Biodiversity Science ›› 2014, Vol. 22 ›› Issue (1): 66-71.doi: 10.3724/SP.J.1003.2014.13248

Special Issue: From Genome to Diversity

• Orginal Article • Previous Article     Next Article

Developmental repatterning and biodiversity

Rui Zhang*(), Chunce Guo, Hongyan Shan, Hongzhi Kong   

  1. State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093
  • Received:2013-11-29 Accepted:2014-01-24 Online:2014-02-10
  • Zhang Rui

Adult individuals of multicellular organisms are derived from single cells, the zygote. If the phenotype of a mature organism is regarded as a pattern of existence, then the process that generates the pattern can be called developmental patterning. Consequently, modification or alteration of the original developmental trajectory to generate novel phenotype(s) is the process of developmental repatterning. Accumulated data in recent years suggest that developmental repatterning is not only widespread, but is also very important during the evolution of multicellular organisms. According to the type and consequence of mutation, developmental repatterning can be divided into four main types: heterochrony, heterotopy, heterometry, and heterotypy. Heterochrony, heterotopy and heterometry refer to changes of gene expression over time, space and in amount/concentration, respectively, while heterotypy is the replacement of gene product. Here, by introducing examples of developmental repatterning, we explain the relationship between developmental repatterning and phenotypic evolution, and discuss its contribution to biodiversity.

Key words: biodiversity, developmental repatterning, heterochrony, heterotopy, heterometry, heterotypy

[30] Kramer EM, Irish VF (1999) Evolution of genetic mechanisms controlling petal development.Nature, 399, 144-148.
[31] Kramer EM, Jaramillo MA, Di Stilio VS (2004) Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS-box genes in angiosperms.Genetics, 166, 1011-1023.
[32] McGregor AP, Orgogozo V, Delon I, Zanet J, Srinivasan DG, Payre F, Stern DL (2007) Morphological evolution through multiple cis-regulatory mutations at a single gene.Nature, 448, 587-590.
[33] McNamara KJ (1986) A guide to the nomenclature of heterochrony.Journal of Paleontology, 60, 4-13.
[34] Mondragón-Palomino M, Theißen G (2008) MADS about the evolution of orchid flowers.Trends in Plant Science, 13, 51-59.
[35] Parker ST, McKinney ML (1999) Origins of Intelligence: the Evolution of Cognitive Development in Monkeys, Apes, and Humans. Johns Hopkins University Press, Baltimore.
[36] Prud’homme B, Gompel N, Carroll SB (2007) Emerging principles of regulatory evolution.Proceedings of the National Academy of Sciences, USA, 104, 8605-8612.
[37] Ronshaugen M, McGinnis N, McGinnis W (2002) Hox protein mutation and macroevolution of the insect body plan.Nature, 415, 914-917.
[38] Saga Y, Takeda H (2001) The making of the somite: molecular events in vertebrate segmentation.Nature Reviews Genetics, 2, 835-845.
[39] Sander K (2002) Ernst Haeckel’s ontogenetic recapitulation: irritation and incentive from 1866 to our time.Annals of Anatomy, 184, 523-533.
[40] Sasai Y, Lu B, Steinbeisser H, Geissert D, Gont LK, De Robertis EM (1994) Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes.Cell, 79, 779-790.
[41] Stern DL (2013) The genetic causes of convergent evolution.Nature Reviews Genetics, 14, 751-764.
[42] Stollewerk A, Schoppmeier M, Damen WG (2003) Involve- ment of Notch and Delta genes in spider segmentation.Nature, 423, 863-865.
[43] Sucena E, Delon I, Jones I, Payre F, Stern DL (2003) Regulatory evolution of shavenbaby/ovo underlies multiple cases of morphological parallelism.Nature, 424, 935-938.
[44] Turck F, Fornara F, Coupland G (2008) Regulation and identity of florigen: FLOWERING LOCUS T moves center stage.Annual Review of Plant Biology, 59, 573-594.
[45] von Baer KE (1828) Uber Entwicklungsgeschichte der Tiere: Beobachtung und Reflection. Bornträger, Königsberg.
[46] Wang YQ, Su B (2004) Molecular evolution of microcephalin, a gene determining human brain size.Human Molecular Genetics, 13, 1131-1137.
[47] Weatherbee SD, Frederik Nijhout H, Grunert LW, Halder G, Galant R, Selegue J, Carroll SB (1999)Ultrabithorax function in butterfly wings and the evolution of insect wing patterns.Current Biology, 9, 109-115.
[48] Weatherbee SD, Halder G, Kim J, Hudson A, Carroll S (1998) Ultrabithorax regulates genes at several levels of the wing-patterning hierarchy to shape the development of the Drosophila haltere.Genes & Development, 12, 1474-1482.
[49] Wharton KA, Ray RP, Gelbart WM (1993) An activity gradient of decapentaplegic is necessary for the specification of dorsal pattern elements in the Drosophila embryo.Development, 117, 807-822.
[1] Abzhanov A, Kuo WP, Hartmann C, Grant BR, Grant PR, Tabin CJ (2006) The calmodulin pathway and evolution of elongated beak morphology in Darwin’s finches.Nature, 442, 563-567.
[2] Abzhanov A, Protas M, Grant BR, Grant PR, Tabin CJ (2004) Bmp4 and morphological variation of beaks in Darwin’s finches.Science, 305, 1462-1465.
[3] Airoldi CA, Bergonzi S, Davies B (2010) Single amino acid change alters the ability to specify male or female organ identity.Proceedings of the National Academy of Sciences, USA, 107, 18898-18902.
[4] Ali F, Meier R (2008) Positive selection in ASPM is correlated with cerebral cortex evolution across primates but not with whole-brain size.Molecular Biology and Evolution, 25, 2247-2250.
[5] Arthur W (2004) Biased Embryos and Evolution. Cambridge University Press, Cambridge.
[6] Arthur W (2011) Evolution: A Developmental Approach. John Wiley & Sons, Inc., Malaysia.
[7] Arthur W, Chipman AD (2005) The centipede Strigamia maritima: what it can tell us about the development and evolution of segmentation.BioEssays, 27, 653-660.
[8] Bond J, Roberts E, Mochida GH, Hampshire DJ, Scott S, Askham JM, Springell K, Mahadevan M, Crow YJ, Markham AF (2002) ASPM is a major determinant of cerebral cortical size.Nature Genetics, 32, 316-320.
[9] Bowman R (1961) Morphological differentiation and adaptation in the Galápagos finches.University of California Publications in Zoology, 58, 1-302.
[10] Carroll SB (1995) Homeotic genes and the evolution of arthropods and chordates.Nature, 376, 479-485.
[11] Carroll SB (2005) Endless Forms Most Beautiful: The New Science of Evo Devo and the Making of the Animal Kingdom. W.W. Norton & Company, New York.
[12] Carroll SB, Grenier J, Weatherbee S (2009) From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design. Blackwell Science, Malden, Massachusetts.
[13] Causier B, Castillo R, Zhou J, Ingram R, Xue Y, Schwarz-Sommer Z, Davies B (2005) Evolution in action: following function in duplicated floral homeotic genes.Current Biology, 15, 1508-1512.
[14] Chipman AD, Akam M (2008) The segmentation cascade in the centipede Strigamia maritima: involvement of the Notch pathway and pair-rule gene homologues.Developmental Biology, 319, 160-169.
[15] Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development.Nature, 353, 31-37.
[16] Conlon RA, Reaume AG, Rossant J (1995) Notch1 is required for the coordinate segmentation of somites.Development, 121, 1533-1545.
[17] Fainsod A, Steinbeisser H, De Robertis E (1994) On the function of BMP-4 in patterning the marginal zone of the Xenopus embryo.The EMBO Journal, 13, 5015-5025.
[18] Francois V, Solloway M, O’Neill JW, Emery J, Bier E (1994) Dorsal-ventral patterning of the Drosophila embryo depends on a putative negative growth factor encoded by the short gastrulation gene.Genes & Development, 8, 2602-2616.
[19] Galant R, Carroll SB (2002) Evolution of a transcriptional repression domain in an insect Hox protein.Nature, 415, 910-913.
[20] Goto K, Meyerowitz EM (1994) Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA.Genes & Development, 8, 1548-1560.
[21] Hileman LC, Irish VF (2009) More is better: the uses of developmental genetic data to reconstruct perianth evolution.American Journal of Botany, 96, 83-95.
[22] Holley SA, Jackson PD, Sasai Y, Lu B, De Robertis EM, Hoffmann FM, Ferguson EL (1995) A conserved system for dorsal-ventral patterning in insects and vertebrates involving sog and chordin.Nature, 376, 249-253.
[23] Jack T, Brockman LL, Meyerowitz EM (1992) The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS-box and is expressed in petals and stamens.Cell, 68, 683-697.
[24] Jackson AP, Eastwood H, Bell SM, Adu J, Toomes C, Carr IM, Roberts E, Hampshire DJ, Crow YJ, Mighell AJ (2002) Identification of microcephalin, a protein implicated in determining the size of the human brain.The American Journal of Human Genetics, 71, 136-142.
[25] Kanno A, Saeki H, Kameya T, Saedler H, Theissen G (2003) Heterotopic expression of class B floral homeotic genes supports a modified ABC model for tulip (Tulipa gesneriana).Plant Molecular Biology, 52, 831-841.
[26] Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999) Activation tagging of the floral inducer FT.Science, 286, 1962-1965.
[27] Khaitovich P, Enard W, Lachmann M, Pääbo S (2006) Evolution of primate gene expression.Nature Reviews Genetics, 7, 693-702.
[28] Khaitovich P, Hellmann I, Enard W, Nowick K, Leinweber M, Franz H, Weiss G, Lachmann M, Pääbo S (2005) Parallel patterns of evolution in the genomes and transcriptomes of humans and chimpanzees.Science, 309, 1850-1854.
[29] Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions.Plant and Cell Physiology, 43, 1096-1105.
[50] Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors.Nature, 346, 35-39.
[1] Xing Yuan, Wu Xiaoping, Ouyang Shan, Zhang Junqian, Xu Jing, Yin Senlu, Xie Zhicai. Assessment of macrobenthos biodiversity and potential human-induced stressors in the Ganjiang River system [J]. Biodiv Sci, 2019, 27(6): 648-657.
[2] Zou Anlong, Ma Suhui, Ni Xiaofeng, Cai Qiong, Li Xiuping, Ji Chengjun. Response of understory plant diversity to nitrogen deposition in Quercus wutaishanica forests of Mt. Dongling, Beijing [J]. Biodiv Sci, 2019, 27(6): 607-618.
[3] Liu Yan, Yang Yushuang. Importance of conservation priority areas for bryophyte biodiversity in Chongqing [J]. Biodiv Sci, 2019, 27(6): 677-682.
[4] Gui Xujun, Lian Juyu, Zhang Ruyun, Li Yanpeng, Shen Hao, Ni Yunlong, Ye Wanhui. Vertical structure and its biodiversity in a subtropical evergreen broad- leaved forest at Dinghushan in Guangdong Province, China [J]. Biodiv Sci, 2019, 27(6): 619-629.
[5] Mu Jun, Wang Jiaojiao, Zhang Lei, Li Yunbo, Li Zhumei, Su Haijun. Field monitoring using infrared cameras and activity rhythm analysis on mammals and birds in Xishui National Nature Reserve, Guizhou, China [J]. Biodiv Sci, 2019, 27(6): 683-688.
[6] Zhang Xiaoling, Li Yichao, Wang Yunyun, Cai Hongyu, Zeng Hui, Wang Zhiheng. Influence of future climate change in suitable habitats of tea in different countries [J]. Biodiv Sci, 2019, 27(6): 595-606.
[7] Li Hanxi, Huang Xuena, Li Shiguo, Zhan Aibin. Environmental DNA (eDNA)-metabarcoding-based early monitoring and warning for invasive species in aquatic ecosystems [J]. Biodiv Sci, 2019, 27(5): 491-504.
[8] Shao Xinning, Song Dazhao, Huang Qiaowen, Li Sheng, Yao Meng. Fast surveys and molecular diet analysis of carnivores based on fecal DNA and metabarcoding [J]. Biodiv Sci, 2019, 27(5): 543-556.
[9] Zhu Baijing, Xue Jingrong, Xia Rong, Jin Miaomiao, Wu You, Tian Shanyi, Chen Xiaoyun, Liu Manqiang, Hu Feng. Effect of soil nematode functional guilds on plant growth and aboveground herbivores [J]. Biodiv Sci, 2019, 27(4): 409-418.
[10] Ma Yanjie, He Haopeng, Shen Wenjing, Liu Biao, Xue Kun. Effects of transgenic maize on arthropod diversity [J]. Biodiv Sci, 2019, 27(4): 419-432.
[11] Zhao Yang,Wen Yuanyuan. Development of Convention on Biological Diversity’s Global Platform for Business & Biodiversity: Policy suggestion for China [J]. Biodiv Sci, 2019, 27(3): 339-346.
[12] Qian Haiyuan,Yu Jianping,Shen Xiaoli,Ding Ping,Li Sheng. Diversity and composition of birds in the Qianjiangyuan National Park pilot [J]. Biodiv Sci, 2019, 27(1): 76-80.
[13] Dai Yunchuan,Xue Yadong,Zhang Yunyi,Li Diqiang. Summary comments on assessment methods of ecosystem integrity for national parks [J]. Biodiv Sci, 2019, 27(1): 104-113.
[14] Xueming Lei,Fangfang Shen,Xuechen Lei,Wenfei Liu,Honglang Duan,Houbao Fan,Jianping Wu. Assessing influence of simulated canopy nitrogen deposition and understory removal on soil microbial community structure in a Cunninghamia lanceolata plantation [J]. Biodiv Sci, 2018, 26(9): 962-971.
[15] Anrong Liu,Teng Yang,Wei Xu,Zijian Shangguan,Jinzhou Wang,Huiying Liu,Yu Shi,Haiyan Chu,Jin-Sheng He. Status, issues and prospects of belowground biodiversity on the Tibetan alpine grassland [J]. Biodiv Sci, 2018, 26(9): 972-987.
Full text



[1] Lichai Yuan;Xueping Li;Zhenhua Peng;Jian Gao. Ultrastructure of the Albino and Green Mutants of Pleioblastus fortunei and Expression of 15 Chloroplast Genes[J]. Chin Bull Bot, 2010, 45(04): 451 -459 .
[2] JIAN Ling-Cheng, LI Ji-Hong, LI Paul H, CHEN Tony H H. Ca2+-homeostasis Differs Between Plant Species with Different Cold-tolerance at 4℃ Chilling[J]. J Integr Plant Biol, 2000, 42(4): 358 -366 .
[3] Tong Zhe and Lian Han-ping. Cryptochrome[J]. Chin Bull Bot, 1985, 3(02): 6 -9 .
[4] Zheng Guangzhi, Wang Shilin. CALLUS CULTURE FROM PANAX NOTOGINSENG[J]. Plant Diversity, 1989, 11(03): 1 -3 .
[6] Xiaodong Yu, Tianhong Luo, Hongzhang Zhou . Large-scale patterns in species diversity of fishes in the Yangtze River Basin[J]. Biodiv Sci, 2005, 13(6): 473 -495 .
[7] Fan Guo-qiang and Jiang Jian-ping. Study on the Methods of Extraction of Protein from Paulownia Leaves[J]. Chin Bull Bot, 1997, 14(03): 61 -64 .
[8] Ying Jian-zh. A PRELIMINARY STUDY ON THE RESUPINATE APHYLLOPHORALES FROM CHINA[J]. Plant Diversity, 1980, 2(03): 1 -3 .
[9] Zhong-Wei Yuan, Qi-Jiao Chen, Lian-Quan Zhang, Ze-Hong Yan,You-Liang Zheng and Deng-Cai Liu. Molecular Characterization of Two Silenced y-type Genes for Glu-B1 in Triticum aestivum ssp. yunnanese and ssp. tibetanum[J]. J Integr Plant Biol, 2009, 51(1): 93 -99 .
[10] Tsoong Pu-Chiu. A New System for the Genus Pedicularis (continued)[J]. J Syst Evol, 1956, 5(4): 205 -278 .