生物多样性 ›› 2025, Vol. 33 ›› Issue (12): 25169.  DOI: 10.17520/biods.2025169  cstr: 32101.14.biods.2025169

• 研究报告: 植物多样性 • 上一篇    下一篇

吉林蛟河针阔混交林β多样性格局及其形成机制

陈长樵, 冯艳飞, 卢力奇, 何怀江, 张春雨, 赵秀海, 郝珉辉   

  1. 1. 北京林业大学国家林业和草原局森林经营工程技术研究中心, 北京 100083; 2. 吉林省林业科学研究院, 长春 130013
  • 收稿日期:2025-05-07 修回日期:2025-08-04 接受日期:2025-10-22 出版日期:2025-12-20 发布日期:2026-01-09
  • 通讯作者: 郝珉辉
  • 基金资助:
    国家自然科学基金项目(32201555)

β-diversity pattern and mechanism in a coniferous-broadleaf mixed forest in Jiaohe, Jilin Province

Changqiao Chen1, Yanfei Feng1, Liqi Lu1, Huaijiang He2, Chunyu Zhang1, Xiuhai Zhao1, Minhui Hao1*   

  1. 1 Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China 

    2 Jilin Provincial Academy of Forestry Sciences, Changchun 130013, China

  • Received:2025-05-07 Revised:2025-08-04 Accepted:2025-10-22 Online:2025-12-20 Published:2026-01-09
  • Contact: Minhui Hao
  • Supported by:
    the Program of National Natural Science Foundation of China(32201555)

摘要: β多样性是生物多样性的一个重要维度, 反映了物种组成在时间和空间上的变化。探讨β多样性的分布格局及其背后的生态学过程, 有助于揭示生物多样性的形成和维持机制, 为生物多样性保护提供指导。β多样性可以划分为不同组分, 但目前温带针阔混交林中不同组分对β多样性的贡献及其驱动机制并不清楚。本研究基于吉林蛟河针阔混交林30 ha动态监测样地(500 m × 600 m)的植被调查数据, 利用Jaccard指数和Sørenson指数量化群落β多样性, 通过Podani分解方法将群落β多样性分解为物种替换组分和丰富度差异组分, 检验其对群落β多样性的贡献; 同时利用样方–物种多度矩阵的总方差量化β多样性, 并将其划分为不同物种对β多样性的贡献(species contribution to β diversity, SCBD)和不同样方对β多样性的贡献(local contribution to β diversity, LCBD)。通过一元线性回归和二次项回归分析分别检验SCBD与物种频度、LCBD与物种丰富度的关系; 最后, 结合环境和空间数据, 采用变差分解检验环境过滤和扩散限制两种生态过程对森林生态特异性的影响。结果表明: (1)吉林蛟河针阔混交林的β多样性主要由物种替换导致, 而丰富度差异的贡献相对较小; (2) SCBD与物种频度显著相关, 随着频度的增加呈现先上升后下降的趋势, 其中对森林β多样性贡献最高的物种是千金榆(Carpinus cordata), 贡献最低的物种是毛山楂(Crataegus maximowiczii); (3) LCBD与物种丰富度显著相关, 随着物种丰富度的升高呈现先下降后上升的趋势; (4)森林生态特异性由环境过滤和扩散限制共同驱动, 但扩散限制的影响更大。本研究揭示了吉林蛟河针阔混交林β多样性及其不同组分的空间分布特征与生态驱动机制, 研究结果有助于促进对温带森林β多样性形成机制的理解, 同时能够为东北地区次生林的生态修复和生物多样性保护提供科学依据。

关键词: β多样性, 物种替换, 丰富度差异, 环境过滤, 扩散限制

Abstract

Aims: β diversity is a key facet of biodiversity, reflecting variation in species composition across space and time. Exploring the distribution patterns and ecological processes underlying β diversity helps clarify the mechanisms that maintain biodiversity, thereby informing conservation strategies. While β diversity can be partitioned into distinct components, the relative contributions of these components remain poorly understood in temperate coniferous-broadleaf mixed forests. 

Methods: This study used vegetation survey data from a 30-ha forest dynamics plot in coniferous-broadleaf mixed forests in Jiaohe, Jilin Province. The Podani decomposition method was applied to partition the Jaccard and Sørensen dissimilarity indices into species replacement and richness difference components. Additionally, the total variance of the site-by-species abundance matrix was used to quantify β diversity, which was further decomposed into species contribution to β diversity (SCBD) and local contribution to β diversity (LCBD). Relationships between SCBD and species frequency, and between LCBD and species richness, were examined using linear and quadratic regression analyses. Finally, variation partitioning was conducted to assess the relative roles of environmental filtering and dispersal limitation in shaping ecological uniqueness within the forest communities. 

Results: (1) Forest β diversity was predominantly driven by species replacement, while species richness difference contributed less. (2) SCBD showed a significant inverted U-shaped relationship with species frequency, with Carpinus cordata contributing the most and Crataegus maximowiczii the least to β diversity. (3) LCBD exhibited a significant U-shaped relationship with species richness. (4) Both environmental filtering and dispersal limitation influenced forest ecological uniqueness, with dispersal limitation exerting a stronger effect. 

Conclusion: This study reveals the spatial distribution patterns and ecological drivers of β diversity and its components in temperate coniferous-broadleaf mixed forests. The findings deepen understanding of β diversity formation mechanisms in temperate forests and provide a scientific basis for ecological restoration and biodiversity conservation of secondary forests in Northeast China.

Key words: β diversity, species replacement, richness difference, environmental filtering, dispersal limitation