生物多样性 ›› 2024, Vol. 32 ›› Issue (11): 24269. DOI: 10.17520/biods.2024269 cstr: 32101.14.biods.2024269
何林君1,2,3, 杨文静2,3, 石宇豪2,3, 阿说克者莫2,3, 范钰2,3, 王国严1,2,3,*()(
), 李景吉1,2,3(
), 石松林1,2,3(
), 易桂花2,3(
), 彭培好2,3(
)
收稿日期:
2024-06-28
接受日期:
2024-10-07
出版日期:
2024-11-20
发布日期:
2025-01-02
通讯作者:
E-mail: 基金资助:
Linjun He1,2,3, Wenjing Yang2,3, Yuhao Shi2,3, Kezhemo Ashuo2,3, Yu Fan2,3, Guoyan Wang1,2,3,*()(
), Jingji Li1,2,3(
), Songlin Shi1,2,3(
), Guihua Yi2,3(
), Peihao Peng2,3(
)
Received:
2024-06-28
Accepted:
2024-10-07
Online:
2024-11-20
Published:
2025-01-02
Contact:
E-mail: Supported by:
摘要:
全球气候变化下外来植物入侵日益加剧, 从多角度综合分析本地植物群落对入侵的影响, 有助于为入侵物种的生态防控和治理提供依据。本研究以四川攀西地区不同火烧干扰强度的植物群落为研究对象, 在野外调查的基础上, 采用主成分分析(PCA)和广义线性模型(GLMs)等方法分析了生物因子和非生物因子与紫茎泽兰(Ageratina adenophora)入侵的关系。 结果表明: (1)自然状态(未经火烧)植物群落中本地物种系统发育多样性对紫茎泽兰入侵具有极显著抑制作用(P < 0.001); 经历火烧的次生群落中, 较高的本地物种系统发育多样性以及与紫茎泽兰相似性更大的本地物种对紫茎泽兰入侵具有显著抑制作用(P < 0.05), 同时, 定居时间对紫茎泽兰盖度也具有一定的促进作用(P = 0.067)。(2)未经过火烧的群落中, 本地物种-紫茎泽兰叶干物质含量等级距离的增加显著降低紫茎泽兰入侵强度(P < 0.05); 经火烧后, 本地物种-紫茎泽兰株高等级距离的增加显著降低紫茎泽兰入侵强度(P < 0.05)。本研究结果表明, 系统发育多样性持续有效解释了干扰环境中本地植物群落对紫茎泽兰入侵的抵抗力。在火烧干扰前后, 本地物种抵抗紫茎泽兰入侵的群落性状指标会发生转变。
何林君, 杨文静, 石宇豪, 阿说克者莫, 范钰, 王国严, 李景吉, 石松林, 易桂花, 彭培好 (2024) 火烧干扰下植物群落系统发育和功能多样性对紫茎泽兰入侵的影响. 生物多样性, 32, 24269. DOI: 10.17520/biods.2024269.
Linjun He, Wenjing Yang, Yuhao Shi, Kezhemo Ashuo, Yu Fan, Guoyan Wang, Jingji Li, Songlin Shi, Guihua Yi, Peihao Peng (2024) Effects of plant community phylogeny and functional diversity on Ageratina adenophora invasion under fire disturbance. Biodiversity Science, 32, 24269. DOI: 10.17520/biods.2024269.
图2 火烧前后本地群落多样性与紫茎泽兰入侵强度的关系。* P < 0.05; *** P < 0.001。
Fig. 2 Relationship between native community diversity and invasion intensity of Ageratina adenophora before and after fire. * P < 0.05; *** P < 0.001.
[1] | Altman S, Whitlatch RB (2007) Effects of small-scale disturbance on invasion success in marine communities. Journal of Experimental Marine Biology and Ecology, 342, 15-29. |
[2] |
Blossey B, Nuzzo V, Dávalos A, Mayer M, Dunbar R, Landis DA, Evans JA, Minter B (2021) Residence time determines invasiveness and performance of garlic mustard (Alliaria petiolata) in North America. Ecology Letters, 24, 327-336.
DOI PMID |
[3] | Brooks ML, Chambers JC (2011) Resistance to invasion and resilience to fire in desert shrublands of North America. Rangeland Ecology & Management, 64, 431-438. |
[4] |
Catford JA, Smith AL, Wragg PD, Clark AT, Kosmala M, Cavender-Bares J, Reich PB, Tilman D (2019) Traits linked with species invasiveness and community invasibility vary with time, stage and indicator of invasion in a long-term grassland experiment. Ecology Letters, 22, 593-604.
DOI PMID |
[5] |
Chen X, Wang GY, Peng PH, Li JJ, Shi SL, Zhang TB (2021) Effects of taxonomic and phylogenetic diversity of resident Pinus yunnanensis communities on Ageratina adenophora invasion in the Panxi region, Sichuan Province. Biodiversity Science, 29, 865-874. (in Chinese with English abstract)
DOI |
[陈旭, 王国严, 彭培好, 李景吉, 石松林, 张廷斌 (2021) 四川攀西地区云南松群落物种多样性和谱系多样性对紫茎泽兰入侵的影响. 生物多样性, 29, 865-874.]
DOI |
|
[6] | Clark B, Miller M (2001) Fire Effects Guide. National Interagency Fire Center, Idaho, USA. |
[7] | Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380. |
[8] | Cribari-Neto F, Zeileis A (2010) Beta regression in R. Journal of Statistical Software, 34, 1-24. |
[9] | D’Andrea R, Ostling A (2016) Challenges in linking trait patterns to niche differentiation. Oikos, 125, 1369-1385. |
[10] | Davis KT, Maxwell BD, Caplat P, Pauchard A, Nuñez MA (2019) Simulation model suggests that fire promotes lodgepole pine (Pinus contorta) invasion in Patagonia. Biological Invasions, 21, 2287-2300. |
[11] | Dawson W, Burslem DFRP, Hulme PE (2009) Factors explaining alien plant invasion success in a tropical ecosystem differ at each stage of invasion. Journal of Ecology, 97, 657-665. |
[12] | Delavaux CS, Crowther TW, Zohner CM, Robmann NM, Lauber T, van den Hoogen J, Kuebbing S, Liang JJ, de-Miguel S, Nabuurs GJ, ……, Woell H, Wortel V, Zagt R, Zawiła-Niedźwiecki T, Zhang CY, Zhao XH, Zhou M, Zhu ZX, Zo-Bi IC, Maynard DS (2023) Native diversity buffers against severity of non-native tree invasions. Nature, 621, 773-781. |
[13] | Dong K, Xu YJ, Hao G, Yang N, Zhao NX, Gao YB (2020) Both vacant niches and competition-trait hierarchy are useful for explaining the invasion of Caragana microphylla into the semi-arid grassland. Plant and Soil, 448, 253-263. |
[14] | Elton CS (1958) The Ecology of Invasions by Animals and Plants. University of Chicago Press, Chicago. |
[15] | Ernst AR, Barak RS, Glasenhardt MC, Kramer AT, Larkin DJ, Marx HE, Kamakura RP, Hipp AL (2023) Dominant species establishment may influence invasion resistance more than phylogenetic or functional diversity. Journal of Applied Ecology, 60, 2652-2664. |
[16] | Forey E, Lodhar SYF, Galvin SD, Lowry JH, Gopaul S, Hanson G, Carboni M, Chauvat M, Boehmer HJ (2023) Alien palm invasion leads to selective biotic filtering of resident plant communities towards competitive functional traits. Biological Invasions, 25, 1489-1508. |
[17] | Gauzere P, Morin X, Violle C, Caspeta I, Ray C, Blonder B (2020) Vacant yet invasible niches in forest community assembly. Functional Ecology, 34, 1945-1955. |
[18] | He JF (2008) Advance in studies on invasion mechanisms of exotic plants. Chinese Journal of Applied and Environmental Biology, 14, 863-870. (in Chinese with English abstract) |
[何锦峰 (2008) 外来植物入侵机制研究进展与展望. 应用与环境生物学报, 14, 863-870.] | |
[19] |
Hellmann JJ, Byers JE, Bierwagen BG, Dukes JS (2008) Five potential consequences of climate change for invasive species. Conservation Biology, 22, 534-543.
DOI PMID |
[20] | Hijmans R (2023) terra: Spatial Data Analysis. R package version 1.7-23. https://CRAN.R-project.org/package=terra. (accessed 2023-07-18) |
[21] | Hijmans R (2022) Raster: Geographic Data Analysis and Modeling. R package version 3.6-3. https://CRAN.R-project.org/package=raster. (accessed 2024-10-02) |
[22] |
Jin Y, Qian H (2019) V.PhyloMaker: An R package that can generate very large phylogenies for vascular plants. Ecography, 42, 1353-1359.
DOI |
[23] |
Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26, 1463-1464.
DOI PMID |
[24] | Kerns BK, Day MA (2017) The importance of disturbance by fire and other abiotic and biotic factors in driving cheatgrass invasion varies based on invasion stage. Biological Invasions, 19, 1853-1862. |
[25] |
Kunstler G, Lavergne S, Courbaud B, Thuiller W, Vieilledent G, Zimmermann NE, Kattge J, Coomes DA (2012) Competitive interactions between forest trees are driven by species’ trait hierarchy, not phylogenetic or functional similarity: Implications for forest community assembly. Ecology Letters, 15, 831-840.
DOI PMID |
[26] | Kusumoto B, Villalobos F, Shiono T, Kubota Y (2019) Reconciling Darwin’s naturalization and pre-adaptation hypotheses: An inference from phylogenetic fields of exotic plants in Japan. Journal of Biogeography, 46, 2597-2608. |
[27] |
Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology, 91, 299-305.
PMID |
[28] | Lear L, Padfield D, Inamine H, Shea K, Buckling A (2022) Disturbance-mediated invasions are dependent on community resource abundance. Ecology, 103, e3728. |
[29] | Lembrechts JJ, Pauchard A, Lenoir J, Nuñez MA, Geron C, Ven A, Bravo-Monasterio P, Teneb E, Nijs I, Milbau A (2016) Disturbance is the key to plant invasions in cold environments. Proceedings of the National Academy of Sciences, USA, 113, 14061-14066. |
[30] | Liao HX, Zhou T, Chen BM, Chen EJ, Zhang HJ, Peng SL (2021) Ecological control of exotic invasive plants. Acta Scientiarum Naturalium Universitatis Sunyatseni, 60(4), 1-11. (in Chinese with English abstract) |
[廖慧璇, 周婷, 陈宝明, 陈恩健, 张海杰, 彭少麟 (2021) 外来入侵植物的生态控制. 中山大学学报(自然科学版), 60(4), 1-11.] | |
[31] | Lin JW, Gui DW (2024) Comparing spatial distribution of torch tree in North America and China and its preventing measures. Acta Ecologica Sinica, 44, 1692-1699. (in Chinese with English abstract) |
[林敬梧, 桂东伟 (2024) 火炬树在北美和中国空间分布差异对比及防范入侵措施. 生态学报, 44, 1692-1699.] | |
[32] | Liu J, Guo HY, Gan WW, Xu YX, Sun R, Li ZY, Wang CX, Luo Y (2023) Study on spatio-temporal distribution and heterogeneity of climate forces of wildfires in Panxi region. Journal of Southwest Forestry University (Natural Sciences), 43(5), 106-117. (in Chinese with English abstract) |
[刘佳, 郭海燕, 甘薇薇, 徐沅鑫, 孙蕊, 李政旸, 王春学, 罗玉 (2023) 攀西林火时空分布格局与气候影响因素的空间异质性研究. 西南林业大学学报(自然科学), 43(5), 106-117.] | |
[33] | Liu LH, Xie SC, Zhang JH (1985) Studies on the distribution, harmfulness and control of Eupatorium adenophorum spreng. Acta Ecologica Sinica, 5, 1-6. (in Chinese with English abstract) |
[刘伦辉, 谢寿昌, 张建华 (1985) 紫茎泽兰在我国的分布、危害与防除途径的探讨. 生态学报, 5, 1-6.] | |
[34] | Loiola PP, de Bello F, Chytrý M, Götzenberger L, Carmona CP, Pyšek P, Lososová Z (2018) Invaders among locals: Alien species decrease phylogenetic and functional diversity while increasing dissimilarity among native community members. Journal of Ecology, 106, 2230-2241. |
[35] | Lososová Z, de Bello F, Chytrý M, Kühn I, Pyšek P, Sádlo J, Winter M, Zelený D (2015) Alien plants invade more phylogenetically clustered community types and cause even stronger clustering. Global Ecology and Biogeography, 24, 786-794. |
[36] | MacDougall AS, Gilbert B, Levine JM (2009) Plant invasions and the niche. Journal of Ecology, 97, 609-615. |
[37] |
Mayfield MM, Levine JM (2010) Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters, 13, 1085-1093.
DOI PMID |
[38] | Miller JED, Safford HD (2020) Are plant community responses to wildfire contingent upon historical disturbance regimes? Global Ecology and Biogeography, 29, 1621-1633. |
[39] | Mungi NA, Jhala YV, Qureshi Q le Roux E, Svenning JC (2023) Megaherbivores provide biotic resistance against alien plant dominance. Nature Ecology & Evolution, 7, 1645-1653. |
[40] | Mungi NA, Qureshi Q, Jhala YV (2021) Role of species richness and human impacts in resisting invasive species in tropical forests. Journal of Ecology, 109, 3308-3321. |
[41] | Moore JL, Mouquet N, Lawton JH, Loreau M (2001) Coexistence, saturation and invasion resistance in simulated plant assemblages. Oikos, 94, 303-314. |
[42] | Qiang S (1998) The history and status of the study on crofton weed (Eupatorium adenophorum Spreng.): A worst worldwide weed. Journal of Wuhan Botanical Research, 16, 366-372. (in Chinese with English abstract) |
[强胜 (1998) 世界性恶性杂草——紫茎泽兰研究的历史及现状. 武汉植物学研究, 16, 366-372.] | |
[43] | Reich PB (2014) The world-wide ‘fast-slow’ plant economics spectrum: A traits manifesto. Journal of Ecology, 102, 275-301. |
[44] | Rouget M, Richardson DM (2003) Inferring process from pattern in plant invasions: A semimechanistic model incorporating propagule pressure and environmental factors. The American Naturalist, 162, 713-724. |
[45] | Senf C, Seidl R (2021) Storm and fire disturbances in Europe: Distribution and trends. Global Change Biology, 27, 3605-3619. |
[46] | Sheppard CS (2019) Relative performance of co-occurring alien plant invaders depends on traits related to competitive ability more than niche differences. Biological Invasions, 21, 1101-1114. |
[47] | Shi R, Li W, Peng CQ (2024) Response of leaf functional traits of Pinus yunnanensis and main understory shrubs to stand degradation. Journal of Yunnan University (Natural Science Edition), 46, 355-365. (in Chinese with English abstract) |
[师睿, 李玮, 彭长青 (2024) 云南松及林下主要灌木叶功能性状对林分退化的响应. 云南大学学报(自然科学版), 46, 355-365.] | |
[48] | Simberloff D (2009) The role of propagule pressure in biological invasions. Annual Review of Ecology, Evolution, and Systematics, 40, 81-102. |
[49] | Swenson NG (2014) Functional and Phylogenetic Ecology in R. Springer, New York. |
[50] |
Theoharides KA, Dukes JS (2007) Plant invasion across space and time: Factors affecting nonindigenous species success during four stages of invasion. New Phytologist, 176, 256-273.
DOI PMID |
[51] | Tortorelli CM, Kerns BK, Krawchuk MA (2022) Community invasion resistance is influenced by interactions between plant traits and site productivity. Ecology, 103, e3697. |
[52] | Vitousek PM, D’Antonio CM, Loope LL, Nek MR, Westbrooks R (1997) Introduced species: A significant component of human-caused global change. New Zealand Journal of Ecology, 21, 1-16. |
[53] | Wang HJ, He P, Ma JL (1994) An investigation and research report on the dissemination of Ageratina adenophora on rangeland areas in Liangshan District of Sichuan Province. Grassland of China, ( 1), 62-64. (in Chinese with English abstract) |
[王洪炯, 何萍, 马家林 (1994) 紫茎泽兰传入凉山州草地调查研究报告. 中国草地, ( 1), 62-64.] | |
[54] |
Wei B, Liu LS, Gu CJ (2022) The climate niche is stable and the distribution area of Ageratina adenophora is predicted to expand in China. Biodiversity Science, 30, 21443. (in Chinese with English abstract)
DOI |
[魏博, 刘林山, 谷昌军 (2022) 紫茎泽兰在中国的气候生态位稳定且其分布范围仍有进一步扩展的趋势. 生物多样性, 30, 21443.]
DOI |
|
[55] | Weiher E, van der Werf A, Thompson K, Roderick M, Garnier E, Eriksson O (1999) Challenging Theophrastus: A common core list of plant traits for functional ecology. Journal of Vegetation Science, 10, 609-620. |
[56] | Wong MKL, Tsang TPN, Lewis OT, Guénard B (2021) Trait-similarity and trait-hierarchy jointly determine fine-scale spatial associations of resident and invasive ant species. Ecography, 44, 589-601. |
[57] | Wright BR, Latz PK, Zuur AF (2016) Fire severity mediates seedling recruitment patterns in slender mulga (Acacia aptaneura), a fire-sensitive Australian desert shrub with heat-stimulated germination. Plant Ecology, 217, 789-800. |
[58] | Xu X, Li SS, Zhang Y, Zhang X, He Q, Wan NF, Liu H, Guo HQ, Ma J, Zhang Q, Wang Q, Wu JH, Li B, Nie M (2024) Reducing nitrogen inputs mitigates Spartina invasion in the Yangtze estuary. Journal of Applied Ecology, 61, 588-598. |
[59] | Yang HP, Yang XH, Wang HS (2024) Research on fire in Pinus yunnanensis aerial seeding forest in southwest Sichuan. Journal of Wildland Fire Science, 42(1), 90-94. (in Chinese with English abstract) |
[杨洪平, 杨贤洪, 王洪胜 (2024) 川西南地区云南松飞播林火灾研究. 森林防火, 42(1), 90-94.] | |
[60] | Yu WB, Li SB (2020) Modern coexistence theory as a framework for invasion ecology. Biodiversity Science, 28, 1362-1375. (in Chinese with English abstract) |
[于文波, 黎绍鹏 (2020) 基于现代物种共存理论的入侵生态学概念框架. 生物多样性, 28, 1362-1375.] | |
[61] | Zhang J (2018) plantlist: Looking Up the Status of Plant Scientific Names Based on the Plant List Database. R package version 0.5.5. https://R-Forge.R-project.org/projects/plantlist/. (accessed 2019-07-09) |
[62] | Zhang XY, Xu ZC, Song WW (2010) Selection of quadrat for biomass harvesting and model of Eupatorium adenophorum in Xishuangbanna. Pratacultural Science, 27, 85-90. (in Chinese with English abstract) |
[张修玉, 许振成, 宋巍巍 (2010) 西双版纳紫茎泽兰生物量收获的样方选择与模型. 草业科学, 27, 85-90.] | |
[63] | Zheng YL, Burns JH, Liao ZY, Li YP, Yang J, Chen YJ, Zhang JL, Zheng YG (2018) Species composition, functional and phylogenetic distances correlate with success of invasive Chromolaena odorata in an experimental test. Ecology Letters, 21, 1211-1220. |
[1] | 曹可欣, 王敬雯, 郑国, 武鹏峰, 李英滨, 崔淑艳. 降水格局改变及氮沉降对北方典型草原土壤线虫多样性的影响[J]. 生物多样性, 2024, 32(3): 23491-. |
[2] | 姜晓燕, 高圣杰, 蒋燕, 田赟, 贾昕, 查天山. 毛乌素沙地植被不同恢复阶段植物群落物种多样性、功能多样性和系统发育多样性[J]. 生物多样性, 2022, 30(5): 21387-. |
[3] | 陈博, 江蓝, 谢子扬, 李阳娣, 李佳萱, 李梦佳, 魏晨思, 邢聪, 刘金福, 何中声. 格氏栲天然林林窗植物物种多样性与系统发育多样性[J]. 生物多样性, 2021, 29(4): 439-448. |
[4] | 孙德鑫, 刘向, 周淑荣. 停止人为去除植物功能群后的高寒草甸多样性恢复过程与群落构建[J]. 生物多样性, 2018, 26(7): 655-666. |
[5] | 侯勤曦, 慈秀芹, 刘志芳, 徐武美, 李捷. 基于DNA条形码评估西双版纳国家级自然保护区对樟科植物进化历史的保护[J]. 生物多样性, 2018, 26(3): 217-228. |
[6] | 彭丹晓, 鲁丽敏, 陈之端. 区域生命之树及其在植物区系研究中的应用[J]. 生物多样性, 2017, 25(2): 156-162. |
[7] | 李嵘, 孙航. 植物系统发育区系地理学研究: 以云南植物区系为例[J]. 生物多样性, 2017, 25(2): 195-203. |
[8] | 许格希, 史作民, 唐敬超, 许涵, 杨怀, 刘世荣, 李意德, 林明献. 物种多度和径级尺度对于评价群落系统发育结构的影响: 以尖峰岭热带山地雨林为例[J]. 生物多样性, 2016, 24(6): 617-628. |
[9] | 鲁丽敏, 孙苗, 张景博, 李洪雷, 林立, 杨拓, 陈闽, 陈之端. 生命之树及其应用[J]. 生物多样性, 2014, 22(1): 3-20. |
[10] | 李义明. 系统发育多样性测度及其在生物多样性保护中的应用[J]. 生物多样性, 1998, 06(1): 49-54. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn