Biodiversity Science ›› 2014, Vol. 22 ›› Issue (1): 66-71.doi: 10.3724/SP.J.1003.2014.13248

Special Issue: From Genome to Diversity

• Orginal Article • Previous Article     Next Article

Developmental repatterning and biodiversity

Rui Zhang*(), Chunce Guo, Hongyan Shan, Hongzhi Kong   

  1. State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093
  • Received:2013-11-29 Accepted:2014-01-24 Online:2014-02-10
  • Zhang Rui E-mail:iloverdz@ibcas.ac.cn

Adult individuals of multicellular organisms are derived from single cells, the zygote. If the phenotype of a mature organism is regarded as a pattern of existence, then the process that generates the pattern can be called developmental patterning. Consequently, modification or alteration of the original developmental trajectory to generate novel phenotype(s) is the process of developmental repatterning. Accumulated data in recent years suggest that developmental repatterning is not only widespread, but is also very important during the evolution of multicellular organisms. According to the type and consequence of mutation, developmental repatterning can be divided into four main types: heterochrony, heterotopy, heterometry, and heterotypy. Heterochrony, heterotopy and heterometry refer to changes of gene expression over time, space and in amount/concentration, respectively, while heterotypy is the replacement of gene product. Here, by introducing examples of developmental repatterning, we explain the relationship between developmental repatterning and phenotypic evolution, and discuss its contribution to biodiversity.

Key words: biodiversity, developmental repatterning, heterochrony, heterotopy, heterometry, heterotypy

[30] Kramer EM, Irish VF (1999) Evolution of genetic mechanisms controlling petal development.Nature, 399, 144-148.
[31] Kramer EM, Jaramillo MA, Di Stilio VS (2004) Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS-box genes in angiosperms.Genetics, 166, 1011-1023.
[32] McGregor AP, Orgogozo V, Delon I, Zanet J, Srinivasan DG, Payre F, Stern DL (2007) Morphological evolution through multiple cis-regulatory mutations at a single gene.Nature, 448, 587-590.
[33] McNamara KJ (1986) A guide to the nomenclature of heterochrony.Journal of Paleontology, 60, 4-13.
[34] Mondragón-Palomino M, Theißen G (2008) MADS about the evolution of orchid flowers.Trends in Plant Science, 13, 51-59.
[35] Parker ST, McKinney ML (1999) Origins of Intelligence: the Evolution of Cognitive Development in Monkeys, Apes, and Humans. Johns Hopkins University Press, Baltimore.
[36] Prud’homme B, Gompel N, Carroll SB (2007) Emerging principles of regulatory evolution.Proceedings of the National Academy of Sciences, USA, 104, 8605-8612.
[37] Ronshaugen M, McGinnis N, McGinnis W (2002) Hox protein mutation and macroevolution of the insect body plan.Nature, 415, 914-917.
[38] Saga Y, Takeda H (2001) The making of the somite: molecular events in vertebrate segmentation.Nature Reviews Genetics, 2, 835-845.
[39] Sander K (2002) Ernst Haeckel’s ontogenetic recapitulation: irritation and incentive from 1866 to our time.Annals of Anatomy, 184, 523-533.
[40] Sasai Y, Lu B, Steinbeisser H, Geissert D, Gont LK, De Robertis EM (1994) Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes.Cell, 79, 779-790.
[41] Stern DL (2013) The genetic causes of convergent evolution.Nature Reviews Genetics, 14, 751-764.
[42] Stollewerk A, Schoppmeier M, Damen WG (2003) Involve- ment of Notch and Delta genes in spider segmentation.Nature, 423, 863-865.
[43] Sucena E, Delon I, Jones I, Payre F, Stern DL (2003) Regulatory evolution of shavenbaby/ovo underlies multiple cases of morphological parallelism.Nature, 424, 935-938.
[44] Turck F, Fornara F, Coupland G (2008) Regulation and identity of florigen: FLOWERING LOCUS T moves center stage.Annual Review of Plant Biology, 59, 573-594.
[45] von Baer KE (1828) Uber Entwicklungsgeschichte der Tiere: Beobachtung und Reflection. Bornträger, Königsberg.
[46] Wang YQ, Su B (2004) Molecular evolution of microcephalin, a gene determining human brain size.Human Molecular Genetics, 13, 1131-1137.
[47] Weatherbee SD, Frederik Nijhout H, Grunert LW, Halder G, Galant R, Selegue J, Carroll SB (1999)Ultrabithorax function in butterfly wings and the evolution of insect wing patterns.Current Biology, 9, 109-115.
[48] Weatherbee SD, Halder G, Kim J, Hudson A, Carroll S (1998) Ultrabithorax regulates genes at several levels of the wing-patterning hierarchy to shape the development of the Drosophila haltere.Genes & Development, 12, 1474-1482.
[49] Wharton KA, Ray RP, Gelbart WM (1993) An activity gradient of decapentaplegic is necessary for the specification of dorsal pattern elements in the Drosophila embryo.Development, 117, 807-822.
[1] Abzhanov A, Kuo WP, Hartmann C, Grant BR, Grant PR, Tabin CJ (2006) The calmodulin pathway and evolution of elongated beak morphology in Darwin’s finches.Nature, 442, 563-567.
[2] Abzhanov A, Protas M, Grant BR, Grant PR, Tabin CJ (2004) Bmp4 and morphological variation of beaks in Darwin’s finches.Science, 305, 1462-1465.
[3] Airoldi CA, Bergonzi S, Davies B (2010) Single amino acid change alters the ability to specify male or female organ identity.Proceedings of the National Academy of Sciences, USA, 107, 18898-18902.
[4] Ali F, Meier R (2008) Positive selection in ASPM is correlated with cerebral cortex evolution across primates but not with whole-brain size.Molecular Biology and Evolution, 25, 2247-2250.
[5] Arthur W (2004) Biased Embryos and Evolution. Cambridge University Press, Cambridge.
[6] Arthur W (2011) Evolution: A Developmental Approach. John Wiley & Sons, Inc., Malaysia.
[7] Arthur W, Chipman AD (2005) The centipede Strigamia maritima: what it can tell us about the development and evolution of segmentation.BioEssays, 27, 653-660.
[8] Bond J, Roberts E, Mochida GH, Hampshire DJ, Scott S, Askham JM, Springell K, Mahadevan M, Crow YJ, Markham AF (2002) ASPM is a major determinant of cerebral cortical size.Nature Genetics, 32, 316-320.
[9] Bowman R (1961) Morphological differentiation and adaptation in the Galápagos finches.University of California Publications in Zoology, 58, 1-302.
[10] Carroll SB (1995) Homeotic genes and the evolution of arthropods and chordates.Nature, 376, 479-485.
[11] Carroll SB (2005) Endless Forms Most Beautiful: The New Science of Evo Devo and the Making of the Animal Kingdom. W.W. Norton & Company, New York.
[12] Carroll SB, Grenier J, Weatherbee S (2009) From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design. Blackwell Science, Malden, Massachusetts.
[13] Causier B, Castillo R, Zhou J, Ingram R, Xue Y, Schwarz-Sommer Z, Davies B (2005) Evolution in action: following function in duplicated floral homeotic genes.Current Biology, 15, 1508-1512.
[14] Chipman AD, Akam M (2008) The segmentation cascade in the centipede Strigamia maritima: involvement of the Notch pathway and pair-rule gene homologues.Developmental Biology, 319, 160-169.
[15] Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development.Nature, 353, 31-37.
[16] Conlon RA, Reaume AG, Rossant J (1995) Notch1 is required for the coordinate segmentation of somites.Development, 121, 1533-1545.
[17] Fainsod A, Steinbeisser H, De Robertis E (1994) On the function of BMP-4 in patterning the marginal zone of the Xenopus embryo.The EMBO Journal, 13, 5015-5025.
[18] Francois V, Solloway M, O’Neill JW, Emery J, Bier E (1994) Dorsal-ventral patterning of the Drosophila embryo depends on a putative negative growth factor encoded by the short gastrulation gene.Genes & Development, 8, 2602-2616.
[19] Galant R, Carroll SB (2002) Evolution of a transcriptional repression domain in an insect Hox protein.Nature, 415, 910-913.
[20] Goto K, Meyerowitz EM (1994) Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA.Genes & Development, 8, 1548-1560.
[21] Hileman LC, Irish VF (2009) More is better: the uses of developmental genetic data to reconstruct perianth evolution.American Journal of Botany, 96, 83-95.
[22] Holley SA, Jackson PD, Sasai Y, Lu B, De Robertis EM, Hoffmann FM, Ferguson EL (1995) A conserved system for dorsal-ventral patterning in insects and vertebrates involving sog and chordin.Nature, 376, 249-253.
[23] Jack T, Brockman LL, Meyerowitz EM (1992) The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS-box and is expressed in petals and stamens.Cell, 68, 683-697.
[24] Jackson AP, Eastwood H, Bell SM, Adu J, Toomes C, Carr IM, Roberts E, Hampshire DJ, Crow YJ, Mighell AJ (2002) Identification of microcephalin, a protein implicated in determining the size of the human brain.The American Journal of Human Genetics, 71, 136-142.
[25] Kanno A, Saeki H, Kameya T, Saedler H, Theissen G (2003) Heterotopic expression of class B floral homeotic genes supports a modified ABC model for tulip (Tulipa gesneriana).Plant Molecular Biology, 52, 831-841.
[26] Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999) Activation tagging of the floral inducer FT.Science, 286, 1962-1965.
[27] Khaitovich P, Enard W, Lachmann M, Pääbo S (2006) Evolution of primate gene expression.Nature Reviews Genetics, 7, 693-702.
[28] Khaitovich P, Hellmann I, Enard W, Nowick K, Leinweber M, Franz H, Weiss G, Lachmann M, Pääbo S (2005) Parallel patterns of evolution in the genomes and transcriptomes of humans and chimpanzees.Science, 309, 1850-1854.
[29] Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions.Plant and Cell Physiology, 43, 1096-1105.
[50] Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors.Nature, 346, 35-39.
[1] Lintao Huang Hui Huang Lei Jiang. (2020) A revised taxonomy for Chinese hermatypic corals . Biodiv Sci, 28(4): 515-523.
[2] Xiongwei Yang,Ankang Wu,Qixian Zou,Guangrong Li,Mingming Zhang,Canshi Hu,Haijun Su. (2020) Field monitoring of mammals and birds using infrared cameras in Mayanghe National Nature Reserve, Guizhou, China . Biodiv Sci, 28(2): 219-225.
[3] Haiou Liu,Fengchun Zhang,Fuwei Zhao,Leshan Du,Dayuan Xue. (2020) Biodiversity sensitive issues from changes in the strategic objectives of the financial mechanism for the Convention on Biological Diversity . Biodiv Sci, 28(2): 244-252.
[4] Kai Wang,Jinlong Ren,Hongman Chen,Zhitong Lyu,Xianguang Guo,Ke Jiang,Jinmin Chen,Jiatang Li,Peng Guo,Yingyong Wang,Jing Che. (2020) The updated checklists of amphibians and reptiles of China . Biodiv Sci, 28(2): 189-218.
[5] Yisheng Ma,Qingqing Ma,Nianjun He,Dapeng Zhu,Kaihui Zhao,Hongcai Liu,Shuai Li,Liang Sun,Liubin Tang. (2020) Camera-trapping survey of mammals and birds in the Foping National Nature Reserve, China . Biodiv Sci, 28(2): 226-230.
[6] Yi Li,Zhiyao Tang,Yujing Yan,Ke Wang,Lei Cai,Jinsheng He,Song Gu,Yijian Yao. (2020) Incorporating species distribution model into the red list assessment and conservation of macrofungi: A case study with Ophiocordyceps sinensis . Biodiv Sci, 28(1): 99-106.
[7] Wenying Zhuang,Yi Li,Huandi Zheng,Zhaoqing Zeng,Xincun Wang. (2020) Threat status of non-lichenized macro-ascomycetes in China and its threatening factors . Biodiv Sci, 28(1): 26-40.
[8] WANG Yu-Bing,SUN Yi-Han,DING Wei,ZHANG En-Tao,LI Wen-Huai,CHI Yong-Gang,ZHENG Shu-Xia. (2020) Effects and pathways of long-term nitrogen addition on plant diversity and primary productivity in a typical steppe . Chin J Plant Ecol, 44(1): 22-32.
[9] Shun Li,Liang Zou,Yinan Gong,Haitao Yang,Tianming Wang,Limin Feng,Jianping Ge. (2019) Advances in LiDAR technology in the field of animal ecology . Biodiv Sci, 27(9): 1021-1031.
[10] Rui Yang,Qinyi Peng,Yue Cao,Le Zhong,Shuyu Hou,Zhicong Zhao,Cheng Huang. (2019) Transformative changes and paths toward biodiversity conservation in China . Biodiv Sci, 27(9): 1032-1040.
[11] Yongmin Li,Xiaobing Wu. (2019) A revised species list of amphibians and reptiles in the Anhui Province . Biodiv Sci, 27(9): 1002-1011.
[12] Junning Li, Tong Li, Yulian Wei. (2019) Relationship between diversity of wood-decaying fungi and their host wood in the Fenglin National Nature Reserve . Biodiv Sci, 27(8): 880-886.
[13] Zhang Yuanyuan. (2019) China’s strategy for incorporating traditional knowledge associated with biodiversity into international multi-lateral agreements . Biodiv Sci, 27(7): 708-715.
[14] Yang Yunhui, Bai Keyu, Jarvis Devra, Long Chunlin. (2019) Xishuangbanna cucumber landraces and associated traditional knowledge . Biodiv Sci, 27(7): 743-748.
[15] Sun Beibei, Yu Cungen, Liu Hui, Yan Wenchao, Zhang Wenjun, Dai Dongxu. (2019) Spring and autumn shrimp and crab biodiversity in the east Nanji Islands . Biodiv Sci, 27(7): 787-795.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed