生物多样性 ›› 2022, Vol. 30 ›› Issue (12): 21476. DOI: 10.17520/biods.2021476 cstr: 32101.14.biods.2021476
所属专题: 土壤生物与土壤健康
• 研究报告 • 下一篇
李帆1,2, 王党军1,2, 林小元1,2, 纪康1,2, 叶露萍1,3, 黄超4, 郑勇1, Zhun Mao5, 左娟1,*()
收稿日期:
2021-11-23
接受日期:
2022-04-20
出版日期:
2022-12-20
发布日期:
2022-07-16
通讯作者:
*E-mail: zuojuan@wbgcas.cn
基金资助:
Fan Li1,2, Dangjun Wang1,2, Xiaoyuan Lin1,2, Kang Ji1,2, Luping Ye1,3, Chao Huang4, Yong Zheng1, Mao Zhun5, Juan Zuo1,*()
Received:
2021-11-23
Accepted:
2022-04-20
Online:
2022-12-20
Published:
2022-07-16
Contact:
*E-mail: zuojuan@wbgcas.cn
摘要:
木质残体可为大型无脊椎动物提供重要栖息地、食物等资源, 并影响其生物多样性。目前针对不同树种、径级及分解阶段的木质残体如何调控土壤大型无脊椎动物群落结构尚不清楚, 相关研究在亚热带森林地区尤为稀缺。为此, 本文选取湖南省八大公山国家级自然保护区柳杉(Cryptomeria fortunei)、亮叶水青冈(Fagus lucida)及檫木(Sassafras tzumu) 3种树种为研究对象, 每种树种分别选取两类径级(直径分别为10 ± 2 cm、4 ± 2 cm)不同分解阶段的木质残体, 对其中的大型无脊椎动物进行调查。调查于2020年10-11月完成。结果显示: 共捕获大型无脊椎动物2,558只, 隶属4门10纲23目, 不同树种的优势类群、常见类群及稀有类群均存在差异。亮叶水青冈木质残体中大型无脊椎动物个体密度显著高于柳杉和檫木。亮叶水青冈和檫木大径级木质残体中大型无脊椎动物Shannon-Wiener多样性指数显著高于小径级, 3个树种大径级木质残体中大型无脊椎动物的类群数、特有类群数均大于小径级。木质残体中大型无脊椎动物的Shannon-Wiener多样性指数、Simpson优势度指数及Pielou均匀度指数与木材密度显著负相关, 表明随着分解的进行木质残体中大型无脊椎动物群落呈明显变化趋势。木质残体的理化性质(相对含水率、全氮、全碳及碳氮比)和土壤温度、湿度与木质残体中大型无脊椎动物群落特征具有相关性。研究初步表明, 大型无脊椎动物群落特征在所选树种、径级及分解阶段木质残体中具有差异, 在亚热带森林中同时保留不同树种、不同大小径级的木质残体或有利于增加大型无脊椎动物多样性。
李帆, 王党军, 林小元, 纪康, 叶露萍, 黄超, 郑勇, Zhun Mao, 左娟 (2022) 八大公山亚热带森林木质残体中大型无脊椎动物群落特征. 生物多样性, 30, 21476. DOI: 10.17520/biods.2021476.
Fan Li, Dangjun Wang, Xiaoyuan Lin, Kang Ji, Luping Ye, Chao Huang, Yong Zheng, Mao Zhun, Juan Zuo (2022) Community characteristics of macroinvertebrates in woody debris in a subtropical forest in Badagongshan, China. Biodiversity Science, 30, 21476. DOI: 10.17520/biods.2021476.
类群Groups | 柳杉Cryptomeria fortunei | 亮叶水青冈Fagus lucida | 檫木Sassafras tsumu | 总数Total (%) | 优势度水平Dominance level | |||
---|---|---|---|---|---|---|---|---|
个体数No. of individuals (%) | 优势度水平Dominance level | 个体数No. of individuals (%) | 优势度水平Dominance level | 个体数No. of individuals (%) | 优势度水平Dominance level | |||
双翅目幼虫 Diptera larvae | 68 (43.31) | +++ | 1,592 (79.76) | +++ | 158 (39.01) | +++ | 1,818 (71.07) | +++ |
膜翅目 Hymenoptera | 20 (12.74) | +++ | 11 (0.55) | + | 134 (33.09) | +++ | 165 (6.45) | ++ |
等翅目 Isoptera | - | - | 146 (7.31) | ++ | 16 (3.95) | ++ | 162 (6.33) | ++ |
鞘翅目 Coleoptera | 14 (8.92) | ++ | 78 (3.91) | ++ | 26 (6.42) | ++ | 118 (4.61) | ++ |
鞘翅目幼虫 Coleoptera larvae | 19 (12.10) | +++ | 29 (1.45) | ++ | 34 (8.40) | ++ | 82 (3.21) | ++ |
姬马陆目 Julida | - | - | 87 (4.36) | ++ | - | - | 87 (3.40) | ++ |
石蜈蚣目 Lithobiomorpha | 16 (10.19) | +++ | 7 (0.35) | + | 1 (0.25) | + | 24 (0.94) | + |
蜘蛛目 Araneae | 11 (7.01) | ++ | 7 (0.35) | + | 4 (0.99) | + | 22 (0.86) | + |
蜈蚣目 Scolodenpromorpha | 1 (0.64) | + | 6 (0.30) | + | 12 (2.96) | ++ | 19 (0.74) | + |
综合目 Symphyla | - | - | 8 (0.40) | + | 9 (2.22) | ++ | 17 (0.66) | + |
缨翅目 Thysanoptera | - | - | 6 (0.30) | + | 1 (0.25) | + | 7 (0.27) | + |
伪蝎目 Pseudoscorpiones | - | - | 4 (0.20) | + | 1 (0.25) | + | 5 (0.20) | + |
等足目 Isopoda | 2 (1.27) | ++ | 2 (0.10) | + | 1 (0.25) | + | 5 (0.20) | + |
带马陆目 Polydesmida | 1 (0.64) | + | 2 (0.10) | + | 1 (0.25) | + | 4 (0.16) | + |
地蜈蚣目 Geophilomrpha | - | - | 1 (0.05) | + | 3 (0.74) | + | 4 (0.16) | + |
鳞翅目幼虫 Lepidoptera larvae | - | - | 3 (0.15) | + | - | - | 3 (0.12) | + |
三肠目 Tricladida | 1 (0.64) | + | - | - | 2 (0.49) | + | 3 (0.12) | + |
腹足纲 Gastropoda | 3 (1.91) | ++ | - | - | - | - | 3 (0.12) | + |
异蛰目 Spirostreptida | - | - | 3 (0.15) | + | - | - | 3 (0.12) | + |
原尾纲 Protura | - | - | 1 (0.05) | + | 1 (0.25) | + | 2 (0.08) | + |
半翅目 Hemiptera | - | - | 1 (0.05) | + | 1 (0.25) | + | 2 (0.08) | + |
蜚蠊目 Blattoptera | - | - | 1 (0.05) | + | - | - | 1 (0.04) | + |
球马陆目 Glomerida | 1 (0.64) | + | - | - | - | - | 1 (0.04) | + |
正蚓目 Limbricida | - | - | 1 (0.05) | + | - | - | 1 (0.04) | + |
总数 Total number | 157 (1.00) | 1,996 (1.00) | 405 (1.00) | 2,558 (1.00) |
表1 柳杉、亮叶水青冈及檫木木质残体大型无脊椎动物群落组成
Table 1 Composition of macroinvertebrate in woody debris of Cryptomeria fortunei, Fagus lucida and Sassafras tsumu
类群Groups | 柳杉Cryptomeria fortunei | 亮叶水青冈Fagus lucida | 檫木Sassafras tsumu | 总数Total (%) | 优势度水平Dominance level | |||
---|---|---|---|---|---|---|---|---|
个体数No. of individuals (%) | 优势度水平Dominance level | 个体数No. of individuals (%) | 优势度水平Dominance level | 个体数No. of individuals (%) | 优势度水平Dominance level | |||
双翅目幼虫 Diptera larvae | 68 (43.31) | +++ | 1,592 (79.76) | +++ | 158 (39.01) | +++ | 1,818 (71.07) | +++ |
膜翅目 Hymenoptera | 20 (12.74) | +++ | 11 (0.55) | + | 134 (33.09) | +++ | 165 (6.45) | ++ |
等翅目 Isoptera | - | - | 146 (7.31) | ++ | 16 (3.95) | ++ | 162 (6.33) | ++ |
鞘翅目 Coleoptera | 14 (8.92) | ++ | 78 (3.91) | ++ | 26 (6.42) | ++ | 118 (4.61) | ++ |
鞘翅目幼虫 Coleoptera larvae | 19 (12.10) | +++ | 29 (1.45) | ++ | 34 (8.40) | ++ | 82 (3.21) | ++ |
姬马陆目 Julida | - | - | 87 (4.36) | ++ | - | - | 87 (3.40) | ++ |
石蜈蚣目 Lithobiomorpha | 16 (10.19) | +++ | 7 (0.35) | + | 1 (0.25) | + | 24 (0.94) | + |
蜘蛛目 Araneae | 11 (7.01) | ++ | 7 (0.35) | + | 4 (0.99) | + | 22 (0.86) | + |
蜈蚣目 Scolodenpromorpha | 1 (0.64) | + | 6 (0.30) | + | 12 (2.96) | ++ | 19 (0.74) | + |
综合目 Symphyla | - | - | 8 (0.40) | + | 9 (2.22) | ++ | 17 (0.66) | + |
缨翅目 Thysanoptera | - | - | 6 (0.30) | + | 1 (0.25) | + | 7 (0.27) | + |
伪蝎目 Pseudoscorpiones | - | - | 4 (0.20) | + | 1 (0.25) | + | 5 (0.20) | + |
等足目 Isopoda | 2 (1.27) | ++ | 2 (0.10) | + | 1 (0.25) | + | 5 (0.20) | + |
带马陆目 Polydesmida | 1 (0.64) | + | 2 (0.10) | + | 1 (0.25) | + | 4 (0.16) | + |
地蜈蚣目 Geophilomrpha | - | - | 1 (0.05) | + | 3 (0.74) | + | 4 (0.16) | + |
鳞翅目幼虫 Lepidoptera larvae | - | - | 3 (0.15) | + | - | - | 3 (0.12) | + |
三肠目 Tricladida | 1 (0.64) | + | - | - | 2 (0.49) | + | 3 (0.12) | + |
腹足纲 Gastropoda | 3 (1.91) | ++ | - | - | - | - | 3 (0.12) | + |
异蛰目 Spirostreptida | - | - | 3 (0.15) | + | - | - | 3 (0.12) | + |
原尾纲 Protura | - | - | 1 (0.05) | + | 1 (0.25) | + | 2 (0.08) | + |
半翅目 Hemiptera | - | - | 1 (0.05) | + | 1 (0.25) | + | 2 (0.08) | + |
蜚蠊目 Blattoptera | - | - | 1 (0.05) | + | - | - | 1 (0.04) | + |
球马陆目 Glomerida | 1 (0.64) | + | - | - | - | - | 1 (0.04) | + |
正蚓目 Limbricida | - | - | 1 (0.05) | + | - | - | 1 (0.04) | + |
总数 Total number | 157 (1.00) | 1,996 (1.00) | 405 (1.00) | 2,558 (1.00) |
df | 个体密度 Individual density | Shannon-Wiener多样性指数 Shannon-Wiener diversity index | Simpson优势度指数 Simpson dominance index | Pielou均匀度指数 Pielou evenness index | |
---|---|---|---|---|---|
树种 Tree species (TS) | 2 | 24.18*** | 1.83 | 3.05 | 17.69*** |
径级 Diameter class (DC) | 1 | 1.10 | 18.18*** | 11.86** | 0.41 |
分解阶段 Decomposition stage (DS) | 1 | 5.63* | 13.10*** | 11.38** | 0.48 |
树种 × 径级 TS × DC | 2 | 0.28 | 0.89 | 0.62 | 0.53 |
树种 × 分解阶段 TS × DS | 2 | 0.41 | 5.89** | 6.69** | 1.30 |
径级 × 分解阶段 DC × DS | 1 | 8.73** | 0.03 | 0.04 | 1.97 |
树种 × 径级 × 分解阶段 TS × DC × DS | 2 | 4.21* | 1.66 | 2.06 | 0.20 |
表2 木质残体不同性状对大型无脊椎动物群落特征影响的多元线性回归分析(F值)
Table 2 Results of multiple linear regression analysis for the effect of different woody debris traits on macroinvertebrate community characteristics (F value)
df | 个体密度 Individual density | Shannon-Wiener多样性指数 Shannon-Wiener diversity index | Simpson优势度指数 Simpson dominance index | Pielou均匀度指数 Pielou evenness index | |
---|---|---|---|---|---|
树种 Tree species (TS) | 2 | 24.18*** | 1.83 | 3.05 | 17.69*** |
径级 Diameter class (DC) | 1 | 1.10 | 18.18*** | 11.86** | 0.41 |
分解阶段 Decomposition stage (DS) | 1 | 5.63* | 13.10*** | 11.38** | 0.48 |
树种 × 径级 TS × DC | 2 | 0.28 | 0.89 | 0.62 | 0.53 |
树种 × 分解阶段 TS × DS | 2 | 0.41 | 5.89** | 6.69** | 1.30 |
径级 × 分解阶段 DC × DS | 1 | 8.73** | 0.03 | 0.04 | 1.97 |
树种 × 径级 × 分解阶段 TS × DC × DS | 2 | 4.21* | 1.66 | 2.06 | 0.20 |
图1 柳杉、亮叶水青冈及檫木不同径级木质残体中大型无脊椎动物多样性特征(平均值 ± 标准误)。不同小写字母表示同一树种不同径级之间差异显著; 不同大写字母表示同一径级不同树种之间差异显著; 图中括号里的数字表示大、小径级参与计算的样品数量。
Fig. 1 Diversity characteristics of macroinvertebrate in different diameter classes of Cryptomeria fortunei, Fagus lucida, and Sassafras tsumu woody debris (mean ± SE). Different lowercase letters indicate that there are significant differences among different diameter classes of the same tree species. Different capital letters indicate that there are significant differences between different tree species in the same diameter class. The number of samples included are given in parentheses for large and small diameter classes respectively.
图2 不同类型木质残体中大型无脊椎动物群落的非度量多维尺度分析(NMDS)。图中各个点的大小表示木质残体密度的大小。
Fig. 2 Non-metric multidimensional scaling (NMDS) plot of macroinvertebrate communities in different types of woody debris. The size of each point in the figure represents the density of wood debris.
自由度 df | 平方和 Sum of squares | 均方 Mean square | F | P | |
---|---|---|---|---|---|
树种 Tree species (TS) | 2 | 2.58 | 1.29 | 4.36 | 0.001*** |
径级 Diameter class (DC) | 1 | 0.96 | 0.96 | 3.01 | 0.006** |
分解阶段 Decomposition stage (DS) | 1 | 0.96 | 0.96 | 2.98 | 0.006** |
树种 × 径级 TS × DC | 2 | 0.50 | 0.25 | 0.88 | 0.58 |
树种 × 分解阶段 TS × DS | 2 | 0.68 | 0.34 | 1.14 | 0.27 |
径级 × 分解阶段 DC × DS | 1 | 0.21 | 0.21 | 0.68 | 0.72 |
树种 × 径级 × 分解阶段 TS × DC × DS | 2 | 0.40 | 0.20 | 0.70 | 0.79 |
残差 Residuals | 44 | 12.47 | 0.28 | ||
总数 Total | 55 | 18.27 |
表3 不同树种、径级和分解阶段木质残体中大型无脊椎动物群落组成Bray-Curtis相似距离的置换多元方差分析(PERMANOVA)
Table 3 Permutational multivariate analysis of variance (PERMANOVA) on Bray-Curtis similarity distances for macroinvertebrate community composition in wood debris of different tree species, diameter classes and decomposition stages
自由度 df | 平方和 Sum of squares | 均方 Mean square | F | P | |
---|---|---|---|---|---|
树种 Tree species (TS) | 2 | 2.58 | 1.29 | 4.36 | 0.001*** |
径级 Diameter class (DC) | 1 | 0.96 | 0.96 | 3.01 | 0.006** |
分解阶段 Decomposition stage (DS) | 1 | 0.96 | 0.96 | 2.98 | 0.006** |
树种 × 径级 TS × DC | 2 | 0.50 | 0.25 | 0.88 | 0.58 |
树种 × 分解阶段 TS × DS | 2 | 0.68 | 0.34 | 1.14 | 0.27 |
径级 × 分解阶段 DC × DS | 1 | 0.21 | 0.21 | 0.68 | 0.72 |
树种 × 径级 × 分解阶段 TS × DC × DS | 2 | 0.40 | 0.20 | 0.70 | 0.79 |
残差 Residuals | 44 | 12.47 | 0.28 | ||
总数 Total | 55 | 18.27 |
图3 不同树种、径级木质残体中大型无脊椎动物类群组成差异。数字表示类群数, 同一目的成虫和幼虫为两个类群。
Fig. 3 Group composition of macroinvertebrate in woody debris of different tree species and diameter classes. Numbers indicate the number of groups. Adults and larvae of the same order are regarded as two groups.
木材性质 Wood properties | 土壤性质 Soil properties | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
密度 Density | 相对含水率 WRC | 饱和含水率 WSC | 全碳 WTC | 全氮 WTN | 碳氮比 Wood C/N | 全碳 STC | 全氮 STN | 碳氮比 Soil C/N | 温度 ST | 湿度 SH | |
个体密度 Individual density | -0.02 | 0.07 | -0.05 | -0.29** | 0.20* | -0.25* | 0.08 | 0.15 | -0.19 | 0.38*** | -0.31** |
Shannon-Wiener多样性指数 Shannon-Wiener diversity index | -0.33** | 0.44*** | 0.08 | -0.06 | -0.10 | 0.10 | -0.23* | -0.20 | -0.17 | -0.30* | 0.02 |
Simpson优势度指数 Simpson dominance index | -0.36** | 0.40** | 0.10 | -0.003 | -0.15 | 0.16 | -0.21 | -0.21 | -0.10 | -0.37** | 0.09 |
Pielou均匀度指数 Pielou evenness index | -0.46*** | 0.28* | 0.21 | 0.41** | -0.37** | 0.40** | -0.11 | -0.21 | 0.19 | -0.60*** | 0.31* |
表4 不同类型木质残体中大型无脊椎动物多样性特征与木材性质、环境因子的相关性分析
Table 4 Correlation analysis of macroinvertebrate diversity characteristics with environmental factors and physical and chemical properties in different types of wood debris
木材性质 Wood properties | 土壤性质 Soil properties | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
密度 Density | 相对含水率 WRC | 饱和含水率 WSC | 全碳 WTC | 全氮 WTN | 碳氮比 Wood C/N | 全碳 STC | 全氮 STN | 碳氮比 Soil C/N | 温度 ST | 湿度 SH | |
个体密度 Individual density | -0.02 | 0.07 | -0.05 | -0.29** | 0.20* | -0.25* | 0.08 | 0.15 | -0.19 | 0.38*** | -0.31** |
Shannon-Wiener多样性指数 Shannon-Wiener diversity index | -0.33** | 0.44*** | 0.08 | -0.06 | -0.10 | 0.10 | -0.23* | -0.20 | -0.17 | -0.30* | 0.02 |
Simpson优势度指数 Simpson dominance index | -0.36** | 0.40** | 0.10 | -0.003 | -0.15 | 0.16 | -0.21 | -0.21 | -0.10 | -0.37** | 0.09 |
Pielou均匀度指数 Pielou evenness index | -0.46*** | 0.28* | 0.21 | 0.41** | -0.37** | 0.40** | -0.11 | -0.21 | 0.19 | -0.60*** | 0.31* |
[1] |
Andringa JI, Zuo J, Berg MP, Klein R, van’t Veer J, de Geus R, de Beaumont M, Goudzwaard L, van Hal J, Broekman R, Li YK, Fujii S, Lammers M, Hefting MM, Sass-Klaassen U, Cornelissen JHC (2019) Combining tree species and decay stages to increase invertebrate diversity in dead wood. Forest Ecology and Management, 441, 80-88.
DOI |
[2] | Arango RA, Iii FG, Hintz K, Lebow PK, Miller RB (2006) Natural durability of tropical and native woods against termite damage by Reticulitermes flavipes (Kollar). International Biodeterioration & Biodegradation, 57, 146-150. |
[3] | Bond-Lamberty B, Wang C, Gower ST (2002) Annual carbon flux from woody debris for a boreal black spruce fire chronosequence. Journal of Geophysical Research, 107, WFX1-1-WFX1-10. |
[4] |
Brin A, Bouget C, Brustel H, Jactel H (2011) Diameter of downed woody debris does matter for saproxylic beetle assemblages in temperate oak and pine forests. Journal of Insect Conservation, 15, 653-669.
DOI URL |
[5] |
Bultman JD, Southwell CR (1976) Natural resistence of tropical American woods to terrestrial wood-destroying organisms. Biotropica, 8, 71-95.
DOI URL |
[6] | Cao TR, Qi CJ, Yu XL, Long CL, Zhou JR, Zhang QF (1993) Study on Fagus lucida forests in Badagong Mountains of Hunan and their flora. Journal of Central South Forestry University, 13, 8-16. (in Chinese with English abstract) |
[ 曹铁如, 祁承经, 喻勋林, 龙成良, 周建仁, 张金发 (1993) 八大公山亮叶水青冈林及其植物区系的研究. 中南林学院学报, 13, 8-16.] | |
[7] |
Chang CH, Wu FZ, Yang WQ, Tan B, Xiao S, Li J, Gou XL (2015) Changes in log quality at different decay stages in an alpine forest. Chinese Journal of Plant Ecology, 39, 14-22. (in Chinese with English abstract)
DOI URL |
[ 常晨晖, 吴福忠, 杨万勤, 谭波, 肖洒, 李俊, 苟小林 (2015) 高寒森林倒木在不同分解阶段的质量变化. 植物生态学报, 39, 14-22.]
DOI |
|
[8] |
Cornelissen JHC, Sass-Klaassen U, Poorter L, van Geffen K, van Hal J, Goudzwaard L, Sterck FJ, Klaassen RKWM, Freschet GT, van der Wal A, Eshuis H, Zuo J, de Boer W, Lamers T, Weemstra M, Cretin V, Martin R, den Ouden J, Berg MP, Aerts R, Mohren GMJ, Hefting MM (2012) Controls on coarse wood decay in temperate tree species: Birth of the LOGLIFE experiment. Ambio, 41, 231-245.
DOI URL |
[9] |
Cornwell WK, Cornelissen JHC, Allison SD, Bauhus J, Eggleton P, Preston CM, Scarff F, Weedon JT, Wirth C, Zanne AE (2009) Plant traits and wood fates across the globe: Rotted, burned, or consumed? Global Change Biology, 15, 2431-2449.
DOI URL |
[10] |
Currie WS, Nadelhoffer KJ (2002) The imprint of land-use history: Patterns of carbon and nitrogen in downed woody debris at the Harvard forest. Ecosystems, 5, 446-460.
DOI URL |
[11] | de Souza-Campana DR, Silva RR, Fernandes TT, de Morais Silva OG, Saad LP, de Castro Morini MS (2017) Twigs in the leaf litter as ant habitats in different vegetation habitats in southeastern Brazil. Tropical Conservation Science, 10, 1-12. |
[12] |
Dirzo R, Raven PH (2003) Global state of biodiversity and loss. Annual Review of Environment and Resources, 28, 137-167.
DOI URL |
[13] |
Doblas-Miranda E, Sánchez-Piñeroa F, González-Megías A (2009) Vertical distribution of soil macrofauna in an arid ecosystem: Are litter and belowground compartmentalized habitats? Pedobiologia, 52, 361-373.
DOI URL |
[14] |
Dossa GGO, Schaefer D, Zhang JL, Tao JP, Cao KF, Corlett RT, Cunningham AB, Xu JC, Cornelissen JHC, Harrison RD (2018) The cover uncovered: Bark control over wood decomposition. Journal of Ecology, 106, 2147-2160.
DOI URL |
[15] |
Gedminas A, Lynikienė J, Zeniauskas R (2007) Cambio-xylofauna abundance and species diversity of cutting residues in Scots pine and Norway spruce clear-cuts in Lithuania. Biomass and Bioenergy, 31, 733-738.
DOI URL |
[16] |
Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, Hättenschwiler S (2010) Diversity meets decomposition. Trends in Ecology & Evolution, 25, 372-380.
DOI URL |
[17] |
Grove SJ (2002a) Saproxylic insect ecology and the sustainable management of forests. Annual Review of Ecology and Systematics, 33, 1-23.
DOI URL |
[18] |
Grove SJ (2002b) Tree basal area and dead wood as surrogate indicators of saproxylic insect faunal integrity: A case study from the Australian lowland tropics. Ecological Indicators, 1, 171-188.
DOI URL |
[19] | Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory SV, Lattin JD, Anderson NH, Cline SP, Aumen NG, Sedell JR, Lienkaemper GW, Cromack K, Cummins K Jr (1986) Ecology of coarse woody debris in temperate ecosystems. Advances in Ecological Research, 15, 133-302. |
[20] | Harmon ME, Sexton J (1996) Guidelines for Measurements of Woody Detritus in Forest Ecosystems. Publication No. 20. U.S. LTER Network Office: University of Washington, Seattle, WA, USA. 73 pp. |
[21] |
Jonsell M, Hansson J, Wedmo L (2007) Diversity of saproxylic beetle species in logging residues in Sweden—Comparisons between tree species and diameters. Biological Conservation, 138, 89-99.
DOI URL |
[22] |
Juutilainen K, Halme P, Kotiranta H, Mönkkönen M (2011) Size matters in studies of dead wood and wood-inhabiting fungi. Fungal Ecology, 4, 342-349.
DOI URL |
[23] |
Kamczyc J, Dyderski MK, Horodecki P, Jagodziński AM (2019) Mite communities (Acari, Mesostigmata) in the initially decomposed ‘litter islands’ of 11 tree species in Scots pine (Pinus sylvestris L.) forest. Forests, 10, 403-419.
DOI URL |
[24] |
Kampichler C, Bruckner A (2009) The role of microarthropods in terrestrial decomposition: A meta-analysis of 40 years of litterbag studies. Biological Reviews, 84, 375-389.
DOI URL |
[25] | Lachat T, Bouget C, Bütler R, Müller J (2013) Deadwood: Quantitative and qualitative requirements for the conservation of saproxylic biodiversity. In: Integrative Approaches as an Opportunity for the Conservation of Forest Biodiversity (eds Kraus D, Krumm F), pp. 92-103. European Forest Institute, Joensuu, Finland. |
[26] |
Laiho R, Prescott CE (2004) Decay and nutrient dynamics of coarse woody debris in northern coniferous forests: A synthesis. Canadian Journal of Forest Research, 34, 763-777.
DOI URL |
[27] |
Lasota J, Błońska E, Piaszczyk W, Wiecheć M (2018) How the deadwood of different tree species in various stages of decomposition affected nutrient dynamics? Journal of Soils and Sediments, 18, 2759-2769.
DOI URL |
[28] | Liu BX (1983) The soil of the Badagong Mountain Nature Reserve in western Hunan. Journal of Central South Forestry Institute, 3, 141-159. (in Chinese with English abstract) |
[ 刘博学 (1983) 湘西八大公山自然保护区的土壤. 中南林学院学报, 3, 141-159.] | |
[29] |
Lu ZJ, Bao DC, Guo YL, Lu JM, Wang QG, He D, Zhang KH, Xu YZ, Liu HB, Meng HJ, Huang HD, Wei XZ, Liao JX, Qiao XJ, Jiang MX, Gu ZR, Liao CL (2013) Community composition and structure of Badagongshan (BDGS) forest dynamic plot in a mid-subtropical mountain evergreen and deciduous broad-leaved mixed forest, central China. Plant Science Journal, 31, 336-344. (in Chinese with English abstract)
DOI URL |
[ 卢志军, 鲍大川, 郭屹立, 路俊盟, 王庆刚, 何东, 张奎汉, 徐耀粘, 刘海波, 孟红杰, 黄汉东, 魏新增, 廖建雄, 乔秀娟, 江明喜, 谷志容, 廖春林 (2013) 八大公山中亚热带山地常绿落叶阔叶混交林物种组成与结构. 植物科学学报, 31, 336-344.] | |
[30] |
Lu ZJ, Liu FL, Wu H, Jiang MX (2015) Species composition, size class, and spatial patterns of snags in the Badagongshan (BDGS) mixed evergreen and deciduous broad-leaved forest in central China. Biodiversity Science, 23, 167-173. (in Chinese with English abstract)
DOI |
[ 卢志军, 刘福玲, 吴浩, 江明喜 (2015) 八大公山常绿落叶阔叶混交林枯立木物种组成、大小级与分布格局. 生物多样性, 23, 167-173.]
DOI |
|
[31] |
MacFarlane DW, Luo AD (2009) Quantifying tree and forest bark structure with a bark-fissure index. Canadian Journal of Forest Research, 39, 1859-1870.
DOI URL |
[32] | Mlynarek JJ, Taillefer AG, Wheeler T (2018) Saproxylic Diptera assemblages in a temperate deciduous forest: Implications for community assembly. PeerJ, 6, e6027. |
[33] |
Müller J, Wende B, Strobl C, Eugster M, Gallenberger I, Floren A, Steffan-Dewenter I, Linsenmair KE, Weisser WW, Gossner MM (2015) Forest management and regional tree composition drive the host preference of saproxylic beetle communities. Journal of Applied Ecology, 52, 753-762.
DOI URL |
[34] | Pielou EC (1985) Mathematical Ecology. Wiley-Interscience, New York. |
[35] |
Pyle C, Brown MM (1999) Heterogeneity of wood decay classes within hardwood logs. Forest Ecology and Management, 114, 253-259.
DOI URL |
[36] | R Core Team (2021) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. . |
[37] |
Rosell JA, Gleason S, Méndez-Alonzo R, Chang Y, Westoby M (2014) Bark functional ecology: Evidence for tradeoffs, functional coordination, and environment producing bark diversity. New Phytologist, 201, 486-497.
DOI PMID |
[38] |
Seibold S, Bässler C, Brandl R, Gossner MM, Thorn S, Ulyshen MD, Müller J (2015) Experimental studies of dead-wood biodiversity—A review identifying global gaps in knowledge. Biological Conservation, 191, 139-149.
DOI URL |
[39] | Seibold S, Rammer W, Hothorn T, Seidl R, Ulyshen MD, Lorz J, Cadotte MW, Lindenmayer DB, Adhikari YP, Aragón R, Bae S, Baldrian P, Barimani Varandi H, Barlow J, Bässler C, Beauchêne J, Berenguer E, Bergamin RS, Birkemoe T, Boros G, Brandl R, Brustel H, Burton PJ, Cakpo-Tossou YT, Castro J, Cateau E, Cobb TP, Farwig N, Fernández RD, Firn J, Gan KS, González G, Gossner MM, Habel JC, Hébert C, Heibl C, Heikkala O, Hemp A, Hemp C, Hjältén J, Hotes S, Kouki J, Lachat T, Liu J, Liu Y, Luo YH, Macandog DM, Martina PE, Mukul SA, Nachin B, Nisbet K, O’Halloran J, Oxbrough A, Pandey JN, Pavlíček T, Pawson SM, Rakotondranary JS, Ramanamanjato JB, Rossi L, Schmidl J, Schulze M, Seaton S, Stone MJ, Stork NE, Suran B, Sverdrup-Thygeson A, Thorn S, Thyagarajan G, Wardlaw TJ, Weisser WW, Yoon S, Zhang NL, Müller J (2021) The contribution of insects to global forest deadwood decomposition. Nature, 597, 77-81. |
[40] | Shannon CE, Weaver W (1949) The Mathematical Theory of Communication. University of Illinois Press, Urbanna. |
[41] |
Siitonen J, Saaristo L (2000) Habitat requirements and conservation of Pytho kolwensis, a beetle species of old-growth boreal forest. Biological Conservation, 94, 211-220.
DOI URL |
[42] |
Simpson EH (1949) Measurement of diversity. Nature, 163, 688.
DOI URL |
[43] | Stokland JN, Siitonen J, Jonsson BG (2012) Biodiversity in Dead Wood. Cambridge University Press, Cambridge. |
[44] |
Sverdrup-Thygeson A, Ims RA (2002) The effect of forest clearcutting in Norway on the community of saproxylic beetles on aspen. Biological Conservation, 106, 347-357.
DOI URL |
[45] |
Tan B, Yin R, Zhang J, Xu ZF, Liu Y, He SQ, Zhang L, Li H, Wang LX, Liu SN, You CM, Peng CH (2021) Temperature and moisture modulate the contribution of soil fauna to litter decomposition via different pathways. Ecosystems, 24, 1142-1156.
DOI URL |
[46] |
Ulyshen MD, Müller J, Seibold S (2016) Bark coverage and insects influence wood decomposition: Direct and indirect effects. Applied Soil Ecology, 105, 25-30.
DOI URL |
[47] | Väisänen R, Biström O, Heliövaara K (1993) Sub-cortical Coleoptera in dead pines and spruces: Is primeval species composition maintained in managed forests? Biodiversity & Conservation, 2, 95-113. |
[48] |
van Gelder HA, Poorter L, Sterck FJ (2006) Wood mechanics, allometry, and life-history variation in a tropical rain forest tree community. New Phytologist, 171, 367-378.
PMID |
[49] | Kuijper DPJ, Churski M, Zub K, Szafrańska P, Smit C (2013) Safe for saplings not safe for seeds: Quercus robur recruitment in relation to coarse woody debris in Białowieża Primeval Forest, Poland. Forest Ecology and Management, 304, 73-79. |
[50] |
Vanderwel MC, Malcolm JR, Smith SM, Islam N (2006) Insect community composition and trophic guild structure in decaying logs from eastern Canadian pine-dominated forests. Forest Ecology and Management, 225, 190-199.
DOI URL |
[51] |
Warren RJ, Bradford MA (2012) Ant colonization and coarse woody debris decomposition in temperate forests. Insectes Sociaux, 59, 215-221.
DOI URL |
[52] | Xiang CG, Li WF, Yu DZ (2000) A preliminary study on diversity of soil animal communities in the forest of Badagong Mountain Nature Reserve. Chinese Biodiversity, 8, 304-306. (in Chinese with English abstract) |
[ 向昌国, 李文芳, 于德珍 (2000) 八大公山自然保护区森林土壤动物群落多样性的初步研究. 生物多样性, 8, 304-306.] | |
[53] | Yan ER, Wang XH, Huang JJ (2005) Concept and classification of coarse woody debris in forest ecosystems. Acta Ecologica Sinica, 25, 158-167. (in Chinese with English abstract) |
[ 阎恩荣, 王希华, 黄建军 (2005) 森林粗死木质残体的概念及其分类. 生态学报, 25, 158-167.] | |
[54] | Yang GR, Dou PP, Ma Y, Wang HJ, Lin DM (2020) Characteristics and influencing factors of surface soil fauna community in a subtropical evergreen broad-leaved forest of Jinfo Mountain. Acta Ecologica Sinica, 40, 7602-7610. (in Chinese with English abstract) |
[ 杨光蓉, 豆鹏鹏, 马瑜, 王红娟, 林敦梅 (2020) 金佛山亚热带常绿阔叶林地表土壤动物群落特征及其影响因素. 生态学报, 40, 7602-7610.] | |
[55] | Yang X, Chen LH, Kang YL, Gong WY, Zheng XL (2019) Water-holding characteristics of litter in five typical water conservation forests in low mountainous areas of eastern Liaoning. Chinese Journal of Ecology, 38, 2662-2670. (in Chinese with English abstract) |
[ 杨霞, 陈丽华, 康影丽, 弓文艳, 郑学良 (2019) 辽东低山区5种典型水源涵养林枯落物持水特性. 生态学杂志, 38, 2662-2670.] | |
[56] | Ye GH, Chu B, Hu GX, Zhang FY, Hua XZ, Zhou FF, Hua LM (2021) Response of soil macrofauna diversity to environmental factors under plateau zokor (Myospalax baileyi) disturbance in alpine meadow ecosystem. Acta Ecologica Sinica, 41, 792-802. (in Chinese with English abstract) |
[ 叶国辉, 楚彬, 胡桂馨, 张飞宇, 华铣泽, 周富斐, 花立民 (2021) 高原鼢鼠干扰下高寒草甸大型土壤动物多样性对环境因子的响应. 生态学报, 41, 792-802.] | |
[57] | Yee M, Grove SJ, Richardson AMM, Mohammed CL (2006) Brown rot in inner heartwood: Why large logs support characteristic saproxylic beetle assemblages of conservation concern. In: Insect Biodiversity and Dead Wood. Proceedings of A Symposium at the International Congress of Entomology, Brisbane, Australia, August 2004 (eds Grove SJ, Hanula JL), pp. 42-56. US Department of Agriculture, Forest Service, Southern Research Station, Athens, Asheville, NC. |
[58] |
Yin R, Eisenhauer N, Auge H, Purahong W, Schmidt A, Schädler M (2019) Additive effects of experimental climate change and land use on faunal contribution to litter decomposition. Soil Biology and Biochemistry, 131, 141-148.
DOI |
[59] | Yin WY (1992) Subtropical Soil Animals of China. Science Press, Beijing. (in Chinese) |
[ 尹文英 (1992) 中国亚热带土壤动物. 科学出版社, 北京.] | |
[60] | Yin WY (1998) Pictorical Key to Soil Animals of China. Science Press, Beijing. (in Chinese) |
[ 尹文英 (1998) 中国土壤动物检索图鉴. 科学出版社, 北京.] | |
[61] | Zhang AJ, Zhang J, Li JJ, Liu ZG, Zhang DJ (2020) Characteristics of soil faunal community structure before and after the rotation period of Eucalyptus grandis plantations with various densities. Acta Ecologica Sinica, 40, 808-821. (in Chinese with English abstract) |
[ 张阿娟, 张健, 李金金, 刘志刚, 张丹桔 (2020) 轮伐期前后不同密度巨桉(Eucalyptus grandis)人工林土壤动物群落结构特征. 生态学报, 40, 808-821.] | |
[62] |
Zhang Y, Jin GZ (2016) Effects of decay classes and diameter classes on physico-chemical properties of Pinus koraiensis log in a typical mixed broadleaved-Korean pine forest. Chinese Journal of Plant Ecology, 40, 1276-1288. (in Chinese with English abstract)
DOI URL |
[ 张瑜, 金光泽 (2016) 腐烂等级、径级对典型阔叶红松林红松倒木物理化学性质的影响. 植物生态学报, 40, 1276-1288.]
DOI |
|
[63] |
Zhou L, Dai LM, Gu HY, Zhong L (2007) Review on the decomposition and influence factors of coarse woody debris in forest ecosystem. Journal of Forestry Research, 18, 48-54.
DOI URL |
[64] |
Zuo J, Berg MP, van Hal J, Goudzwaard L, Hefting MM, Poorter L, Sterck FJ, Cornelissen JHC (2021) Fauna community convergence during decomposition of deadwood across tree species and forests. Ecosystems, 24, 926-938.
DOI URL |
[65] |
Zuo J, Cornelissen JHC, Hefting MM, Sass-Klaassen U, van Hal J, Goudzwaard L, Liu JC, Berg MP (2016) The whole story: Facilitation of dead wood fauna by bark beetles? Soil Biology and Biochemistry, 95, 70-77.
DOI URL |
[66] |
Zuo J, Fonck M, van Hal J, Cornelissen JHC, Berg MP (2014) Diversity of macro-detritivores in dead wood is influenced by tree species, decay stage and environment. Soil Biology and Biochemistry, 78, 288-297.
DOI URL |
[67] |
Zuo J, Hefting MM, Berg MP, van Hal J, Goudzwaard L, Liu JC, Sass-klaassen U, Sterck FJ, Poorter L, Cornelissen JHC (2018) Is there a tree economics spectrum of decomposability? Soil Biology and Biochemistry, 119, 135-142.
DOI URL |
[1] | 袁敬毅, 张旭, 田镇朋, 王梓柘, 高永萍, 姚迪昭, 关宏灿, 李文楷, 刘婧, 张宏, 马勤. 结合无人机高分辨率可见光影像和激光雷达点云的城市植物群落树种组成和数量特征提取方法对比[J]. 生物多样性, 2025, 33(4): 24237-. |
[2] | 刘淑琪, 崔东, 江智诚, 刘江慧, 闫江超. 短期氮、水添加和刈割减弱了苦豆子型退化草地土壤生物多样性与生态系统多功能性的联系[J]. 生物多样性, 2025, 33(3): 24305-. |
[3] | 王嘉陈, 徐汤俊, 许唯, 张高季, 尤艺瑾, 阮宏华, 刘宏毅. 城市景观格局对大蚰蜒种群遗传结构的影响[J]. 生物多样性, 2025, 33(1): 24251-. |
[4] | 何欣怡, 潘玉梅, 祝燕, 陈佳仪, 张思榕, 张乃莉. 暖温带森林外生菌根树种优势和植物多样性对土壤氮素周转的影响[J]. 生物多样性, 2024, 32(9): 24173-. |
[5] | 孙怡欣, 侯春雨, 周磊, 魏雪, 马金豪, 薛娟, 李小涵, 吴鹏飞. 青藏高原盆栽一年生和多年生豆科牧草对土壤线虫群落的影响[J]. 生物多样性, 2024, 32(7): 24040-. |
[6] | 马骅, 李常青, 余品锋, 陈杰, 贺天耀, 王可洪. 澎溪河消落带大型土壤动物群落分布格局及其影响因素[J]. 生物多样性, 2024, 32(7): 24117-. |
[7] | 王党军, 谢午阳, 林小元, 乔秀娟, 徐耀粘, 田秋香, 刘峰, 张娅妮, 左娟, 江明喜. 八大公山森林土壤动物群落与叶经济谱及凋落物分解速率的关系[J]. 生物多样性, 2024, 32(12): 24261-. |
[8] | 谢致敬, 刘相钰, 孙晓铭, 刘继亮, 刘占锋, 张晓珂, 陈军, 杨效东, 朱波, 柯欣, 吴东辉. 中国土壤动物多样性监测网络建设、进展与展望[J]. 生物多样性, 2023, 31(12): 23365-. |
[9] | 刘文聪, 田希, 杨涛, 饶杰生, 王晓凤, 钱恒君, 涂梦灵, 单子铭, 欧晓昆, 沈泽昊. 云南鸡足山半湿润常绿阔叶林优势树种的种群结构与更新特征[J]. 生物多样性, 2023, 31(11): 23251-. |
[10] | 田希, 刘文聪, 饶杰生, 王晓凤, 杨涛, 陈稀, 张秋雨, 刘其明, 徐衍潇, 张旭, 沈泽昊. 云南鸡足山半湿润常绿阔叶林的林隙干扰格局与成因[J]. 生物多样性, 2023, 31(11): 23219-. |
[11] | 罗恬, 俞方圆, 练琚愉, 王俊杰, 申健, 吴志峰, 叶万辉. 冠层垂直高度对植物叶片功能性状的影响: 以鼎湖山南亚热带常绿阔叶林为例[J]. 生物多样性, 2022, 30(5): 21414-. |
[12] | 鲁梦珍, 曾馥平, 宋同清, 彭晚霞, 张浩, 苏樑, 刘坤平, 谭卫宁, 杜虎. 喀斯特常绿落叶阔叶林死亡个体空间分布格局及生境关联[J]. 生物多样性, 2022, 30(4): 21340-. |
[13] | 潘雪, 刘冬. 2020-2021年世界甲螨亚目新分类单元和近15年中国发表新种概况——纪念中国甲螨学开创100周年[J]. 生物多样性, 2022, 30(12): 22193-. |
[14] | 王军, 赵超. 中国菌食性管蓟马物种多样性及分布格局[J]. 生物多样性, 2022, 30(12): 22128-. |
[15] | 姚海凤, 张赛超, 上官华媛, 李志鹏, 孙新. 城市化对土壤动物群落结构和多样性的影响[J]. 生物多样性, 2022, 30(12): 22547-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn