Biodiversity Science ›› 2011, Vol. 19 ›› Issue (6): 729-736.doi: 10.3724/SP.J.1003.2011.08155

Special Issue: Marine Biodiversity Studies in China Seas

• Special Issue • Previous Article     Next Article

Species composition and faunal characteristics of echinoderms in China seas

Yulin Liao1*, Ning Xiao1, 2   

  1. 1 Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071

    2 Graduate University of Chinese Academy of Sciences, Beijing 100049
  • Received:2011-08-29 Revised:2011-11-12 Online:2011-12-19
  • Yulin Liao

The echinoderms are important components of macrobenthos. In order to understand the diversity of echinoderm fauna of China seas, the characteristics of their fauna are analysed according to the species composition and distribution patterns. The effects of marine environmental factors such as temperature, currents and water mass to the distribution of echinoderms are also discussed. The results showed that the echinoderm fauna of China seas now comprise 591 species in 5 classes: 44 crinoids, 86 starfish, 93 sea urchins, 147 sea cucumbers, and 221 ophiuroids. There is significant difference in species composition of echinoderms between the Yellow Sea, the East China Sea and the South China Sea. Only 59 species are distributed in the Yellow Sea; more than 200 species are distributed in the East China Sea; the number of species known from the South China Sea is about 450. The distributional characteristic of species shows that the species number and the warm water species are on the increase from the north toward the south. It is worth mentioning that the cold water species dominated by the ophiuroids Ophiura sarsii vadicola and Ophiopholis mirabilis are found in large quantities in the deeper part of the Yellow Sea due to the existence of the Yellow Sea Cold water mass (where the summer bottom water temperature is not higher than 4–8℃ in the north, and 8–12℃ in the south) in the summer. Consequently, the present authors are of the opinion that the echinoderm fauna of the Yellow Sea should be considered as a constituent portion of the temperate fauna, being a subregion belonging to North Pacific Temperate Biotic Region. Of the 591 species of echinoderms, 34 species are elements of North temperate fauna (sharing 5.8%); 557 species are warm water species (sharing 94.2%), most species of which are widely distributed in Indo-west Pacific region. Generally speaking, the echinoderm fauna of China Seas is predominantly warm water elements.

No related articles found!
Full text



[1] Wang Yi-feng. The Feature and Rule of Formation of Aboveground Biomass of Stipa grandis Steppe[J]. Chin J Plan Ecolo, 1989, 13(4): 297 -308 .
[2] Ya-Fei LI, Jing-Jie YU, Kai LU, Ping WANG, Yi-Chi ZHANG, Chao-Yang DU. Water sources of Populus euphratica and Tamarix ramosissima in Ejina Delta, the lower reaches of the Heihe River, China[J]. Chin J Plan Ecolo, 2017, 41(5): 519 -528 .
[3] DUAN Hai-Yan WANG Yun-Hua XU Fang-Sen. Advance on Genetic Aspects of Phosphorus Efficiency in Plants[J]. Chin Bull Bot, 2002, 19(04): 432 -438 .
[4] Kang Le. The Chemical Defenses of plants to phytophagous Insects[J]. Chin Bull Bot, 1995, 12(04): 22 -27 .
[5] Shun-Chun Wang, Jun-Jie Shan, Zheng-Tao Wang and Zhi-Bi Hu. Isolation and Structural Analysis of an Acidic Polysaccharide from Astragalus membranaceus (Fisch.) Bunge[J]. J Integr Plant Biol, 2006, 48(11): .
[6] LI Xiu-Lan WU Cheng DENG Xiao-Jian YANG Zhi-Rong. Plant Height Genes and Their Progress of Molecular Biology Research in Rice[J]. Chin Bull Bot, 2003, 20(03): 264 -269 .
[7] Liu Da-Ji. A New Species of Ligustrum from Guizhou[J]. J Syst Evol, 1988, 26(3): 243 -244 .
[8] Jing-Peng LI, Zhi-Rong ZHENG, Nian-Xi ZHAO, Yu-Bao GAO. Relationship between ecosystem multifuntionality and species diversity in grassland ecosystems under land-use types of clipping, enclosure and grazing[J]. Chin J Plan Ecolo, 2016, 40(8): 735 -747 .
[9] Ping SONG, Rui ZHANG, Zhi-Chun ZHOU, Jian-She TONG, Hui WANG. Effects of localized nitrogen supply treatments on growth and root parameters in Pinus massoniana families under phosphorus deficiency[J]. Chin J Plan Ecolo, 2017, 41(6): 622 -631 .
[10] Xiaofen Sun;Yu Chen;Junsong Pan;Yuliang Wang;Kexing Sun;Kexuan Tang*;Run Cai*. Correlation and Path Analyses of Vindoline with Major Agronomic Traits in Catharanthus roseus[J]. Chin Bull Bot, 2009, 44(01): 96 -102 .