Biodiversity Science ›› 2013, Vol. 21 ›› Issue (3): 315-325.doi: 10.3724/SP.J.1003.2013.11035

• Orginal Article • Previous Article     Next Article

Genetic diversity and molecular genealogy of local silkworm varieties

Zhouhe Du1, 2, Junfeng Liu1, *, Binbin Liu1, Yanchun Zuo1, Jianmei Wu1, Yi-an Chen1, Jianfei Zhang1, Cheng Lu2, *()   

  1. 1 Institute of Sericulture, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan 637000
    2 Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716
  • Received:2013-02-04 Accepted:2013-04-26 Online:2013-06-05
  • Liu Junfeng,Lu Cheng E-mail:liujunfeng1993@263.net;lucheng@swu.edu.cn

In order to explore the genetic diversity and systematic differentiation pattern among silkworm varieties, aiming to guide hybridization breeding, we sequenced a total of 72 Bmamy2gene fragments from local silkworm varieties. The analysis of nucleotide sequence diversity and systematic differentiation indicated that there was rich genovariation in the sequencing region of Bmamy2gene, and the base mutation rate is 5.6- 8.2%, the haplotype diversity is 0.8294, and the nucleotide diversity is 0.0236±0.00122, suggesting Bmamy2being a better marking gene with rich nucleotide sequence diversity, based on which the genetic diversity among different local silkworm varieties can be identified. The same heredity population structure is proclaimed by several analysis methods that every clade consisting of varieties from different geosystems and ecological types, while the varieties from the same geosystem and ecotype belong to different clades in the phylogeny. There is no population structure pattern that different varieties claded together according to geosystem or ecotype. It can be speculated that the silkworm origins from mixture of kinds of several voltinism mulberry silkworm, Bombyx mandarina, while the domestication events took place in several regions, from which the domesticated mulberry silkworms are all devoting to the domesticated silkworm population of today.

Key words: Bombyx mori, germplasm resources, genetic diversity, molecule genealogy

Table 1

The origin and characters of 72 silkworm varieties used in this study"

序号
No.
品种
Variety
代号
Code
生态类型
Ecotype
序号
No.
品种
Variety
代号
Code
生态类型
Ecotype
1 小石丸
Xiaoshiwan
XSW CV1 37 萨尼斯
Sanisi
SNS EV1
2 二毛
Ermao
EM CV1 38 罗尼7
Luoni7
LN7 EV1
3 土三虎斑
Tusanhuban
TSHB CV1 39 法408
Fa408
F408 EV1
4 中土
Zhongtu
ZT CV1 40 欧18
Ou18
O18 EV1
5 达县土种
Daxiantuzhong
DXTZ CV1 41 意16
Yi16
Y16 EV1
6 土一肉黄圆
Tuyirouhuangyuan
TYRHY CV1 42 乌D
WuD
WD EV2
7 土八
Tuba
Tba CV1 43 乌G
WuG
WG EV2
8 鲁1
Lu1
L1 CV1 44 乌B
WuB
WB EV2
9 Re黑
Rehei
RH CV1 45 乌2
Wu2
W2 EV2
10 鲁10
Lu10
L10 CV1 46 日110
Ri110
R110 T
11 土种01
Tuzhong01
TZ01 CV1 47 大造
Dazao
DZ T
12 诸桂
Zhugui
ZG CV1 48 高花
Gaohua
GH T
13 温州种
Wenzhouzhong
WZZ CV1 49 第五白卵
Diwubailuan
DWBL T
14 芙蓉灰卵
Furonghuiluan
FRHL CV1 50 演金黄白
Yanjinhuangbai
YJHB T
15 灰色卵
Huiseluan
HSL CV1 51 15-100 15-100 T
16 盱眙种
Xuyizhong
XYZ CV1 52 07-310 07-310 T
17 余杭24
Yuhang24
YH24 CV1 53 高白
Gaobai
GB T
18 沛县种
Peixianzhong
PXZ CV1 54 琼山海南
Qiongshanhainan
QSHN T
19 邯郸种
Handanzhong
HDZ CV1 55 655 655 T
20 中4010
Zhong4010
Z4010 CV2 56 防四
Fangsi
FS T
21
Tai
T CV2 57 印度种
Yinduzhong
YDZ T
22 玉溪2号
Yuxi2hao
YX CV2 58 加秋
Jiaqiu
JQ T
23
Ping
P CV2 59 白夏B
BaixiaB
BXB T
24 C108 C108 CV2 60 天龙青白
Tianlongqingbai
TLQB JV1
25 余杭2
Yuhang2
YH2 CV2 61 赤熟
Chishu
Cshu JV1
26 土白
Tubai
Tbai CV2 62 日9
Ri9
R9 JV1
27 松花形吴
Songhuaxingwu
SHXW CV2 63 姬蚕
Jican
JC JV1
28 保黄
Baohuang
BH CVd 64 黑子
Heizi
HZ JV1
29 MCH101 MCH101 CVd 65 日10
Ri10
R10 JV1
30 BT924 BT924 CVd 66 绵蚕
Miancan
MC JV1
31 BH863 BH863 CVd 67 日限2
Rixian2
RX2 JV2
表1 (续) Table 1 (continued)
序号
No.
品种
Variety
代号
Code
生态类型
Ecotype
序号
No.
品种
Variety
代号
Code
生态类型
Ecotype
32 琼十
Qiongshi
QS CVd 68 赢纹形
Yingwenxing
YWX JV2
33 四海
Sihai
SH CVd 69 J115 J115 JV2
34 兰十
Lanshi
LanS CVd 70 830 830 JV2
35 罗萨
Luosa
LuoS EV1 71 春四
Chunsi
CS JV2
36 阿利可斯
Alikesi
ALKS EV1 72 T8 T8 JV2

Fig. 1

The model of Bmamy2 gene in Bombyx mori. F, R indicate the forward and reverse primer, respectively."

Fig. 2

Schematic illustration of Bmamy2 gene in amplified region. The black frame indicates exons, and bias frame indicates introns."

Table 2

Statistics of the varieties bases of 72 local silkworm varieties in the Bmamy2 gene amplified region"

序列长度
Sequence length (bp)
碱基插入/缺失位点数
Insert/delete (%)
变异位点数
Variable site (%)
单个突变位点
Singleton variable site (%)
简约信息位点
Parsimony variable site (%)
外显子 Exon 493 2(0.4)* 10(2.0) 2(0.4) 8(1.6)
内含子 Intron 670 139(20.7) 55(8.2) 7(1.0) 48(7.2)
全序列 Entire 1,163 141(12.1) 65(5.6) 9(0.8) 56(4.8)

Table 3

Genetic distance among different ecotypic varieties of local silkworm"

CV2 EV1 T CV1M3 JV2 CV1M4 JV1 CVd
CV2
EV1 0.025
T 0.027 0.024
CV1M3 0.026 0.015 0.023
JV2 0.026 0.012 0.024 0.016
CV1M4 0.026 0.013 0.024 0.017 0.014
JV1 0.027 0.025 0.024 0.025 0.026 0.025
CVd 0.025 0.025 0.024 0.025 0.026 0.025 0.024
EV2 0.025 0.044 0.029 0.039 0.044 0.042 0.026 0.026

Fig. 3

Network based on the haplotypes of Bombyx mori. H, Haplotype; mv, Probably existing haplotype. Codes for cological types see Table 1."

Fig. 4

Phylogenetic (NJ) tree based on nucleotide sequence of Bmamy2 gene of Bombyx mori. Nucleotide P-distance model and pairwise deletion of gaps were selected for the tree reconstruction in the program MEGA 4.0, and bootstrap values (1,000 replicate) of >40% are shown. Variety codes see Table 1."

Table 4

Silkworm varieties belonging to different clades"

聚类支
Clade
地理生态类型
Ecotype
品种数(个)
No. of varieties
占各支百分比
%
A 中系一化 CV1 15 36.59
中系二化 CV2 4 9.76
中系多化 CVd 3 7.32
日系一化 JV1 3 7.32
日系二化 JV2 5 12.20
欧系一化 EV1 6 14.63
热带系统 T 5 12.20
小计 Sum 41
B 中系一化 CV1 6 33.33
中系多化 CVd 2 11.11
日系一化 JV1 2 11.11
日系二化 JV2 1 5.56
欧系一化 EV1 1 5.46
热带系统 T 6 33.33
小计 Sum 18
C 中系二化 CV2 4 30.77
中系多化 CVd 2 15.38
日系一化 JV1 2 14.38
欧系二化 EV2 4 30.77
热带系统 T 1 7.69
小计 Sum 13
合计 Total 72

Table 5

AMOVA of Bmamy2 gene for 72 silkworm varieties of Bombyx mori based on geo-ecotype"

变异来源
Source of variance
自由度
df
方差分量
Variance component
变异百分比
(%)
P-value
地理生态类型组群间 Among geo-voltings 7 6.93028 19.86 > 0.05
地理生态类型组群内 Among population within geo-voltings 1 1.23267 3.53 > 0.05
种群内 Within populations 63 26.73978 76.61 < 0.01
1 Arunkumar KP, Muralidhar M, Nagaraju J (2006) Molecular phylogeny of silkmoths reveals the origin of domesticated silkmoth, Bombyx mori from Chinese Bombyx mandarina and paternal inheritance of Antheraea proylei mitochondrial DNA. Molecular Phylogenetics and Evolution, 40, 419-427.
2 Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16, 37-48.
3 Brown WM (1983) Evolution of animal mitochondrial DNA. In: Evolution of Genes and Proteins (eds Nei M, Koehned RK), pp. 62-88. Sinauer Associates, Sunderland MA.
4 Chen LY (陈丽媛), Zhao QL (赵巧玲), Shen XJ (沈兴家), Zhang ZF (张志芳), Tang SM (唐顺明), Xu AY (徐安英), Zhang GZ (张国政), Guo XJ (郭锡杰) (2007) Nucleotide sequences in the A+T rich regions of mitochondrial DNA from local races of Bombyx mori and their molecular evolution. Science of Sericulture(蚕业科学), 33, 5-13. (in Chinese with English abstract)
5 Cheng XY (成新跃), Zhou HZ (周红章), Zhang GX (张广学) (2000) Perspective of molecular biological techniques applied in insect systematics. Acta Zootaxonomica Sinica(动物分类学报), 25, 121-133. (in Chinese with English abstract)
6 Du ZH (杜周和) (2009) The Origin and Differentiation of Silkworm, Bombyx mori, Based on the Bmamy2 Gene (基于Bmamy2基因的家蚕起源与分化研究), PhD dissertation, Southwest University, Chongqing. (in Chinese)
7 Du ZH (杜周和), Dong ZP (董占鹏), Liu JF (刘俊凤), Liu BB (刘彬斌), Lu C (鲁成) (2008) Cloning, expression pattern and sequence analysis of Bmamy2 gene in the silkwom, Bombyx mori. Science of Sericulture(蚕业科学), 34, 642-649. (in Chinese with English abstract)
8 Du ZH (杜周和), Liu JF (刘俊凤), Liu BB (刘彬斌), Dong ZP (董占鹏), Yu QY (余泉友), Lu C (鲁成), Chen YA (陈义安) (2009) Genetic diversity of the wild mulberry silkworm, Bombyx mandarina, in China and its phylogenetic relationship with the domesticated silkworm, Bombyx mori, based on amy gene. Acta Entomologica Sinica(昆虫学报), 52, 1338-1348. (in Chinese with English abstract)
9 Excoffier L, Smouse PE, Quattor JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 131, 479-491.
10 Fang SM (房守敏), Yu QY (余泉友), Li B (李斌), Dai FY (代方银), Miao XX (苗雪霞), Huang YP (黄勇平), Lu C (鲁成) (2007) Comparison of SSR, AFLP and RAPD markers for genetic analysis of domestic silkworm. Scientia Agricultura Sinica(中国农业科学), 40, 2926-2930. (in Chinese with English abstract)
11 Fang SM (房守敏), Zhang L (张烈), Lu C (鲁成) (2010) Study and application in origin and evolution of mitochondrial DNA in the silkmoths. Chinese Bulletin of Entomology(昆虫知识), 47, 439-445. (in Chinese with English abstract)
12 Gyllensten U, Wharton D, Josefsson A, Wilson AC (1991) Paternal inheritance of mitochondrial DNA in mice. Nature, 352, 255-257.
13 Hu XL, Cao GL, Xue RY, Zheng XJ, Zhang X, Duan HR, Gong CL (2010) The complete mitogenome and phylogenetic analysis of Bombyx mandarina variety Qingzhou. Molecular Biology Report, 37, 2599-2608.
14 Jiang YL(蒋猷龙) (1982) The Origin of Silkworm, Bombyx mori, and Its Differentiation(家蚕的起源与分化). Jiangsu Science and Technology Press, Nanjing(in Chinese)
15 Jiang YL (蒋猷龙) (1989) Advance of the study on the origin of silkworm and its differentiation. Newsletter of Agriculture and Animal Husbandry(农牧情报研究), (7), 43-47. (in Chinese)
16 Kenji Y, Hideki S, Toshiki T, Eiichi K, Makoto K (2011) Nucleotide sequence variation in mitochondrial COI gene among 147 silkworm (Bombyx mori) varieties from Japanese, Chinese, European and moltinism classes. Genes & Genetic Systems, 86, 315-323.
17 Li AL, Zhao QL, Tang SM, Zhang ZF, Pan SY, Shen GF (2005) Molecular phylogeny of the domesticated silkworm, Bombyx mori, based on the sequences of mitochondrial cytochrome b genes. Journal of Genetics, 84, 137-142.
18 Li D, Guo YR, Shao HJ, Tellier LC, Wang J, Xiang ZH, Xia QY (2010) Genetic diversity, molecular phylogeny and selection evidence of the silkworm mitochondria implicated by complete resequencing of 41 genomes. BMC Evolutionary Biology, 10, 81.
19 Li HW (李焕文) (1985) Exploration of the origin and voltinism change of silkworm, Bombyx mori, and mulberry silkworm, Bombyx mandarina. Newsletter of Sericultural Science(蚕学通讯), (1), 41-45. (in Chinese)
20 Li MW (李木旺) (2005) The Application of Microsatellite Markers in Silkworm (Bombyx mori): Genetic Diversity, QTL Analysis, Gene Mapping and Marker Assisted Selection (微卫星遗传标记在家蚕中的应用研究——遗传多样性分析、QTL分析、基因定位与分子标记辅助育种). PhD dissertation, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai. (in Chinese)
21 Lu C (鲁成), Yu HS (余红仕), Xiang ZH (向仲怀) (2002a) Molecular systematic studies on Chinese mandarina silkworm (Bombyx mandarina M.) and domestic silkworm (Bombyx mori L.). Scientia Agricultura Sinica(中国农业科学), 35, 94-101. (in Chinese with English abstract)
22 Lu C (鲁成), Zhao AC (赵爱春), Zhou ZY (周泽扬), Xiang ZH (向仲怀), Wan CL (万春玲) (2001) AFLP analysis of Chinese mulberry wild silkworm (Bombyx mandarina) and domestic silkworm (Bombyx mori). Acta Sericologica Sinica(蚕业科学), 27, 243-252. (in Chinese with English abstract)
23 Lu C (鲁成), Yu HS (余红仕), Xiang ZH (向仲怀) (2002b) The genetic diversity and phylogenetic relationship of Bombyx mandarina and Bombyx mori from China based on RAPD analysis. Acta Entomologica Sinica(昆虫学报), 45, 198-203. (in Chinese with English abstract)
24 Moritz C, Dowling TE, Brown WM (1987) Evolution of animal mitochondrial DNA relevance for population biology and systematic. Annual Review of Ecology and Systematics, 18, 269-289.
25 Rozas J, Sánchez-DelBarrio JC, Messeguer X, Roza R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 19, 2496-2497.
26 Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596-1599.
27 Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876-4882.
28 Wei S(卫斯) (1985) Primary investigation of the origin times of sericulture cultivation in China. In: Study of Agricultural History, Vol. 6(农史研究, 第六辑). China Agriculture Press, Beijing. (in Chinese)
29 Wei S (卫斯) (2005) The mark stela in our modern archeology history times: the course and importance of the first excavation in Xiyin Village historical site. .
30 Wu W (2006) Bioinformatics Analysis of the Comprise and Evolution of Animal Mitochondrial Genome (动物线粒体基因组组成与进化的生物信息学研究). PhD dissertation, Southwest University, Chongqing. (in Chinese)
31 Xia QY, Guo YR, Zhang Z, Li D, Xuan ZL, Li Z, Dai FY, Li YG, Cheng DJ, Li RQ, Cheng TC, Jiang T, Becquet C, Xu X, Liu C, Zha XF, Fan W, Lin Y, Shen YH, Jiang L, Jensen J, Hellmann I, Tang S, Zhao P, Xu HF, Yu C, Zhang GJ, Li J, Cao JJ, Liu SP, He NJ, Zhou Y, Liu H, Zhao J, Ye C, Du ZH, Pan GQ, Zhao AC, Shao HJ, Zeng W, Wu P, Li CF, Pan MH, Li JJ, Yin XY, Li DW, Wang J, Zheng HS, Wang W, Zhang XQ, Li SG, Yang HM, Lu C, Nielsen R, Zhou ZY, Wang J, Xiang ZH, Wang J (2009) Complete Resequencing of 40 genomes reveals domestication events and genes in silkworm (Bombyx). Science, 326, 433-436.
32 Xia QY (夏庆友), Zhou ZY (周泽扬), Lu C (鲁成), Xiang ZH (向仲怀) (1998) Molecular phylogenetic study on the racial differentiation of Bombyx mori by random amplified polymorphic DNA (RAPD) markers. Acta Entomologica Sinica(昆虫学报), 41, 32-40. (in Chinese with English abstract)
33 Xiang ZH(向仲怀) (1994) The Inheritance and Thremmatology of Silkworm, Bombyx mori(家蚕遗传育种学). China Agriculture Press, Beijing(in Chinese)
34 Yoshitake N (吉武成美), Jiang YL (蒋猷龙) (1987) The origin of silkworm, Bombyx mori, and its differentiation. Acta Sericologica Sinica(蚕业科学), 13, 182-184. (in Chinese)
35 Zhang H (张会), Du GS (杜桂森) (2002) The advances of molecular systematics on bryophytes. Journal of Capital Normal University (Natural Sciences Edition) (首都师范大学学报 (自然科学版) ), 23(2), 57-60. (in Chinese with English abstract)
36 Zhou KM(周匡明) (2006) The inspiration from the archeological spun silk pieces discovered at Qianshanyang site. In: Collectanea of Silk History (蚕业史论文选). Literature and History Press in China, Beijing. (in Chinese)
37 Zhou KM (周匡明) (1982) Study on the origin of sericulture cultivation. Agricultural Archaeology(农业考古), (1), 133-138. (in Chinese)
38 Zhou ZY (周泽扬), Li B (李斌), Ravikumar G, Quan GX (全国兴), Tamura T (田村俊树) (2004) Evolution studies on domestic silkworm (Bombyx mori L.) by AFLP markers. Southwest China Journal of Agricultural Sciences(西南农业学报), 17, 240-243. (in Chinese with English abstract)
[1] Jie-Li HE. Development of EST-SSR and Evaluation of Genetic Diversity of Common Millet (Panicum miliaceum) [J]. Chin Bull Bot, 2019, 54(5): 0-0.
[2] Zhang Yahong, Jia Huixia, Wang Zhibin, Sun Pei, Cao Demei, Hu Jianjun. Genetic diversity and population structure of Populus yunnanensis [J]. Biodiv Sci, 2019, 27(4): 355-365.
[3] CHENG Yi-Kang, ZHANG Hui, WANG Xu, LONG Wen-Xing, LI Chao, FANG Yan-Shan, FU Ming-Qi, ZHU Kong-Xin. Effects of functional diversity and phylogenetic diversity on the tropical cloud forest community assembly [J]. Chin J Plant Ecol, 2019, 43(3): 217-226.
[4] Xie Lifeng, Li Ning, Li Ye, Yao Minghua. Genetic Diversity and Population Structure of Eggplant (Solanum melongena) Germplasm Resources Based on SRAP Method [J]. Chin Bull Bot, 2019, 54(1): 58-63.
[5] Dexin Sun, Xiang Liu, Shurong Zhou. Dynamical changes of diversity and community assembly during recovery from a plant functional group removal experiment in the alpine meadow [J]. Biodiv Sci, 2018, 26(7): 655-666.
[6] Shaoshuai Yu, Caili Lin, Shengjie Wang, Wenxin Zhang, Guozhong Tian. Structures of the tuf gene and its upstream part genes and characteristic analysis of conserved regions and activity from related gene promoters of a phytoplasma [J]. Biodiv Sci, 2018, 26(7): 738-748.
[7] Wenju Zhang,Jun Rong,Chaoling Wei,Lianming Gao,Jiakuan Chen. Domestication origin and spread of cultivated tea plants [J]. Biodiv Sci, 2018, 26(4): 357-372.
[8] Shengyuan Qin,Jun Rong,Wenju Zhang,Jiakuan Chen. Cultivation history of Camellia oleifera and genetic resources in the Yangtze River Basin [J]. Biodiv Sci, 2018, 26(4): 384-395.
[9] Lingyun Wu,Shuangquan Huang. Insect-pollinated cereal buckwheats: Its biological characteristics and research progress [J]. Biodiv Sci, 2018, 26(4): 396-405.
[10] Ren Mengyun, Du Leshan, Chen Yanjun, Zhang Dun, Shen Qi, Guan Xiao, Zhang Yindong. Analysis on Genetic Diversity of Cynomorium songaricum by ITS Sequence [J]. Chin Bull Bot, 2018, 53(3): 313-321.
[11] Xu Zongchang, Zhou Jinhui, Zhang Chengsheng, Li Yiqiang. Review of Current Research and Utilization Status of Apocynum venetum Germplasm in China [J]. Chin Bull Bot, 2018, 53(3): 382-390.
[12] Hou Qinxi, Ci Xiuqin, Liu Zhifang, Xu Wumei, Li Jie. Assessment of the evolutionary history of Lauraceae in Xishuangbanna National Nature Reserve using DNA barcoding [J]. Biodiv Sci, 2018, 26(3): 217-228.
[13] Xunhe Huang,Zheqi Yu,Zhuoxian Weng,Danlin He,Zhenhua Yi,Weina Li,Jiebo Chen,Xiquan Zhang,Bingwang Du,Fusheng Zhong. Mitochondrial genetic diversity and maternal origin of Guangdong indigenous chickens [J]. Biodiv Sci, 2018, 26(3): 238-247.
[14] Xingtong Wu,Lu Chen,Minqiu Wang,Yuan Zhang,Xueying Lin,Xinyu Li,Hong Zhou,Yafeng Wen. Population structure and genetic divergence in Firmiana danxiaensis [J]. Biodiv Sci, 2018, 26(11): 1168-1179.
[15] ZHANG Li-Wen, HAN Guang-Xuan. A review on the relationships between plant genetic diversity and ecosystem functioning [J]. Chin J Plan Ecolo, 2018, 42(10): 977-989.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Yuan, WANG Shi-Jie, LIU Xiu-Ming, and HUANG Tian-Zhi. Genetic diversity of arbuscular mycorrhizal fungi in karst microhabitats of Guizhou Province, China[J]. Chin J Plan Ecolo, 2011, 35(10): 1083 -1090 .
[2] Meixia Zhang, Yan Luo, Zhengbing Yan, Jiao Chen, Anwar Eziz, Kaihui Li and Wenxuan Han. Resorptions of 10 mineral elements in leaves of desert shrubs and their contrasting responses to aridity[J]. J Plant Ecol, 2019, 12(2): 358 -366 .
[3] . Convention on biological diversity:the legal guarantee for conserving global biological resources[J]. Biodiv Sci, 1993, 01(1): 58 -60 .
[4] LI Yi-Ming, XU Long, MA Yong, YANG Jin-Yuan, YANG Yu-Hui. The species richness of nonvolant mammals in Shennongjia Nature Reserve, Hubei Province, China: distribution patterns along elevational gradient[J]. Biodiv Sci, 2003, 11(1): 1 -9 .
[5] Li-Na SHA, Xing FAN, Hai-Qin ZHANG, Hou-Yang KANG, Yi WANG, Xiao-Li WANG, Li ZHANG, Chun-Bang DING, Rui-Wu YANG, Yong-Hong ZHOU. Phylogenetic relationships in Leymus (Triticeae; Poaceae): Evidence from chloroplast trnH-psbA and mitochondrial coxII intron sequences[J]. J Syst Evol, 2014, 52(6): 722 -734 .
[6] LI De-Zhu-, WANG Yu-Hua-, YI Ting-Shuang. The Next-Generation Flora iFlora[J]. Plant Diversity, 2012, 34(6): 525 -531 .
[7] YAN Xiu-Feng. Ecology of Plant secondary Metabolism[J]. Chin J Plan Ecolo, 2001, 25(5): 639 -640 .
[8] MO Xin-Chun. Recent Progress in Model Grass Brachypodium distachyon (Poaceae)[J]. Plant Diversity, 2014, 36(02): 197 -207 .
[9] LIU YU. Seasonal species Diversity of Phytoplankton in Zhangjiang Seawaters[J]. Biodiv Sci, 1994, 02(Suppl.): 36 -42 .
[10] Qian Gao;Yuying Liu;Yinan Fei;Dapeng Li;Xianglin Liu* . Research Advances into the Root Radial Patterning Gene SHORT-ROOT[J]. Chin Bull Bot, 2008, 25(03): 363 -372 .