversity and carbon storage across the tropical forest biome. Scientific Reports, 7, 39102.
DOI PMID |
[37] | Taylor AR, Gao BL, Chen HYH (2020) The effect of species diversity on tree growth varies during forest succession in the boreal forest of central Canada. Forest Ecology and Management, 455, 117641. |
[38] | Tilman D, Lehman CL, Thomson KT (1997) Plant diversity and ecosystem productivity: Theoretical considerations. Proceedings of the National Academy of Sciences, USA, 94, 1857-1861. |
[39] | Toïgo M, Vallet P, Perot T, Bontemps JD, Piedallu C, Courbaud B (2015) Overyielding in mixed forests decreases with site productivity. Journal of Ecology, 103, 502-512. |
[40] |
Urgoiti J, Messier C, Keeton WS, Reich PB, Gravel D, Paquette A (2022) No complementarity no gain—Net diversity effects on tree productivity occur once complementarity emerges during early stand development. Ecology Letters, 25, 851-862.
DOI PMID |
[41] |
van der Plas F, Manning P, Allan E, Scherer-Lorenzen M, Verheyen K, Wirth C, Zavala MA, Hector A, Ampoorter E, Baeten L, Barbaro L, Bauhus J, Benavides R, Benneter A, Berthold F, Bonal D, Bouriaud O, Bruelheide H, Bussotti F, Carnol M, Castagneyrol B, Charbonnier Y, Coomes D, Coppi A, Bastias CC, Dawud SM, De Wandeler H, Domisch T, Finér L, Gessler A, Granier A, Grossiord C, Guyot V, Hättenschwiler S, Jactel H, Jaroszewicz B, Joly FX, Jucker T, Koricheva J, Milligan H, Müller S, Muys B, Nguyen D, Pollastrini M, Raulund-Rasmussen K, Selvi F, Stenlid J, Valladares F, Vesterdal L, Zielínski D, Fischer M (2016) Jack-of-all-trades effects drive biodiversity-ecosystem multifunctionality relationships in European forests. Nature Communications, 7, 11109.
DOI PMID |
[42] | van der Sande MT, Arets EJMM, Peña-Claros M, Hoosbeek MR, Cáceres-Siani Y, van der Hout P, Poorter L (2018) Soil fertility and species traits, but not diversity, drive productivity and biomass stocks in a Guyanese tropical rainforest. Functional Ecology, 32, 461-474. |
[43] | Weiner J, Thomas SC (1986) Size variability and competition in plant monocultures. Oikos, 47, 211-222. |
[44] | Williams LJ, Paquette A, Cavender-Bares J, Messier C, Reich PB (2017) Spatial complementarity in tree crowns explains overyielding in species mixtures. Nature Ecology & Evolution, 1, 63. |
[45] |
Yachi S, Loreau M (2007) Does complementary resource use enhance ecosystem functioning? A model of light competition in plant communities. Ecology Letters, 10, 54-62.
PMID |
[46] | Yang H, Li YL, Shen L, Kang XG, Yue G, Wang Y (2014) Spatial distribution patterns of seedling and sapling in a spruce-fir forest in the Changbai Mountains area in northeastern China. Acta Ecologica Sinica, 34, 7311-7319. (in Chinese with English abstract) |
[杨华, 李艳丽, 沈林, 亢新刚, 岳刚, 王妍 (2014) 长白山云冷杉林幼苗幼树空间分布格局及其更新特征. 生态学报, 34, 7311-7319.] | |
[47] | Yuan ZQ, Ali A, Wang SP, Gazol A, Freckleton R, Wang XG, Lin F, Ye J, Zhou L, Hao ZQ, Loreau M (2018) Abiotic and biotic determinants of coarse woody productivity in temperate mixed forests. Science of the Total Environment, 630, 422-431. |
[48] |
Yue QM, Hao MH, Li XY, Zhang CY, von Gadow K, Zhao XH (2020) Assessing biotic and abiotic effects on forest productivity in three temperate forests. Ecology and Evolution, 10, 7887-7900.
DOI PMID |
[49] | Zhang Y, Chen HYH (2015) Individual size inequality links forest diversity and above-ground biomass. Journal of Ecology, 103, 1245-1252. |
[50] | Zheng LT, Chen HYH, Biswas SR, Bao DF, Fang XC, Abdullah M, Yan ER (2021) Diversity and identity of economics traits determine the extent of tree mixture effects on ecosystem productivity. Journal of Ecology, 109, 1898-1908. |
[51] | Zhu Y, Comita LS, Hubbell SP, Ma KP (2015) Conspecific and phylogenetic density-dependent survival differs across life stages in a tropical forest. Journal of Ecology, 103, 957-966. |
[1] | 尚华丹 王梅 李国宏 王鸿斌. 中国杨树害虫物种多样性[J]. 生物多样性, 2025, 33(2): 24370-0. |
[2] | 仝淼, 王欢, 张文双, 王超, 宋建潇. 重金属污染土壤中细菌抗生素抗性基因分布特征[J]. 生物多样性, 2025, 33(2): 24101-. |
[3] | 陈自宏, 张翼飞, 陈凯, 徐玲. 高黎贡山南段昆虫病原真菌物种多样性及影响因素[J]. 生物多样性, 2025, 33(1): 24228-. |
[4] | 谭珂 宁瑶 王仁芬 王晴 梁丹萍 辛子兵 温放. 中国苦苣苔科植物多样性与地理分布数据集[J]. 生物多样性, 2025, 33(1): 23275-. |
[5] | 韩佳楠, 苏杨, 李霏, 刘君妍, 赵依林, 李琳, 赵建成, 梁红柱, 李敏. 河北省苔藓植物多样性[J]. 生物多样性, 2024, 32(9): 24096-. |
[6] | 魏诗雨, 宋天骄, 罗佳宜, 张燕, 赵子萱, 茹靖雯, 易华, 林雁冰. 秦岭火地塘针叶林土壤细菌群落的海拔分布格局[J]. 生物多样性, 2024, 32(9): 24180-. |
[7] | 李东红, 郝媛媛, 甘辉林, 张航, 刘耀猛, 他富源, 胡桂馨. 祁连山北麓中段不同类型草地蝗虫种类及分布[J]. 生物多样性, 2024, 32(9): 24119-. |
[8] | 牛红玉, 陈璐, 赵恒月, 古丽扎尔·阿不都克力木, 张洪茂. 城市化对动物的影响: 从群落到个体[J]. 生物多样性, 2024, 32(8): 23489-. |
[9] | 时永强, 栾青杉, 单秀娟, 韦超, 赵永松, 孙策策, 金显仕. 长岛南部海域浮游动物多样性周年变化[J]. 生物多样性, 2024, 32(7): 23428-. |
[10] | 白雪, 李正飞, 刘洋, 张君倩, 张多鹏, 罗鑫, 杨佳莉, 杜丽娜, 蒋玄空, 武瑞文, 谢志才. 西江流域大型底栖无脊椎动物物种多样性及维持机制[J]. 生物多样性, 2024, 32(7): 23499-. |
[11] | 许佳, 崔小娟, 张翼飞, 吴昌, 孙远东. 南岭地区鱼类多样性及其地理分布[J]. 生物多样性, 2024, 32(7): 23482-. |
[12] | 邝起宇, 胡亮. 广东东海岛与硇洲岛海域底栖贝类物种多样性及其地理分布[J]. 生物多样性, 2024, 32(5): 24065-. |
[13] | 赵勇强, 阎玺羽, 谢加琪, 侯梦婷, 陈丹梅, 臧丽鹏, 刘庆福, 隋明浈, 张广奇. 退化喀斯特森林自然恢复中不同生活史阶段木本植物物种多样性与群落构建[J]. 生物多样性, 2024, 32(5): 23462-. |
[14] | 徐伟强, 苏强. 分形模型与一般性物种多度分布关系的检验解析:以贝类和昆虫群落为例[J]. 生物多样性, 2024, 32(4): 23410-. |
[15] | 冉辉, 杨天友, 米小其. 贵州省爬行动物更新名录[J]. 生物多样性, 2024, 32(4): 23348-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn