生物多样性 ›› 2023, Vol. 31 ›› Issue (1): 22080. DOI: 10.17520/biods.2022080
• 中国野生脊椎动物鸣声监测与生物声学研究专题 • 下一篇
边琦1,2, 王成1,2,*(), 程贺1,2,3, 韩丹1,2, 赵伊琳1,2, 殷鲁秦1,2
收稿日期:
2022-02-18
接受日期:
2022-06-01
出版日期:
2023-01-20
发布日期:
2022-06-23
通讯作者:
王成
作者简介:
*E-mail: wch8361@163.com基金资助:
Qi Bian1,2, Cheng Wang1,2,*(), He Cheng1,2,3, Dan Han1,2, Yilin Zhao1,2, Luqin Yin1,2
Received:
2022-02-18
Accepted:
2022-06-01
Online:
2023-01-20
Published:
2022-06-23
Contact:
Cheng Wang
摘要:
鸣声是鸟类之间进行沟通和传递信息的重要方式, 这为通过声学监测评估鸟类多样性提供了独特的机会。利用声学指数快速评估生物多样性是一种新兴的调查方法, 但城市森林中的复杂声环境可能会导致声学指数的指示结果出现偏差。为了解声学指数在城市森林中应用的可行性, 本研究在北京市东郊森林公园设置了50个矩阵式调查样点, 于2021年4-6月每月进行1次鸟类传统观测和同步鸣声采集, 通过比较两种方法的结果来探究声学监测的有效性。采用Spearman相关分析和广义线性混合模型评估6个常用声学指数与鸟类丰富度和多度的关系, 并衡量了每个指数的性能。结果表明: (1)本研究共记录到鸟类10目23科35种, 通过声学监听识别的总物种数与传统鸟类观测相等, 但具体鸟种存在差异; (2)不同月份间声学指数与鸟类丰富度和多度的相关性有明显差别, 声学复杂度指数(ACI)和标准化声景差异指数(NDSI)优于其他指数, 是评估鸟类多样性的关键变量; (3)声学指数对鸟类多度的预测能力(R2m = 0.32, R2c = 0.80)要高于丰富度(R2m = 0.12, R2c = 0.18)。声学指数为快速评估生物多样性提供了有前景的分析手段, 但仍需继续探讨改进。随着方法的逐步完善和处理技术的提升, 声学监测在城市生物多样性保护和跟踪管理方面的潜力也越来越大。
边琦, 王成, 程贺, 韩丹, 赵伊琳, 殷鲁秦 (2023) 声学指数在城市森林鸟类多样性评估中的应用. 生物多样性, 31, 22080. DOI: 10.17520/biods.2022080.
Qi Bian, Cheng Wang, He Cheng, Dan Han, Yilin Zhao, Luqin Yin (2023) Exploring the application of acoustic indices in the assessment of bird diversity in urban forests. Biodiversity Science, 31, 22080. DOI: 10.17520/biods.2022080.
声学指数 Acoustic indices | 详细信息 Details | 参考文献 Reference |
---|---|---|
声熵指数 Acoustic entropy index (H) | 将音频划分为多个频段, 使用Shannon指数来计算时间熵(Ht)和频谱熵(Hf), 两者相乘得到声熵指数, 体现声学信号在时域和频域上的复杂度。The audio is divided into multiple frequency bands and the Shannon index is used to calculate the temporal entropy (Ht) and spectral entropy (Hf), which are multiplied to obtain the acoustic entropy index, reflecting the complexity of the acoustic signal in the time and frequency domains. | Sueur et al, |
声学复杂度指数 Acoustic complexity index (ACI) | 该指数用于测量相邻频率带之间振幅的变化, 反映声强的可变性和不规律性, 特别是鸟鸣声。该指数相对不受恒定强度或持续声音的影响。本研究中使用以下参数计算: min_freq = 2000, max_freq = 11000, j = 5, fft_w = 512。This index is used to measure changes in amplitude between adjacent frequency bands, reflecting the variability and irregularity of sound intensity, especially bird calls. The index is relatively unaffected by a constant intensity of a sustained sound. The following parameters are used in this study: min_freq = 2000, max_freq = 11000, j = 5, fft_w = 512. | Pieretti et al, |
声学多样性指数 Acoustic diversity index, (ADI) | 将频谱图划分为多个频段(默认为10), 并使用Shannon指数计算每个频段中超过阈值(默认为-50 dBFS)的声音所占比例。本研究中使用默认参数计算。The spectrogram is divided into frequency bands (default 10) and the percentage of sounds in each band that exceed the threshold (default -50 dBFS) is calculated using the Shannon index. The default parameters are used for calculation in this study. | Villanueva-Rivera et al, |
声学均匀度指数 Acoustic evenness index (AEI) | 将频谱图划分为多个频段(默认为10), 并使用Gini指数计算每个频段中超过阈值(默认为-50 dBFS)的声音所占比例。本研究中使用默认参数计算。The spectrogram is divided into frequency bands (default 10) and the Gini index is used to calculate the proportion of sounds in each band that exceeded the threshold (default -50 dBFS). The default parameters are used for calculation in this study. | Villanueva-Rivera et al, |
生物声学指数 Bioacoustic index (BIO) | 测量指定频率范围内的声音强度, 频谱中超过阈值部分的面积与大多数鸟类的鸣叫频率区间和声强有关, 本研究中使用以下参数计算: min_freq = 2000, max_freq = 11000, fft_w = 512。The sound intensity in the specified frequency range was measured and the area of the above-threshold portion of the spectrum was related to the frequency range and sound intensity of most birds’ calls. The following parameters were used in this study to calculate: min_freq = 2000, max_freq = 11000, fft_w = 512. | Boelman et al, |
标准化声景差异指数 Normalized difference sound index (NDSI) | 通过计算人工声(1-2 kHz)与生物声(2-11 kHz)的比值来评估人类活动对声景观的影响程度。范围从-1到1, 本研究中使用默认参数计算。NDSI was assessed by calculating the ratio of anthrophony (1-2 kHz) to biophony (2-11 kHz). The range is from -1 to 1 and is calculated using the default parameters in this study. | Kasten et al, |
表1 本研究使用的6个声学指数介绍
Table 1 Six acoustic indices used in this study
声学指数 Acoustic indices | 详细信息 Details | 参考文献 Reference |
---|---|---|
声熵指数 Acoustic entropy index (H) | 将音频划分为多个频段, 使用Shannon指数来计算时间熵(Ht)和频谱熵(Hf), 两者相乘得到声熵指数, 体现声学信号在时域和频域上的复杂度。The audio is divided into multiple frequency bands and the Shannon index is used to calculate the temporal entropy (Ht) and spectral entropy (Hf), which are multiplied to obtain the acoustic entropy index, reflecting the complexity of the acoustic signal in the time and frequency domains. | Sueur et al, |
声学复杂度指数 Acoustic complexity index (ACI) | 该指数用于测量相邻频率带之间振幅的变化, 反映声强的可变性和不规律性, 特别是鸟鸣声。该指数相对不受恒定强度或持续声音的影响。本研究中使用以下参数计算: min_freq = 2000, max_freq = 11000, j = 5, fft_w = 512。This index is used to measure changes in amplitude between adjacent frequency bands, reflecting the variability and irregularity of sound intensity, especially bird calls. The index is relatively unaffected by a constant intensity of a sustained sound. The following parameters are used in this study: min_freq = 2000, max_freq = 11000, j = 5, fft_w = 512. | Pieretti et al, |
声学多样性指数 Acoustic diversity index, (ADI) | 将频谱图划分为多个频段(默认为10), 并使用Shannon指数计算每个频段中超过阈值(默认为-50 dBFS)的声音所占比例。本研究中使用默认参数计算。The spectrogram is divided into frequency bands (default 10) and the percentage of sounds in each band that exceed the threshold (default -50 dBFS) is calculated using the Shannon index. The default parameters are used for calculation in this study. | Villanueva-Rivera et al, |
声学均匀度指数 Acoustic evenness index (AEI) | 将频谱图划分为多个频段(默认为10), 并使用Gini指数计算每个频段中超过阈值(默认为-50 dBFS)的声音所占比例。本研究中使用默认参数计算。The spectrogram is divided into frequency bands (default 10) and the Gini index is used to calculate the proportion of sounds in each band that exceeded the threshold (default -50 dBFS). The default parameters are used for calculation in this study. | Villanueva-Rivera et al, |
生物声学指数 Bioacoustic index (BIO) | 测量指定频率范围内的声音强度, 频谱中超过阈值部分的面积与大多数鸟类的鸣叫频率区间和声强有关, 本研究中使用以下参数计算: min_freq = 2000, max_freq = 11000, fft_w = 512。The sound intensity in the specified frequency range was measured and the area of the above-threshold portion of the spectrum was related to the frequency range and sound intensity of most birds’ calls. The following parameters were used in this study to calculate: min_freq = 2000, max_freq = 11000, fft_w = 512. | Boelman et al, |
标准化声景差异指数 Normalized difference sound index (NDSI) | 通过计算人工声(1-2 kHz)与生物声(2-11 kHz)的比值来评估人类活动对声景观的影响程度。范围从-1到1, 本研究中使用默认参数计算。NDSI was assessed by calculating the ratio of anthrophony (1-2 kHz) to biophony (2-11 kHz). The range is from -1 to 1 and is calculated using the default parameters in this study. | Kasten et al, |
声学指数 Acoustic indices | 四月 April | 五月 May | 六月 June | 4-6月 April-June | ||||
---|---|---|---|---|---|---|---|---|
丰富度 Richness | 多度 Abundance | 丰富度 Richness | 多度 Abundance | 丰富度 Richness | 多度 Abundance | 丰富度 Richness | 多度 Abundance | |
声熵指数 Acoustic entropy index (H) | 0.371* | 0.345* | 0.022 | 0.035 | -0.11 | 0.175 | 0.16 | 0.288** |
声学复杂度指数 Acoustic complexity index (ACI) | 0.614** | 0.591** | 0.349* | 0.437** | 0.456** | 0.316* | 0.425** | 0.369** |
声学多样性指数 Acoustic diversity index (ADI) | 0.282 | 0.175 | 0.166 | 0.194 | 0.164 | 0.327* | 0.323** | 0.373** |
声学均匀度指数 Acoustic evenness index (AEI) | -0.365* | -0.259 | -0.181 | -0.191 | -0.153 | -0.325* | -0.339** | -0.387** |
生物声学指数 Bioacoustic index (BIO) | 0.228 | 0.300* | 0.034 | 0.007 | -0.257 | 0.095 | 0.076 | 0.213* |
标准化声景差异指数 Normalized difference sound index (NDSI) | 0.517** | 0.671** | 0.111 | 0.186 | -0.044 | 0.423** | 0.269** | 0.502** |
表2 东郊森林公园4-6月鸟类丰富度和多度与声学指数的相关性
Table 2 Correlation between bird diversity and acoustic indices from April to June in Eastern Suburb Forest Park
声学指数 Acoustic indices | 四月 April | 五月 May | 六月 June | 4-6月 April-June | ||||
---|---|---|---|---|---|---|---|---|
丰富度 Richness | 多度 Abundance | 丰富度 Richness | 多度 Abundance | 丰富度 Richness | 多度 Abundance | 丰富度 Richness | 多度 Abundance | |
声熵指数 Acoustic entropy index (H) | 0.371* | 0.345* | 0.022 | 0.035 | -0.11 | 0.175 | 0.16 | 0.288** |
声学复杂度指数 Acoustic complexity index (ACI) | 0.614** | 0.591** | 0.349* | 0.437** | 0.456** | 0.316* | 0.425** | 0.369** |
声学多样性指数 Acoustic diversity index (ADI) | 0.282 | 0.175 | 0.166 | 0.194 | 0.164 | 0.327* | 0.323** | 0.373** |
声学均匀度指数 Acoustic evenness index (AEI) | -0.365* | -0.259 | -0.181 | -0.191 | -0.153 | -0.325* | -0.339** | -0.387** |
生物声学指数 Bioacoustic index (BIO) | 0.228 | 0.300* | 0.034 | 0.007 | -0.257 | 0.095 | 0.076 | 0.213* |
标准化声景差异指数 Normalized difference sound index (NDSI) | 0.517** | 0.671** | 0.111 | 0.186 | -0.044 | 0.423** | 0.269** | 0.502** |
响应变量 Response variable | 解释变量 Explanatory variables | 自由度 df | Loglink | AICc | ΔAICc | 权重 Weight |
---|---|---|---|---|---|---|
多度 Abundance | ACI + ADI + H + NDSI | 7 | -562.41 | 1,139.65 | 0.00 | 0.29 |
ACI + ADI + NDSI | 6 | -564.15 | 1,140.92 | 1.27 | 0.15 | |
ACI + ADI + BIO + H + NDSI | 8 | -562.15 | 1,141.39 | 1.74 | 0.12 | |
ACI + ADI + AEI + H + NDSI | 8 | -562.34 | 1,141.77 | 2.12 | 0.10 | |
ACI + ADI + BIO + NDSI | 7 | -563.69 | 1,142.22 | 2.56 | 0.08 | |
ACI + AEI + H + NDSI | 7 | -563.74 | 1,142.33 | 2.68 | 0.08 | |
ACI + AEI + NDSI | 6 | -565.05 | 1,142.72 | 3.07 | 0.06 | |
ACI + ADI + AEI + NDSI | 7 | -564.11 | 1,143.06 | 3.40 | 0.05 | |
ACI + ADI + AEI + BIO + H + NDSI | 9 | -562.08 | 1,143.54 | 3.88 | 0.04 | |
ACI + AEI + BIO + H + NDSI | 8 | -563.52 | 1,144.13 | 4.48 | 0.03 |
表3 AIC权重累计和大于0.95的声学指数与鸟类多度模型集
Table 3 Acoustic indices and bird abundance model set (cumulative sum of AIC weights > 0.95)
响应变量 Response variable | 解释变量 Explanatory variables | 自由度 df | Loglink | AICc | ΔAICc | 权重 Weight |
---|---|---|---|---|---|---|
多度 Abundance | ACI + ADI + H + NDSI | 7 | -562.41 | 1,139.65 | 0.00 | 0.29 |
ACI + ADI + NDSI | 6 | -564.15 | 1,140.92 | 1.27 | 0.15 | |
ACI + ADI + BIO + H + NDSI | 8 | -562.15 | 1,141.39 | 1.74 | 0.12 | |
ACI + ADI + AEI + H + NDSI | 8 | -562.34 | 1,141.77 | 2.12 | 0.10 | |
ACI + ADI + BIO + NDSI | 7 | -563.69 | 1,142.22 | 2.56 | 0.08 | |
ACI + AEI + H + NDSI | 7 | -563.74 | 1,142.33 | 2.68 | 0.08 | |
ACI + AEI + NDSI | 6 | -565.05 | 1,142.72 | 3.07 | 0.06 | |
ACI + ADI + AEI + NDSI | 7 | -564.11 | 1,143.06 | 3.40 | 0.05 | |
ACI + ADI + AEI + BIO + H + NDSI | 9 | -562.08 | 1,143.54 | 3.88 | 0.04 | |
ACI + AEI + BIO + H + NDSI | 8 | -563.52 | 1,144.13 | 4.48 | 0.03 |
响应变量 Response variable | 解释变量 Explanatory variables | 参数估计 Parameter estimate | 标准误 SE | P |
---|---|---|---|---|
多度 Abundance | 截距 Intercept | 2.68 | 0.10 | < 0.001*** |
ACI | 0.16 | 0.03 | < 0.001*** | |
ADI | 0.18 | 0.07 | 0.01** | |
H | -0.10 | 0.06 | 0.07 | |
NDSI | 0.28 | 0.07 | < 0.001*** | |
BIO | -0.05 | 0.06 | 0.44 | |
AEI | -0.13 | 0.14 | 0.37 |
表4 声学指数与鸟类多度的平均模型参数估计值
Table 4 Parameter estimates for the average model of bird abundance and acoustic indices
响应变量 Response variable | 解释变量 Explanatory variables | 参数估计 Parameter estimate | 标准误 SE | P |
---|---|---|---|---|
多度 Abundance | 截距 Intercept | 2.68 | 0.10 | < 0.001*** |
ACI | 0.16 | 0.03 | < 0.001*** | |
ADI | 0.18 | 0.07 | 0.01** | |
H | -0.10 | 0.06 | 0.07 | |
NDSI | 0.28 | 0.07 | < 0.001*** | |
BIO | -0.05 | 0.06 | 0.44 | |
AEI | -0.13 | 0.14 | 0.37 |
响应变量 Response variable | 解释变量 Explanatory variables | 参数估计 Parameter estimate | 标准误 SE | P |
---|---|---|---|---|
丰富度 Richness | 截距 Intercept | 1.250 | 0.054 | 0.000 |
H | -0.044 | 0.073 | 0.512 | |
ACI | 0.138 | 0.039 | < 0.001*** | |
ADI | 0.200 | 0.118 | 0.093 | |
AEI | -0.026 | 0.161 | 0.873 | |
BIO | -0.112 | 0.070 | 0.080 | |
NDSI | 0.064 | 0.073 | 0.344 |
表5 声学指数与鸟类丰富度的空间模型参数估计
Table 5 Parameter estimates for spatial model of bird richness and acoustic indices
响应变量 Response variable | 解释变量 Explanatory variables | 参数估计 Parameter estimate | 标准误 SE | P |
---|---|---|---|---|
丰富度 Richness | 截距 Intercept | 1.250 | 0.054 | 0.000 |
H | -0.044 | 0.073 | 0.512 | |
ACI | 0.138 | 0.039 | < 0.001*** | |
ADI | 0.200 | 0.118 | 0.093 | |
AEI | -0.026 | 0.161 | 0.873 | |
BIO | -0.112 | 0.070 | 0.080 | |
NDSI | 0.064 | 0.073 | 0.344 |
样点法 Point counts | 声学监测 Acoustic monitoring | 参考文献 Reference | |
---|---|---|---|
优势Advantage | (1)最常采用的鸟类调查方法之一, 易于实施、易于做到随机化或系统化。One of the most commonly used bird survey methods, easy to implement and easy to randomize or systematize. (2)观测过程中能够直接获得鸟的种类、数量、行为活动等信息, 具有高效性和灵活性。The observation process is efficient and flexible as it provides direct access to information on bird species, numbers, behavioral activities, etc. (3)适用于复杂、斑块化的生境。相较于样线法, 观察员有更多的时间观察鸟类, 减弱行走速度带来的影响。Suitable for complex habitats, observers have more time to observe birds and attenuate the effects of walking speed compared to the sample line method. | (1)快速发展的调查方法之一。操作简单易重复, 支持同时进行大尺度、长期、连续的动态监测与跟踪。One of the rapidly developing survey methods, simple and repeatable in operation, supports simultaneous large-scale, long-term, continuous dynamic monitoring. (2)不侵入自然环境, 尽可能地减少现场调查对动植物的影响。有利于对偏远地区、稀有物种的监测。It does not invade the natural environment, minimizes the impact of field surveys on flora and fauna, and facilitates the monitoring of remote areas and rare species. (3)录音永久保存、可反复监听, 降低识别偏差。声学指数和机器学习的不断发展有助于快速评估生物多样性的动态变化。Recordings can be permanently stored and repeatedly monitored to reduce identification bias. The development of acoustic indices and machine learning helps to rapidly assess dynamic changes in biodiversity. | 吴飞和杨晓君, |
劣势Weakness | (1)观测次数有限, 不能保证多样点间同步进行, 观测周期影响结果的可靠性。The limited number of observations does not guarantee the synchronization of multiple points, and the period affects the reliability of the results. (2)对观察员的专业能力要求较高。在地形复杂、植被密集的森林中, 因视线容易受阻导致记录不完全。The professional competence of observers is required. In forests with complex terrain and dense vegetation, it is easy to have incomplete records due to obstructed vision. (3)人类的接近引入了惊飞或回避效应, 尤其是多名调查人员带来的干扰可能会使鸟类远离观察者的视线, 影响调查结果。Human proximity introduces a startle or avoidance effect, especially as disturbance from multiple investigators may keep birds away and affect findings. | (1)应对大数据的挑战。长期录制产生庞大的音频文件, 需要考虑大数据的存储与处理, 电池容量及更换成本等。The challenge of big data. Long-term recording generates huge audio files, requiring consideration of big data storage and processing, battery capacity, and replacement costs, etc. (2)人工识别需要大量的时间精力, 目前自动识别的技术还易受到背景噪声和声音重叠的干扰导致结果偏差。 Manual recognition takes a lot of time, and current automatic recognition techniques are still subject to interference from background noise and sound overlap, leading to biased results. (3)天气条件或人为破坏对录音设备的灵敏度造成影响, 长期监测中数据丢失可能会在很长一段时间内不被注意到, 需要定期查看维护。Weather conditions or vandalism affect the sensitivity of recording equipment, and data loss during long-term monitoring may unnoticed and require regular maintenance. | Prabowo et al, |
表6 样点法和声学监测优劣对比补充
Table 6 Comparison and supplement of point counts and acoustic monitoring
样点法 Point counts | 声学监测 Acoustic monitoring | 参考文献 Reference | |
---|---|---|---|
优势Advantage | (1)最常采用的鸟类调查方法之一, 易于实施、易于做到随机化或系统化。One of the most commonly used bird survey methods, easy to implement and easy to randomize or systematize. (2)观测过程中能够直接获得鸟的种类、数量、行为活动等信息, 具有高效性和灵活性。The observation process is efficient and flexible as it provides direct access to information on bird species, numbers, behavioral activities, etc. (3)适用于复杂、斑块化的生境。相较于样线法, 观察员有更多的时间观察鸟类, 减弱行走速度带来的影响。Suitable for complex habitats, observers have more time to observe birds and attenuate the effects of walking speed compared to the sample line method. | (1)快速发展的调查方法之一。操作简单易重复, 支持同时进行大尺度、长期、连续的动态监测与跟踪。One of the rapidly developing survey methods, simple and repeatable in operation, supports simultaneous large-scale, long-term, continuous dynamic monitoring. (2)不侵入自然环境, 尽可能地减少现场调查对动植物的影响。有利于对偏远地区、稀有物种的监测。It does not invade the natural environment, minimizes the impact of field surveys on flora and fauna, and facilitates the monitoring of remote areas and rare species. (3)录音永久保存、可反复监听, 降低识别偏差。声学指数和机器学习的不断发展有助于快速评估生物多样性的动态变化。Recordings can be permanently stored and repeatedly monitored to reduce identification bias. The development of acoustic indices and machine learning helps to rapidly assess dynamic changes in biodiversity. | 吴飞和杨晓君, |
劣势Weakness | (1)观测次数有限, 不能保证多样点间同步进行, 观测周期影响结果的可靠性。The limited number of observations does not guarantee the synchronization of multiple points, and the period affects the reliability of the results. (2)对观察员的专业能力要求较高。在地形复杂、植被密集的森林中, 因视线容易受阻导致记录不完全。The professional competence of observers is required. In forests with complex terrain and dense vegetation, it is easy to have incomplete records due to obstructed vision. (3)人类的接近引入了惊飞或回避效应, 尤其是多名调查人员带来的干扰可能会使鸟类远离观察者的视线, 影响调查结果。Human proximity introduces a startle or avoidance effect, especially as disturbance from multiple investigators may keep birds away and affect findings. | (1)应对大数据的挑战。长期录制产生庞大的音频文件, 需要考虑大数据的存储与处理, 电池容量及更换成本等。The challenge of big data. Long-term recording generates huge audio files, requiring consideration of big data storage and processing, battery capacity, and replacement costs, etc. (2)人工识别需要大量的时间精力, 目前自动识别的技术还易受到背景噪声和声音重叠的干扰导致结果偏差。 Manual recognition takes a lot of time, and current automatic recognition techniques are still subject to interference from background noise and sound overlap, leading to biased results. (3)天气条件或人为破坏对录音设备的灵敏度造成影响, 长期监测中数据丢失可能会在很长一段时间内不被注意到, 需要定期查看维护。Weather conditions or vandalism affect the sensitivity of recording equipment, and data loss during long-term monitoring may unnoticed and require regular maintenance. | Prabowo et al, |
[1] |
Bian Q, Wang C, Hao ZZ (2021) Application of ecoacoustic monitoring in the field of biodiversity science. Chinese Journal of Applied Ecology, 32, 1119-1128. (in Chinese with English abstract)
DOI |
[边琦, 王成, 郝泽周 (2021) 生物声音监测研究在生物多样性领域的应用. 应用生态学报, 32, 1119-1128.]
DOI |
|
[2] | Blake JG (2021) Acoustic monitors and direct observations provide similar but distinct perspectives on bird assemblages in a lowland forest of eastern Ecuador. PeerJ, 9, e10565. |
[3] |
Boelman NT, Asner GP, Hart PJ, Martin RE (2007) Multi-trophic invasion resistance in Hawaii: Bioacoustics, field surveys, and airborne remote sensing. Ecological Applications, 17, 2137-2144.
DOI URL |
[4] | Bradfer-Lawrence T, Bunnefeld N, Gardner N, Willis SG, Dent DH (2020) Rapid assessment of avian species richness and abundance using acoustic indices. Ecological Indicators, 115, 106400. |
[5] |
Bradfer-Lawrence T, Gardner N, Bunnefeld L, Bunnefeld N, Willis SG, Dent DH, Zamora-Gutierrez V (2019) Guidelines for the use of acoustic indices in environmental research. Methods in Ecology and Evolution, 10, 1796-1807.
DOI |
[6] |
Brumm H, Zollinger SA, Niemelä PT, Sprau P, Schielzeth H (2017) Measurement artefacts lead to false positives in the study of birdsong in noise. Methods in Ecology and Evolution, 8, 1617-1625.
DOI URL |
[7] |
Buxton RT, McKenna MF, Clapp M, Meyer E, Stabenau E, Angeloni LM, Crooks K, Wittemyer G (2018) Efficacy of extracting indices from large-scale acoustic recordings to monitor biodiversity. Conservation Biology, 32, 1174-1184.
DOI PMID |
[8] |
Cai YT, Gan XJ, Ma ZJ (2010) A comparison of line transect and point count surveys: A case study of spring saltmarsh birds at Chongming Dongtan. Biodiversity Science, 18, 44-49. (in Chinese with English abstract)
DOI |
[蔡音亭, 干晓静, 马志军 (2010) 鸟类调查的样线法和样点法比较: 以崇明东滩春季盐沼鸟类调查为例. 生物多样性, 18, 44-49.]
DOI |
|
[9] | Darras K, Batáry P, Furnas BJ, Grass I, Mulyani YA, Tscharntke T (2019) Autonomous sound recording outperforms human observation for sampling birds: A systematic map and user guide. Ecological Applications, 29, e01954. |
[10] | Diepstraten J, Willie J (2021) Assessing the structure and drivers of biological sounds along a disturbance gradient. Global Ecology and Conservation, 31, e01819. |
[11] |
Dormann CF (2007) Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Global Ecology and Biogeography, 16, 129-138.
DOI URL |
[12] |
Efford MG, Dawson DK, Borchers DL (2009) Population density estimated from locations of individuals on a passive detector array. Ecology, 90, 2676-2682.
PMID |
[13] |
Eldridge A, Guyot P, Moscoso P, Johnston A, Eyre-Walker Y, Peck M (2018) Sounding out ecoacoustic metrics: Avian species richness is predicted by acoustic indices in temperate but not tropical habitats. Ecological Indicators, 95, 939-952.
DOI URL |
[14] |
Fairbrass AJ, Rennert P, Williams C, Titheridge H, Jones KE (2017) Biases of acoustic indices measuring biodiversity in urban areas. Ecological Indicators, 83, 169-177.
DOI URL |
[15] |
Frommolt KH, Tauchert KH (2014) Applying bioacoustic methods for long-term monitoring of a nocturnal wetland bird. Ecological Informatics, 21, 4-12.
DOI URL |
[16] |
Fuller S, Axel AC, Tucker D, Gage SH (2015) Connecting soundscape to landscape: Which acoustic index best describes landscape configuration? Ecological Indicators, 58, 207-215.
DOI URL |
[17] |
Gasc A, Francomano D, Dunning JB, Pijanowski BC (2017) Future directions for soundscape ecology: The importance of ornithological contributions. The Auk, 134, 215-228.
DOI URL |
[18] |
Gibb R, Browning E, Glover-Kapfer P, Jones KE, Börger L (2019) Emerging opportunities and challenges for passive acoustics in ecological assessment and monitoring. Methods in Ecology and Evolution, 10, 169-185.
DOI URL |
[19] |
Grueber C, Nakagawa S, Laws RJ, Jamieson IG (2011) Multimodel inference in ecology and evolution: Challenges and solutions. Journal of Evolutionary Biology, 24, 699-711.
DOI PMID |
[20] | Hamza F, Kahli A, Chokri MA, Almalki M, Hanane S (2021) Urban and industrial landscapes interact with microhabitat to predict occurrence of European turtle dove (Streptopelia turtur) in Mediterranean oases: Implications for conservation. Landscape and Urban Planning, 215, 104219. |
[21] | Han ZX (2001) Birds’ courtship display behaviour and its biological significance. Journal of Gansu Education College (Natural Sciences), 15(3), 54-56. (in Chinese with English abstract) |
[韩宗先 (2001) 鸟类的求偶行为及其生物学意义. 甘肃教育学院学报(自然科学版), 15(3), 54-56.] | |
[22] | Hao Z, Wang C, Sun Z, van den Bosch CK, Zhao D, Sun B, Xu X, Bian Q, Bai Z, Wei K, Zhao Y, Pei N (2021) Soundscape mapping for spatial-temporal estimate on bird activities in urban forests. Urban Forestry & Urban Greening, 57, 126822. |
[23] |
Izaguirre MR, Barrantes-Madrigal J, Sequeira DS, Spínola-Parallada M, Ramírez-Alán O (2021) It is not just about birds: What do acoustic indices reveal about a Costa Rican tropical rainforest? Neotropical Biodiversity, 7, 431-442.
DOI URL |
[24] | Kasten EP, Gage SH, Fox J, Joo W (2012) The remote environmental assessment laboratory’s acoustic library: An archive for studying soundscape ecology. Ecological Informatics, 12, 50-67. |
[25] |
Leach EC, Burwell CJ, Ashton LA, Jones DN, Kitching RL (2016) Comparison of point counts and automated acoustic monitoring: Detecting birds in a rainforest biodiversity survey. Emu-Austral Ornithology, 116, 305-309.
DOI URL |
[26] |
Lees AC, Naka LN, Aleixo A, Cohn-Haft M, de Piacentini VQ, Santos MPD, Silveira LF (2014) Conducting rigorous avian inventories: Amazonian case studies and a roadmap for improvement. Revista Brasileira De Ornitologia, 22, 107-120.
DOI URL |
[27] |
Machado RB, Aguiar L, Jones G (2017) Do acoustic indices reflect the characteristics of bird communities in the savannas of Central Brazil? Landscape and Urban Planning, 162, 36-43.
DOI URL |
[28] |
Mammides C, Goodale E, Dayananda SK, Kang L, Chen J (2017) Do acoustic indices correlate with bird diversity? Insights from two biodiverse regions in Yunnan Province, South China. Ecological Indicators, 82, 470-477.
DOI URL |
[29] |
Marín-Gómez OH, MacGregor-Fors I (2019) How early do birds start chirping? Dawn chorus onset and peak times in a neotropical city. Ardeola, 66, 327-341.
DOI URL |
[30] | Metcalf OC, Lees AC, Barlow J, Marsden SJ, Devenish C (2020) hardRain: An R package for quick, automated rainfall detection in ecoacoustic datasets using a threshold-based approach. Ecological Indicators, 109, 105793. |
[31] | Mitchell SL, Bicknell JE, Edwards DP, Deere NJ, Bernard H, Davies ZG, Struebig MJ (2020) Spatial replication and habitat context matters for assessments of tropical biodiversity using acoustic indices. Ecological Indicators, 119, 106717. |
[32] |
Mortelliti A, Fagiani S, Battisti C, Capizzi D, Boitani L (2010) Independent effects of habitat loss, habitat fragmentation and structural connectivity on forest-dependent birds. Diversity and Distributions, 16, 941-951.
DOI URL |
[33] |
Munro J, Williamson I, Fuller S (2018) Traffic noise impacts on urban forest soundscapes in south-eastern Australia. Austral Ecology, 43, 180-190.
DOI URL |
[34] |
Paradis E, Claude J, Strimmer K (2004) APE: Analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289-290.
DOI PMID |
[35] | Pérez-Granados C, Gómez-Catasús J, Bustillo-de la Rosa D, Barrero A, Reverter M, Traba J (2019) Effort needed to accurately estimate vocal activity rate index using acoustic monitoring: A case study with a dawn-time singing passerine. Ecological Indicators, 107, 105608. |
[36] |
Pérez-Granados C, Traba J (2021) Estimating bird density using passive acoustic monitoring: A review of methods and suggestions for further research. Ibis, 163, 765-783.
DOI URL |
[37] |
Pieretti N, Farina A, Morri D (2011) A new methodology to infer the singing activity of an avian community: The acoustic complexity index (ACI). Ecological Indicators, 11, 868-873.
DOI URL |
[38] | Prabowo WE, Darras K, Clough Y, Toledo-Hernandez M, Arlettaz R, Mulyani YA, Tscharntke T (2016) Bird responses to lowland rainforest conversion in Sumatran Smallholder Landscapes, Indonesia. PLoS ONE, 11, e0154876. |
[39] | Priyadarshani N, Marsland S, Castro I (2018) Automated birdsong recognition in complex acoustic environments: A review. Journal of Avian Biology, 49, jav-01447. |
[40] | Qian K, Zhang Z, Ringeval F, Schuller B (2015) Bird sounds classification by large scale acoustic features and extreme learning machine. In: 2015 IEEE Global Conference on Signal and Information Processing, Orlando, pp. 1317-1321. |
[41] |
Rodrigues M (1996) Song activity in the chiffchaff: Territorial defence or mate guarding? Animal Behaviour, 51, 709-716.
DOI URL |
[42] |
Rodriguez A, Gasc A, Pavoine S, Grandcolas P, Gaucher P, Sueur J (2014) Temporal and spatial variability of animal sound within a neotropical forest. Ecological Informatics, 21, 133-143.
DOI URL |
[43] | Shonfield J, Bayne EM (2017) Autonomous recording units in avian ecological research: Current use and future applications. Avian Conservation and Ecology, 12, art14. |
[44] |
Stowell D, Wood MD, Pamuła H, Stylianou Y, Glotin H (2019) Automatic acoustic detection of birds through deep learning: The first bird audio detection challenge. Methods in Ecology and Evolution, 10, 368-380.
DOI |
[45] |
Sueur J, Farina A, Gasc A, Pieretti N, Pavoine S (2014) Acoustic indices for biodiversity assessment and landscape investigation. Acta Acustica United with Acustica, 100, 772-781.
DOI URL |
[46] | Sueur J, Pavoine S, Hamerlynck O, Duvail S (2008) Rapid acoustic survey for biodiversity appraisal. PLoS ONE, 3, e4065. |
[47] |
Sugai LSM, Silva TSF, Ribeiro JW, Llusia D (2019) Terrestrial passive acoustic monitoring: Review and perspectives. BioScience, 69, 15-25.
DOI |
[48] |
Swiston KA, Mennill DJ (2009) Comparison of manual and automated methods for identifying target sounds in audio recordings of Pileated, Pale-billed, and putative Ivory-billed woodpeckers. Journal of Field Ornithology, 80, 42-50.
DOI URL |
[49] |
Towsey M, Wimmer J, Williamson I, Roe P (2014) The use of acoustic indices to determine avian species richness in audio-recordings of the environment. Ecological Informatics, 21, 110-119.
DOI URL |
[50] |
Villanueva-Rivera LJ, Pijanowski BC, Doucette J, Pekin B (2011) A primer of acoustic analysis for landscape ecologists. Landscape Ecology, 26, 1233-1246.
DOI URL |
[51] |
Wheeldon A, Mossman HL, Sullivan MJP, Mathenge J, de Kort SR (2019) Comparison of acoustic and traditional point count methods to assess bird diversity and composition in the Aberdare National Park, Kenya. African Journal of Ecology, 57, 168-176.
DOI |
[52] |
Wilkins MR, Seddon N, Safran RJ (2013) Evolutionary divergence in acoustic signals: Causes and consequences. Trends in Ecology & Evolution, 28, 156-166.
DOI URL |
[53] | Wu F, Yang XJ (2008) Application of point count method in forest birds survey. Chinese Journal of Ecology, 27, 2240-2244. (in Chinese with English abstract) |
[吴飞, 杨晓君 (2008) 样点法在森林鸟类调查中的运用. 生态学杂志, 27, 2240-2244.] | |
[54] | Xu S, Wang C, Han D, Sun BQ, Zhao YL (2021) Bird community composition and its seasonal variation in comprehensive communities in Beijing: A case study of Chinese Academy of Forestry. Journal of Chinese Urban Forestry, 19(1), 25-30. (in Chinese with English abstract) |
[徐诗, 王成, 韩丹, 孙宝强, 赵伊琳 (2021) 北京综合性社区鸟类群落构成及其季节变化——以中国林业科学研究院社区为例. 中国城市林业, 19(1), 25-30.] | |
[55] | Yang G, Wang Y, Xu J, Ding YZ, Wu SY, Tang HM, Li HQ, Wang XM, Ma B, Wang ZH (2015) The influence of habitat types on bird community in urban parks. Acta Ecologica Sinica, 35, 4186-4195. (in Chinese with English abstract) |
[杨刚, 王勇, 许洁, 丁由中, 吴时英, 唐海明, 李宏庆, 王小明, 马波, 王正寰 (2015) 城市公园生境类型对鸟类群落的影响. 生态学报, 35, 4186-4195.] | |
[56] | You HL, Wu YM, Xu LG, Cheng JX, Liu LZ, Yao Z, Xin ZJ (2021) Application of soundscape monitoring technology in bird diversity monitoring at the typical wetland of Poyang Lake. Chinese Journal of Ecology, 40, 3025-3032. (in Chinese with English abstract) |
[游海林, 吴永明, 徐力刚, 程俊翔, 刘丽贞, 姚忠, 辛在军 (2021) 声音监测技术在鄱阳湖典型湿地鸟类多样性监测中的应用. 生态学杂志, 40, 3025-3032.] | |
[57] |
Zhang QW, Gong YN, Song XJ, Wang XC, Yang CT, Shu ZF, Zou FS (2018) Comparing the effectiveness of camera trapping to traditional methods for biodiversity surveys of forest birds. Biodiversity Science, 26, 229-237. (in Chinese with English abstract)
DOI |
[张倩雯, 龚粤宁, 宋相金, 王新财, 杨昌腾, 束祖飞, 邹发生 (2018) 红外相机技术与其他几种森林鸟类多样性调查方法的比较. 生物多样性, 26, 229-237.]
DOI |
|
[58] | Zhang Y, Li L, Li DQ, Wu GS (2018) Evaluation of habitat suitability based on patches of the Sichuan snub-nosed monkey (Rhinopithecus roxellana) in Shennongjia, Hubei Province. Acta Ecologica Sinica, 38, 3784-3791. (in Chinese with English abstract) |
[张宇, 李丽, 李迪强, 吴巩胜 (2018) 基于斑块尺度的神农架川金丝猴生境适宜性评价. 生态学报, 38, 3784-3791.] |
[1] | 殷鲁秦, 王成, 韩文静. 基于取食行为探究北京居民区鸟类的食源特征及多样性[J]. 生物多样性, 2023, 31(5): 22473-. |
[2] | 唐楚飞, 葛成, 曹烨, 曹弘毅, 宋晓晓, 廖怀建. 城市森林不同林分类型的昆虫多样性: 以南京紫金山南麓为例[J]. 生物多样性, 2023, 31(2): 22357-. |
[3] | 申小虎, 朱翔宇, 史洪飞, 王传之. 基于机器学习鸟声识别算法研究进展[J]. 生物多样性, 2023, 31(11): 23272-. |
[4] | 肖治术, 崔建国, 王代平, 王志陶, 罗金红, 谢捷. 现代生物声学的学科发展趋势及中国机遇[J]. 生物多样性, 2023, 31(1): 22423-. |
[5] | 张屹美, 王言一, 何衍, 周冰, 田苗, 夏灿玮. Beta声学指数的特征和应用[J]. 生物多样性, 2023, 31(1): 22513-. |
[6] | 孙翊斐, 王士政, 冯佳伟, 王天明. 东北虎豹国家公园森林声景的昼夜和季节变化[J]. 生物多样性, 2023, 31(1): 22523-. |
[7] | 王士政, 孙翊斐, 李珍珍, 舒越, 冯佳伟, 王天明. 鸟类迁徙对图们江下游湿地声景时间格局的影响[J]. 生物多样性, 2023, 31(1): 22337-. |
[8] | 马海港, 范鹏来. 被动声学监测技术在陆生哺乳动物研究中的应用、进展和展望[J]. 生物多样性, 2023, 31(1): 22374-. |
[9] | 吴科毅, 阮文达, 周棣锋, 陈庆春, 张承云, 潘新园, 余上, 刘阳, 肖荣波. 基于音节聚类分析的被动声学监测技术及其在鸟类监测中的应用[J]. 生物多样性, 2023, 31(1): 22370-. |
[10] | 王言一, 张屹美, 夏灿玮, Anders Pape Møller. Alpha声学指数效应的meta分析[J]. 生物多样性, 2023, 31(1): 22369-. |
[11] | 李家兴, 周丽萍, 孙家杰, 谭筱彩, 蒋爱伍. 广西山地农业化背景下鸟类多样性比较[J]. 生物多样性, 2022, 30(5): 21515-. |
[12] | 马星, 王浩, 余蔚, 杜勇, 梁健超, 胡慧建, 邱胜荣, 刘璐. 基于MaxEnt模型分析广东省鸟类多样性热点分布及保护空缺[J]. 生物多样性, 2021, 29(8): 1097-1107. |
[13] | 钟恩主, 管振华, 周兴策, 赵友杰, 李函, 谭绍斌, 胡坤融. 被动声学监测技术在西黑冠长臂猿监测中的应用[J]. 生物多样性, 2021, 29(1): 109-117. |
[14] | 段菲, 李晟. 黄河流域鸟类多样性现状、分布格局及保护空缺[J]. 生物多样性, 2020, 28(12): 1459-1468. |
[15] | 张倩雯, 龚粤宁, 宋相金, 王新财, 杨昌腾, 束祖飞, 邹发生. 红外相机技术与其他几种森林鸟类多样性调查方法的比较[J]. 生物多样性, 2018, 26(3): 229-237. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn