Biodiversity Science ›› 2017, Vol. 25 ›› Issue (10): 1085-1094.doi: 10.17520/biods.2017148

• Original Papers: Plant Diversity • Previous Article     Next Article

C, N and P stoichiometric characteristics of soil and litter fall for six common tree species in a northern tropical karst seasonal rainforest in Nonggang, Guangxi, southern China

Yili Guo1, 2, Dongxing Li1, 2, Bin Wang1, 2, Kundong Bai1, 2, Wusheng Xiang1, 2, Xiankun Li1, 2, *   

  1. 1 Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, Guangxi 541006
    2 Guangxi Youyiguan Forest Ecosystem National Research Station, Pingxiang, Guangxi 532699
  • Received:2017-05-17 Accepted:2017-10-16 Online:2018-05-05
  • Li Xiankun E-mail:xiankunli@163.com

Litter fall provides organic matter and nutrients to forest ecosystems and is central to the exchange of substances between soil and plants. It plays a vital role in the maintenance of soil organic matter and nutrient cycling in forest ecosystems and it is one of the main sources of soil fertility. We used litter fall data for six common tree species collected between March 2014 and February 2015 from 90 litter fall traps, and fifty soil samples collected in July 2014 along an altitudinal gradient from 185 to 368 m in a tropical karst forest in Guangxi, China. We studied the C, N and P stoichiometric characteristics of soil and litter fall, and their trends along an altitudinal gradient. Soil C and N contents were all positively associated with altitude, while P content was negatively associated with altitude. Soil C : N was negatively associated with altitude, while C : P and N : P were positively associated with altitude. Due to the narrow altitudinal range of the soil samples, we speculate that the association of soil nutrients with altitude is due to the effect of micro-topography and not a climatic effect. Apart from the higher slope and summit, the soil C, N, P contents reached the first classification level of the national criterion of soil nutrients. Compared with other forest ecosystems, we found greater C and N contents and lower P content than the average value of C, N, P contents for litter fall of six common species. There were no trends for C, N and P stoichiometric characteristics of the mixed sample of leaf litter for the six common tree species along an altitudinal gradient. The six common tree species have higher C content in spring and higher contents of N and P in summer. The per unit total basal area of trees in this forest was much lower than other forest ecosystems, indicating its low biomass stock. This study provides useful information for ecological restoration of a typical vulnerable karst ecosystem in China.

Key words: karst seasonal rainforest, stoichiometric characteristics, soil, litter fall of leaves, altitude gradient, seasonal variation

Table 1

Characteristics and preferred habitats of six common tree species of the 15 ha forest dynamics plot in Nonggang, Guangxi"

编号 No. 种名
Species
个体数 No. of individuals 平均胸径
Mean DBH (cm)
2014年凋落量 Litter fall in 2014 (kg/ha) 偏好生境
Preferred habitat
海拔
Altitude (m)
SP1 海南椴 Diplodiscus trichosperma 1,982 6.65 425.1 上坡位 Upper slope 290.2
SP2 闭花木 Cleistanthus sumatranus 11,982 4.57 694.3 上坡位 Upper slope 279.2
SP3 广西牡荆 Vitex kwangsiensia 9,403 7.87 542.5 中坡位 Middle slope 253.9
SP4 苹婆 Sterculia monosperma 9,066 5.00 470.9 中坡位 Middle slope 244.1
SP5 中国无忧花 Saraca dives 194 13.67 161.3 低坡位 Lower slope 211.0
SP6 广西棋子豆 Archidendron guangxiensis 507 7.76 127.9 低坡位 Lower slope 207.9

Fig. 1

Soil C, N, P contents and stoichiometry along altitude gradient of the 15 ha forest dynamics plot in Nonggang, Guangxi. ■ Depression; ○ Lower slope; ▲ Middle slope; □ Higher slope; ● Hilltop."

Table 2

Soil C, N, P contents and stoichiometry (mean ± SE) in different habitat categories of the 15 ha forest dynamics plot in Nonggang, Guangxi"

生境类型 Habitat category C (g/kg) N (g/kg) P (g/kg) C : N C : P N : P
峰顶 Hilltop 141.82 ± 7.97a 9.25 ± 0.58a 0.70 ± 0.04a 15.44 ± 0.42a 207.67 ± 13.90a 13.59 ± 1.05a
高坡位 Upper slope 121.01 ± 8.38b 7.77 ± 0.45ab 0.79 ± 0.08a 15.93 ± 1.33a 159.75 ± 13.30b 10.70 ± 1.16ab
中坡位 Middle slope 103.56 ± 6.69c 6.63 ± 0.36b 1.18 ± 0.102ab 15.65 ± 0.56a 93.332 ± 9.10c 6.00 ± 0.58b
低坡位 Lower slope 103.66 ± 4.67c 6.32 ± 0.37b 1.67 ± 0.11b 16.59 ± 0.56a 63.57 ± 3.818d 3.87 ± 0.26c
洼地 Depression 90.38 ± 6.68d 5.26 ± 0.38c 2.40 ± 0.19c 17.54 ± 1.25ab 40.77 ± 4.96e 2.32 ± 0.25cd

Table 3

Litter fall C, N, P contents and stoichiometry (mean ± SE) of six common tree species of the 15 ha forest dynamics plot in Nonggang, Guangxi"

物种 Species C (g/kg) N(g/kg) P (g/kg) C : N C : P N : P
海南椴 Diplodiscus trichosperma 586.24 ± 47.25b 16.37 ± 2.71b 0.63 ± 0.11c 36.43 ± 1.33b 941.69 ± 34.37b 26.12 ± 1.21b
闭花木 Cleistanthus sumatranus 624.66 ± 32.53a 13.30 ± 4.47c 0.41 ± 0.08cd 50.71 ± 3.70a 1,582.98 ± 92.82a 32.32 ± 2.08b
广西牡荆 Vitex kwangsiensia 581.99 ± 56.14b 20.42 ± 3.06a 1.08 ± 0.15ab 28.88 ± 1.09c 545 ± 23.32c 18.97 ± 0.70c
苹婆 Sterculia monosperma 578.50 ± 33.51b 16.31 ± 2.06b 1.23 ± 0.27a 36.04 ± 1.58b 501.37 ± 39.61c 13.84 ± 0.77d
中国无忧花 Saraca dives 578.49 ± 19.74b 13.94 ± 2.23bc 1.33 ± 0.31a 42.64 ± 2.34ab 450.20 ± 23.11c 10.87 ± 0.81d
广西棋子豆 Archidendron guangxiensis 649.00 ± 51.29a 21.24 ± 2.54a 0.48 ± 0.08cd 31.00 ± 1.31c 1,397.22 ± 88.93a 45.10 ± 2.02a

Fig. 2

Litter fall C, N, P contents and stoichiometry (mean ± SE) of six common tree species of the 15 ha forest dynamics plot in Nonggang, Guangxi. The six common tree species are the same as in Table 1."

Table 4

Litter fall C, N, P contents and stoichiometry (mean ± SE) of six common tree species in different seasons of the 15 ha forest dynamics plot in Nonggang, Guangxi"

物种 Species 季节 Season C (g/kg) N (g/kg) P (g/kg) C : N C : P N : P
海南椴
Diplodiscus trichosperma
春季 Spring 631.96 ± 38.12a 17.63 ± 0.12ab 0.65 ± 0.06a 35.83 ± 2.09ab 984.01 ± 56.99a 27.63 ± 2.11a
夏季 Summer 606.89 ± 8.12ab 19.40 ± 1.33a 0.73 ± 0.09a 31.65 ± 2.66b 853.47 ± 34.03ab 27.48 ± 4.53a
秋季 Autumn 546.15 ± 5.891b 13.75 ± 0.87c 0.58 ± 0.05ab 40.00 ± 2.27a 949.01 ± 76.93a 23.70 ± 1.20a
冬季 Winter 559.95 ± 11.48b 14.71 ± 0.87c 0.57 ± 0.03ab 38.24 ± 1.64a 980.29 ± 44.97a 25.66 ± 0.87a
闭花木
Cleistanthus sumatranus
春季 Spring 644.94 ± 35.61a 13.01 ± 0.87b 0.43 ± 0.02ab 50.12 ± 4.18ab 1,501.64 ± 150.05b 30.17 ± 2.54b
夏季 Summer 636.59 ± 5.45a 19.48 ± 2.67a 0.50 ± 0.02a 33.93 ± 4.57b 1,284.62 ± 38.53b 39.70 ± 7.00a
秋季 Autumn 599.37 ± 2.92a 11.20 ± 0.35b 0.39 ± 0.02b 53.64 ± 1.98ab 1,519.62 ± 84.76b 28.32 ± 0.96b
冬季 Winter 617.74 ± 3.67a 9.50 ± 0.32b 0.31 ± 0.02c 65.13 ± 1.99a 2,026.05 ± 101.94a 31.10 ± 1.13b
广西牡荆
Vitex kwangsiensia
春季 Spring 621.14 ± 37.60a 20.91 ± 0.63a 0.96 ± 0.03b 29.88 ± 2.78a 646.18 ± 25.58a 21.84 ± 1.20a
夏季 Summer 604.61 ± 23.11a 24.87 ± 0.13a 1.28 ± 0.05a 24.31 ± 0.99ab 474.81 ± 34.03b 19.48 ± 0.64a
秋季 Autumn 568.00 ± 3.49a 18.62 ± 0.15b 1.05 ± 0.02b 30.51 ± 0.34a 541.27 ± 9.08ab 17.75 ± 0.49a
冬季 Winter 534.22 ± 39.44ab 17.29 ± 0.47b 1.04 ± 0.10b 30.84 ± 1.72a 517.75 ± 45.97ab 16.80 ± 1.15a
苹婆
Sterculia monosperma
春季 Spring 612.08 ± 26.03a 14.98 ± 0.73b 0.97 ± 0.06b 41.13 ± 3.21a 635.44 ± 60.17a 15.41 ± 0.25a
夏季 Summer 556.00 ± 15.59a 19.44 ± 0.60a 1.49 ± 0.05a 28.63 ± 0.75b 373.98 ± 16.39c 13.05 ± 0.31a
秋季 Autumn 562.55 ± 3.54a 15.23 ± 0.48b 1.22 ± 0.12ab 37.01 ± 1.35a 470.92 ± 44.59b 12.84 ± 1.68a
冬季 Winter 583.38 ± 13.02a 15.61 ± 0.19b 1.24 ± 0.23ab 37.38 ± 0.60a 525.13 ± 103.88b 14.06 ± 2.84a
中国无忧花
Saraca dives
春季 Spring 589.41 ± 9.94a 14.64 ± 0.69a 1.39 ± 0.28a 40.47 ± 2.52b 405.08 ± 67.98a 10.15 ± 2.07a
夏季 Summer 589.05 ± 7.66a 15.95 ± 0.47a 1.55 ± 0.20a 37.04 ± 1.54b 440.75 ± 58.67a 12.07 ± 2.12a
秋季 Autumn 566.74 ± 2.26a 14.16 ± 0.58a 1.19 ± 0.10ab 40.14 ± 1.54b 484.56 ± 41.07a 12.09 ± 1.06a
冬季 Winter 568.74 ± 17.89a 11.01 ± 1.22b 1.21 ± 0.04ab 52.90 ± 5.95a 470.40 ± 11.80a 9.15 ± 1.15a
广西棋子豆
Archidendron guangxiensis
春季 Spring 704.78 ± 13.80a 21.20 ± 0.48a 0.42 ± 0.06b 33.31 ± 1.38a 1,723.53 ± 216.60a 51.83 ± 6.35a
夏季 Summer 614.27 ± 47.98b 24.84 ± 0.59a 0.57 ± 0.02a 24.79 ± 2.17ab 1,074.73 ± 58.67b 43.66 ± 1.75ab
秋季 Autumn 637.85 ± 4.48ab 19.08 ± 0.54a 0.44 ± 0.03b 33.48 ± 1.09a 1,476.42 ± 108.41ab 43.97 ± 1.86ab
冬季 Winter 639.11 ± 6.37ab 19.84 ± 1.08a 0.49 ± 0.01ab 32.42 ± 2.01a 1,314.19 ± 19.96ab 40.92 ± 3.12ab
[1] Cao KF, Fu PL, Chen YJ, Jiang YJ, Zhu SD (2014) Implications of the ecophysiological adaptation of plants on tropical karst habitats for the ecological restoration of desertified rocky lands in southern China. Scientia Sinica Vitae, 44, 238-247. (in Chinese with English abstract)
[曹坤芳, 付培立, 陈亚军, 姜艳娟, 朱师丹 (2014) 热带岩溶植物生理生态适应性对于南方石漠化土地生态重建的启示. 中国科学: 生命科学, 44, 238-247.]
[2] Chen P (1988) A report on the soil investigation of the Longgang Natural Reserve. Guihaia, 8(Suppl.1), 52-73. (in Chinese with English abstract)
[陈平 (1988) 弄岗自然保护区土壤考察报告. 广西植物, 8(增刊1), 52-73.]
[3] Cole DW (1986) Nutrient cycling in world forests. In: Forest Site and Productivity (ed. Gessel SP), pp. 103-125. Martinus Nijhoff, Dordrecht.
[4] Condit R (1998) Tropical Forest Census Plots: Methods and Results from Barro Colorado Island, Panama and A Comparison with Other Plots. Springer, Berlin.
[5] Crous KY, Ósvaldsson A, Ellsworth DS (2015) Is phosphorus limiting in a mature Eucalyptus woodland? Phosphorus fertilisation stimulates stem growth. Plant and Soil, 391, 293-305.
[6] Elser JJ, Fagan WF, Kerkhoff AJ, Swenson NG, Enquist BJ (2010) Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change. New Phytologist, 186, 593-608.
[7] Guo K, Liu CC, Dong M (2011) Ecological adaptation of plants and control of rocky-desertification on karst region of Southwest China. Chinese Journal of Plant Ecology, 35, 991-999. (in Chinese with English abstract)
[郭柯, 刘长成, 董鸣 (2011) 我国西南喀斯特植物生态适应性与石漠化治理. 植物生态学报, 35, 991-999.]
[8] Guo YL, Li DX, Wang B, He YL, Xiang WS, Li XK (2017) Composition and spatio-temporal dynamics of litter fall in a northern tropical karst seasonal rainforest in Nonggang, Guangxi, southern China. Biodiversity Science, 25, 265-274. (in Chinese with English abstract)
[郭屹立, 李冬兴, 王斌, 何运林, 向悟生, 李先琨 (2017) 北热带喀斯特季节性雨林凋落物组分构成及时空动态. 生物多样性, 25, 265-274.]
[9] Guo YL, Wang B, Mallik AU, Huang FZ, Xiang WS, Ding T, Wen SJ, Lu SH, Li DX, He YL, Li XK (2017) Topographic species-habitat associations of tree species in a heterogeneous tropical karst seasonal rain forest, China. Journal of Plant Ecology, 10, 450-460.
[10] Guo YL, Wang B, Xiang WS, Ding T, Lu SH, Huang FZ, Wen SJ, Li DX, He YL, Li XK (2016) Responses of spatial pattern of woody plants’ basal area to topographic factors in a tropical karst seasonal rainforest in Nonggang, Guangxi, southern China. Biodiversity Science, 24, 30-39. (in Chinese with English abstract)
[郭屹立, 王斌, 向悟生, 丁涛, 陆树华, 黄甫昭, 文淑均, 李冬兴, 何运林, 李先琨 (2016) 喀斯特季节性雨林木本植物胸高断面积分布格局及其对地形因子的响应. 生物多样性, 24, 30-39.]
[11] Guo YL, Wang B, Xiang WS, Ding T, Lu SH, Huang YS, Huang FZ, Li DX, Li XK (2015) Spatial distribution of tree species in a tropical karst seasonal rainforest in Nonggang, Guangxi, southern China. Biodiversity Science, 23, 183-191. (in Chinese with English abstract)
[郭屹立, 王斌, 向悟生, 丁涛, 陆树华, 黄俞淞, 黄甫昭, 李冬兴, 李先琨 (2015) 广西弄岗北热带喀斯特季节性雨林监测样地种群空间点格局分析. 生物多样性, 23, 183-191.]
[12] Han WX, Fang JY, Guo DL, Zhang Y (2005) Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385.
[13] Herbert DA, Williams M, Rastetter EB (2003) A model analysis of N and P limitation on carbon accumulation in Amazonian secondary forest after alternate land-use abandonment. Biogeochemistry, 65, 121-150.
[14] Hogan EJ, Minnullina G, Smith RI, Crittenden PD (2010) Effects of nitrogen enrichment on phosphatase activity and nitrogen: phosphorus relationships in Cladonia portentosa. New Phytologist, 186, 911-925.
[15] Kang HZ, Xin ZJ, Breg B, Burgess PJ, Liu QL, Liu ZC, Li ZH, Liu CJ (2010) Global pattern of leaf litter nitrogen and phosphorus in woody plants. Annals of Forest Science, 67, 811.
[16] Pallardy SG (2010) Physiology of woody plants. Academic Press, Amsterdam.
[17] Pan FJ, Zhang W, Wang KL, He XY, Liang SC, Wei GF (2011) Litter C : N : P ecological stoichiometry character of plant communities in typical karst peak-cluster depression. Acta Ecologica Sinica, 31, 335-343. (in Chinese with English abstract)
[潘复静, 张伟, 王克林, 何寻阳, 梁士楚, 韦国富 (2011) 典型喀斯特峰丛洼地植被群落凋落物C : N : P生态化学计量特征. 生态学报, 31, 335-343.]
[18] Peng BX, Han XJ, Chen J (2009) Seasonal changes in nutrient content of the litter layers in seven plantation forests. Guangdong Agricultural Sciences, (10), 97-99. (in Chinese with English abstract)
[彭彬霞, 韩锡君, 陈军 (2009) 七种林分凋落物的养分季节性变化研究. 广东农业科学, (10), 97-99.]
[19] R Core Team (2015) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. (accessed on 2015-12-01)
[20] Rinnan R, Michelsen A, Bååth E, Jonasson S (2007) Mineralization and carbon turnover in subarctic heath soil as affected by warming and additional litter. Soil Biology and Biochemistry, 39, 3014-3023.
[21] Rinnan R, Michelsen A, Jonasson S (2008) Effects of litter addition and warming on soil carbon, nutrient pools and microbial communities in a subarctic heath ecosystem. Applied Soil Ecology, 39, 271-281.
[22] Runyan CW, D’Odorico P, Vandecar KL, Das R, Schmook B, Lawrence D (2013) Positive feedbacks between phosphorus deposition and forest canopy trapping, evidence from Southern Mexico. Journal of Geophysical Research: Biogeosciences, 118, 1521-1531.
[23] Townsend AR, Cleveland CC, Asner GP, Bustamante MM (2007) Controls over foliar N : P ratios in tropical rain forests. Ecology, 88, 107-118.
[24] Wang B, Huang YS, Li XK, Xiang WS, Ding T, Huang FZ, Lu SH, Han WH, Wen SJ, He LJ (2014) Species composition and spatial distribution of a 15 ha northern tropical karst seasonal rain forest dynamics study plot in Nonggang, Guangxi, southern China. Biodiversity Science, 22, 141-156. (in Chinese with English abstract)
[王斌, 黄俞淞, 李先琨, 向悟生, 丁涛, 黄甫昭, 陆树华, 韩文衡, 文淑均, 何兰军 (2014) 弄岗北热带喀斯特季节性雨林15 ha监测样地的树种组成与空间分布. 生物多样性, 22, 141-156.]
[25] Wang JY, Wang SQ, Li RL, Yan JH, Sha LQ, Han SJ (2011) C : N : P stoichiometric characteristics of four forest types’ dominant tree species in China. Chinese Journal of Plant Ecology, 35, 587-595. (in Chinese with English abstract)
[王晶苑, 王绍强, 李纫兰, 闫俊华, 沙丽清, 韩士杰 (2011) 中国四种森林类型主要优势植物的C : N : P化学计量学特征. 植物生态学报, 35, 587-595.]
[26] Wang LJ, Sheng MY, Du JY, Wen PC (2017) Distribution characteristics of soil organic carbon and its influence factors in the karst rocky desertification ecosystem of Southwest China. Acta Ecologica Sinica, 37, 1358-1365. (in Chinese with English abstract)
[王霖娇, 盛茂银, 杜家颖, 温培才 (2017) 西南喀斯特石漠化生态系统土壤有机碳分布特征及其影响因素. 生态学报, 37, 1358-1365.]
[27] Wang SJ, Liu QM, Zhang DF (2004) Karst rocky desertification in southwestern China: geomorphology, landuse, impact and rehabilitation. Land Degradation and Development, 15, 115-121.
[28] Wang WQ, Xu LL, Zeng CS, Tong C, Zhang LH (2011) Carbon, nitrogen and phosphorus ecological stotichiometric ratios along live plant-litter-soil systems in estuarine wetland. Acta Ecologica Sinica, 31, 7119-7124. (in Chinese with English abstract)
[王维奇, 徐玲琳, 曾从盛, 仝川, 张林海 (2011) 河口湿地植物活体-枯落物-土壤的碳氮磷生态化学计量特征. 生态学报, 31, 7119-7124.]
[29] Wardle DA, Walker LR, Bardgett RD (2004) Ecosystem properties and forest decline in contrasting long-term chronosequences. Science, 305, 509-513.
[30] Yuan DX (1991) Karst of China. Geological Publishing House, Beijing.
[31] Zeng ZX, Wang KL, Liu XL, Zeng FP, Song TQ, Peng WX, Zhang H, Du H (2015) Stoichiometric characteristics of plants, litter and soils in karst plant communities of North-west Guangxi. Chinese Journal of Plant Ecology, 39, 682-693. (in Chinese with English abstract)
[曾昭霞, 王克林, 刘孝利, 曾馥平, 宋同清, 彭晚霞, 张浩, 杜虎 (2015) 桂西北喀斯特森林植物-凋落物-土壤生态化学计量特征. 植物生态学报, 39, 682-693.]
[32] Zhao YF, Xu FL, Wang WL, Wang LL, Wang GX, Sun PY, Bai XF (2014) Seasonal variation in contents of C, N and P and stoichiometry characteristics in fine roots, stems and needles of Larix principis-rupprechtii. Chinese Bulletin of Botany, 49, 560-568. (in Chinese with English abstract)
[赵亚芳, 徐福利, 王渭玲, 王玲玲, 王国兴, 孙鹏跃, 白小芳 (2014) 华北落叶松根茎叶碳氮磷含量及其化学计量学特征的季节变化. 植物学报, 49, 560-568.]
[33] Zhang W, Wang KL, Chen HS, Zhang JG (2012) Use of satellite information and GIS to predict distribution of soil organic carbon in depressions amid clusters of karst peaks. Acta Pedologica Sinica, 49, 601-606. (in Chinese with English abstract)
[张伟, 王克林, 陈洪松, 张继光 (2012) 典型喀斯特峰丛洼地土壤有机碳含量空间预测研究. 土壤学报, 49, 601-606.]
[1] Yibo Tan, Wenhui Shen, Zi Fu, Wei Zheng, Zhiyang Ou, Zhangqiang Tan, Yuhua Peng, Shilong Pang, Qinfei He, Xiaorong Huang, Feng He. (2019) Effect of environmental factors on understory species diversity in Southwest Guangxi Excentrodendron tonkinense forests . Biodiv Sci, 27(9): 970-983.
[2] CHEN Xu, LIU Hong-Kai, ZHAO Chun-Zhou, WANG Qiang, WANG Yan-Ping. (2019) Responses of foliar anatomical traits to soil conditions in 11 tree species on coastal saline-alkali sites of Shandong, China . Chin J Plant Ecol, 43(8): 697-708.
[3] Jun Liu, Ning Wang, Daizong Cui, Lei Lu, Min Zhao. (2019) Community structure and diversity of soil bacteria in different habitats of Da Liangzihe National Forest Park in the Lesser Khinggan Mountains . Biodiv Sci, 27(8): 911-918.
[4] LI Na, ZHANG Yi-He, HAN Xiao-Zeng, YOU Meng-Yang, HAO Xiang-Xiang. (2019) Effects of long-term vegetation cover changes on the organic carbon fractions in soil aggregates of mollisols . Chin J Plant Ecol, 43(7): 624-634.
[5] LI Pin, Muledeer TUERHANBAI, TIAN Di, FENG Zhao-Zhong. (2019) Seasonal dynamics of soil microbial biomass carbon, nitrogen and phosphorus stoichiometry across global forest ecosystems . Chin J Plant Ecol, 43(6): 532-542.
[6] Zhang Zhe, Wang Shaojun, Chen Minkun, Cao Run, Li Shaohui. (2019) Effect of ant colonization on spatiotemporal dynamics of readily oxidizable soil carbon across different restoration stages of tropical forests . Biodiv Sci, 27(6): 658-666.
[7] LIU Cheng-Zhu, JIA Juan, DAI Guo-Hua, MA Tian, FENG Xiao-Juan. (2019) Origin and distribution of neutral sugars in soils . Chin J Plant Ecol, 43(4): 284-295.
[8] Zhu Baijing, Xue Jingrong, Xia Rong, Jin Miaomiao, Wu You, Tian Shanyi, Chen Xiaoyun, Liu Manqiang, Hu Feng. (2019) Effect of soil nematode functional guilds on plant growth and aboveground herbivores . Biodiv Sci, 27(4): 409-418.
[9] XUE Jing-Yue, WANG Li-Hua, XIE Yu, GAO Jing, HE Jun-Dong, WU Yan. (2019) Effect of shrub coverage on grassland ecosystem carbon pool in southwestern China . Chin J Plant Ecol, 43(4): 365-373.
[10] GAO Yu-Qiu, DAI Xiao-Qin, WANG Jian-Lei, FU Xiao-Li, KOU Liang, WANG Hui-Min. (2019) Characteristics of soil enzymes stoichiometry in rhizosphere of understory vegetation in subtropical forest plantations . Chin J Plant Ecol, 43(3): 258-272.
[11] LI Yang, XU Xiao-Hui, SUN Wei, SHEN Yan, REN Ting-Ting, HUANG Jian-Hui, WANG Chang-Hui. (2019) Effects of different forms and levels of N additions on soil potential net N mineralization rate in meadow steppe, Nei Mongol, China . Chin J Plant Ecol, 43(2): 174-184.
[12] ZHU Wei, YU Li-Xuan, ZHAO De-Hai, JIA Li-Ming. (2019) Architectural analysis of root systems of mature trees in sandy loam soils using the root development classification . Chin J Plant Ecol, 43(2): 119-130.
[13] LI Jian-Jun, LIU Lian, CHEN Di-Ma, XU Feng-Wei, CHENG Jun-Hui, BAI Yong-Fei. (2019) Effects of collar size and buried depth on the measurement of soil respiration in a typical steppe . Chin J Plant Ecol, 43(2): 152-164.
[14] WANG ZuXing Wei-Ming HE. (2019) Effects of soil-burial depths on the relationship between seed mass and seed emergence at the species level . Chin J Plant Ecol, 43(10): 899-908.
[15] CHEN Lin, WANG Lei, YANG Xin-Guo, SONG Nai-Ping, LI Yue-Fei, SU Ying, BIAN Ying-Ying, ZHU Zhong-You, MENG Wen-Ting. (2019) Reproductive characteristics of Artemisia scoparia and the analysis of the underlying soil drivers in a desert steppe of China . Chin J Plant Ecol, 43(1): 65-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed