Biodiversity Science ›› 2018, Vol. 26 ›› Issue (6): 578-589.doi: 10.17520/biods.2017194

• Original Papers • Previous Article     Next Article

Reptilian fauna and elevational patterns of the reptile species diversity in Altay Prefecture in Xinjiang, China

Xiaqiu Tao1, Shaopeng Cui2, 3, Zhigang Jiang2, 3, Hongjun Chu4, 5, Na Li2, 3, Daode Yang1, *(), Chunwang Li2, 3, *()   

  1. 1 Wildlife Protection Research Institute, Central South University of Forestry and Technology, Changsha 410004
    2 Institute of Zoology, Chinese Academy of Sciences, Beijing 100101
    3 University of Chinese Academy of Sciences, Beijing 100049
    4 Altay Management Station of Mt. Kalamaili Ungulate Nature Reserve, Altay, Xinjiang 836500
    5 College of Resources and Environment Science, Xinjiang University, Urumqi 830046
  • Received:2018-05-08 Accepted:2018-05-26 Online:2018-09-11
  • Yang Daode,Li Chunwang E-mail:csfuyydd@126.com;licw@ioz.ac.cn
  • About author:

    # Co-first authors

The Altay Prefecture in China, which shares international boundaries with Kazakhstan, Mongolia and Russia, is a special area in the mid-latitudes of the Northern Hemisphere. The diverse landform of this area encompasses mountainous terrain, vast plains and desert lands. We conducted three expeditions from 2014 to 2016 to survey reptiles of the Altay Prefecture. We actively searched for reptiles using spotlighting at night. We collected a total of 392 specimens, which we identified as 16 species belonging to six families of the order Squamata. Combined with previous literature, the number of reptile species in this region is now 23 representing eight families of the order Squamata. All these species belong to the Palearctic ecozone, including 17 mid-Asia species versus six Palearctic species. From the geographical view, this region is a transitional zone between Euro-Siberian and Central-Asiatic regions. Next, we assessed how reptile species diversity correlated with elevation, which corresponded with changes in environmental factors in this region. We found that the Shannon-Wiener diversity index and Simpson dominance index showed a pattern of low-elevation plateaus with a mid-elevation peak, the Pielou evenness index showed a pattern of increasing, and the richness showed a pattern of decreasing. The peak values of Simpson dominance index and Shannon-Wiener diversity index were observed in Group 2 (500-600 m). The Pielou evenness index peaked for Group 15 (1,800-1,900 m), and richness peaked for Group 10 (1,300-1,400 m). The three environmental variables (altitude, annual mean temperature and annual precipitation) only weakly explained the observed patterns of diversity, richness and evenness, but their combined explanatory power was stronger. In fact, the combination of altitude and annual mean temperature best explained the observed patterns in diversity, richness and evenness of reptiles in the Altay Prefecture.

Key words: Altay Prefecture, herpetofauna, elevational pattern, species diversity, environmental variables

Fig. 1

Demonstration map of sample areas in Altay Prefecture"

Table 1

Result of reptile survey of 26 sample areas in Altay Prefecture"

样区
Sample
area
海拔区间
Altitude
range (m)
经纬度
Longitude and
latitude
物种*
Species*
1 1,100-1,200 47.96° N, 88.09° E 捷蜥蜴(2)、极北蝰(2) Lacerta agilis (2), Vipera berus (2)
2 1,300-1,400 47.98° N, 88.21° E 密点麻蜥(3) Eremias multiocellata (3)
3 800-900 47.83° N, 88.14° E 捷蜥蜴(5) Lacerta agilis (5)
4 900-1,000 47.89° N, 88.08° E 快步麻蜥(4) Eremias velox (4)
5 1,100-1,200 46.19° N, 90.86° E 奇台沙蜥(4)、旱地沙蜥(30)、变色沙蜥(2)、密点麻蜥(2) Phrynocephalus grumgrzimailoi (4), Phrynocephalus helioscopus (30), Phrynocephalus versicolor (2), Eremias multiocellata (2)
6 1,200-1,300 46.18° N, 90.76° E 新疆岩蜥(3)、旱地沙蜥(2) Laudakia stoliczkana (3), Phrynocephalus helioscopus (2)
7 500-600 47.69° N, 86.82° E 奇台沙蜥(8)、快步麻蜥(2)、密点麻蜥(4)、捷蜥蜴(2) Phrynocephalus grumgrzimailoi (8), Eremias velox (2), Eremias multiocellata (4), Lacerta agilis (2)
8 400-500 47.84° N, 86.67° E 奇台沙蜥(12) Phrynocephalus grumgrzimailoi (12)
9 400-500 47.86° N, 86.14° E 奇台沙蜥(6)、虫纹麻蜥(1) Phrynocephalus grumgrzimailoi (6), Eremias vermiculata (1)
10 800-900 48.34° N, 86.21° E 捷蜥蜴(8) Lacerta agilis (8)
11 800-900 47.49° N, 86.19° E 捷蜥蜴(6) Lacerta agilis (6)
12 700-800 47.75° N, 87.79° E 捷蜥蜴(4)、黄脊东方蛇(2) Lacerta agilis (4), Orientocoluber spinalis (2)
13 400-500 47.42° N, 87.57° E 旱地沙蜥(6)、敏麻蜥(2) Phrynocephalus helioscopus (6), Eremias arguta (2)
14 600-700 46.55° N, 88.27° E 旱地沙蜥(2)、快步麻蜥(6) Phrynocephalus helioscopus (2), Eremias velox (6)
15 900-1,000 46.70° N, 90.83° E 奇台沙蜥(15)、旱地沙蜥(3) Phrynocephalus grumgrzimailoi (15), Phrynocephalus helioscopus (3)
16 1,200-1,300 45.22° N, 89.54° E 旱地沙蜥(2)、红沙蟒(1) Phrynocephalus helioscopus (2), Eryx miliaris (1)
17 1,300-1,400 45.19° N, 89.17° E 旱地沙蜥(6)、虫纹麻蜥(1)、快步麻蜥(2)、奇台沙蜥(3) Phrynocephalus helioscopus (6), Eremias vermiculata (1), Eremias velox (2), Phrynocephalus grumgrzimailoi (3)
18 900-1,000 45.05° N, 89.28° E 旱地沙蜥(20) Phrynocephalus helioscopus (20)
19 900-1,000 45.28° N, 88.82° E 奇台沙蜥(21) Phrynocephalus grumgrzimailoi (21)
20 900-1,000 47.15° N, 89.35° E 旱地沙蜥(25) Phrynocephalus helioscopus (25)
21 900-1,000 46.63° N, 89.99° E 奇台沙蜥(2)、旱地沙蜥(4) Phrynocephalus grumgrzimailoi (2), Phrynocephalus helioscopus (4)
22 1,700-1,800 49.03° N, 87.43° E 极北蝰(9)、捷蜥蜴(2) Vipera berus (9), Lacerta agilis (2)
23 1,500-1,600 48.99° N, 87.31° E 极北蝰(4)、捷蜥蜴(2)、胎蜥(1) Vipera berus (4), Lacerta agilis (2), Zootoca vivipara (1)
24 1,300-1,400 48.65° N, 86.72° E 敏麻蜥(1)、极北蝰(1)、隐耳漠虎(3) Eremias arguta (1), Vipera berus (1), Alsophylax pipiens (3)
25 500-600 47.56° N, 87.05° E 敏麻蜥(1)、旱地沙蜥(2) Eremias arguta (1), Phrynocephalus helioscopus (2)
26 700-800 48.17° N, 87.14° E 白条锦蛇(1)、旱地沙蜥(3) Elaphe dione (1), Phrynocephalus helioscopus (3)

Fig. 2

Change of reptile species diversity along the elevational gradient. Dot represents observed species diversity. Grey solid line represents the predicted diversity by model. Dashed grey lines represent 95% confident intervals of predicted diversity."

Table 2

Generalized additive models for the species diversity of reptiles in Altay Prefecture"

变量 Variables 模型解释力
Explanatory power (R2, %)
AIC P
自由度
Effective degrees of freedom
Shannon-Wiener多样性指数 Shannon-Wiener diversity index
海拔 Altitude 45.9 19.57 0.040* 4.30
年均温 AMT 17 24.10 0.036* 1
年降水量 AP 4.39 27.81 0.00013*** 0.34
海拔 × 年降水量 Altitude × AP 51.1 20.16 PAltitude = 0.050*; PAP = 0.78 υAltitude = 4.64; υAP = 1.28
年降水量 × 年均温 AP × AMT 18.5 25.04 PAMT = 0.056; PAP = 0.51 υAMT = 1; υAP = 1
海拔 × 年均温 Altitude × AMT 52.4 25.61 PAMT = 0.23; PAltitude = 0.091 υAMT = 1; υAltitude = 4.62
海拔 × 年降水量 × 年均温
Altitude × AP × AMT
47.1 17.89 PAMT = 0.00083***;
PAltitude = 0.0043**; PAP = 0.097
υAMT = 1; υAltitude = 1; υAP = 1.75
Simpson优势度指数 Simpson dominance index
海拔 Altitude 43.6 13.38 0.054 4.12
年均温 AMT 16.2 17.27 0.042* 1
年降水量 AP 4.49 20.66 0.30 1
海拔 × 年降水量 Altitude × AP 49.1 13.93 PAltitude = 0.061; PAP = 0.68 υAltitude = 4.82; υAP = 1.00
年降水量 × 年均温 AP × AMT 17.3 18.92 PAMT = 0.072; PAP = 0.58 υAMT = 1; υAP = 1
海拔 × 年均温 Altitude × AMT 51 12.62 PAMT = 0.24; PAltitude = 0.11 υAMT = 4.65; υAltitude = 1
海拔 × 年降水量 × 年均温
Altitude × AP × AMT
40.1 13.42 PAMT = 0.0023**; PAltitude = 0.011*;
PAP = 0.18
υAMT = 1; υAltitude = 1; υAP = 1.45
丰富度 Richness
海拔 Altitude 36.5 63.08 0.096 3.67
年均温 AMT 17.7 64.49 0.033* 1.01
年降水量 AP 44.8 62.89 0.095 5.38
海拔 × 年降水量 Altitude × AP 65.4 55.55 PAltitude = 0.14; PAP = 0.022* υAltitude = 2.06; υAP = 5.73
年降水量 × 年均温 AP × AMT 37.3 63.77 PAMT = 0.10; PAP = 0.33 υAMT = 1.00; υAP = 3.17
海拔 × 年均温 Altitude × AMT 35.1 63.50 PAMT = 0.13; PAltitude = 0.29 υAMT = 1.00; υAltitude = 2.60
海拔 × 年降水量 × 年均温
Altitude × AP × AMT
69.6 51.72 PAMT = 0.0053**;
PAltitude = 0.0047**; PAP = 0.0097**
υAMT = 1.00; υAltitude = 1.00;
υAP = 5.57

Fig. 3

Results of GAM analysis on Shannon-Wiener diversity index. Dot represents observed diversity index. Solid line represents the predicted fitting curves by model. Dashed lines represent 95% confident intervals of predicted diversity. Ordinate is smooth function for environmental variables, represents their impact on Shannon-Wiener diversity index."

Fig. 4

Results of GAM analysis on Simpson dominance index. Dot represents observed dominance index. Solid line represents the predicted 95% fitting curves by model. Dashed lines represent confident intervals of predicted diversity. Ordinate is smooth function for environmental variables, represents their impact on Simpson dominance index."

Fig. 5

Results of GAM analysis on richness. Dot represents observed richness. Solid line represents the predicted fitting curves by model. Dashed lines represent 95% confident intervals of predicted diversity. Ordinate is smooth function for environmental variables, represents their impact on richness."

[40] Sinervo B, Mendez-De-La-Cruz F, Miles DB, Heulin B, Bastiaans E, Villagrán-Santa Cruz M, Lara-Resendiz R, Martínez-Méndez N, Calderón-Espinosa ML, Meza-Lázaro RN, Gadsden H, Avila LJ, Morando M, Riva IJDL, Sepulveda PV, Rocha CFD, Ibargüengoytía N, Puntriano CA, Massot M, Lepetz V, Oksanen TA, Chapple DG, Bauer AM, Branch WR, Clobert J, Sites JW (2010) Erosion of lizard diversity by climate change and altered thermal niches. Science, 328, 894-899.
[41] Storch D, Evans KL, Gaston KJ (2005) The species-area-energy relationship. Ecology Letters, 8, 487-492.
[42] Vetaas OR, Grytnes JA (2002) Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Global Ecology and Biogeography, 11, 291-301.
[43] Wang GY, Fan Y, Zhai RX (2005) Distribution and ecology of snakes in Xinjiang. Arid Zone Research, 22, 181-185. (in Chinese with English abstract)
[王国英, 范勇, 翟荣仙 (2005) 新疆蛇类的分布及生态特征. 干旱区研究, 22, 181-185.]
[44] Wang Z, Tang Z, Fang J (2007) Altitudinal patterns of seed plant richness in the Gaoligong Mountains, south-east Tibet, China. Diversity and Distributions, 13, 845-854.
[45] Wen ZM, He XH, Jiao F, Jiao JY (2008) The predictive distribution of Stipa bungeana in Yanhe River catchment: GAM model and its application. Acta Ecologica Sinica, 28, 192-201. (in Chinese with English abstract)
[温仲明, 赫晓慧, 焦峰, 焦菊英 (2008) 延河流域本氏针茅(Stipa bungeana)分布预测: 广义相加模型及其应用. 生态学报, 28, 192-201.]
[46] Whittaker RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30, 279-338.
[47] Whittaker RH, Niering WA (1965) Vegetation of the Santa Catalina Mountains, Arizona: A gradient analysis of the south slope. Ecology, 46, 429-452.
[48] Whittaker RJ, Nogués-Bravo D, Araújo M (2007) Geographical gradients of species richness: A test of the water-energy conjecture of Hawkins et al. (2003) 9 using European data for five taxa. Global Ecology and Biogeography, 16, 76-89.
[49] Wilson JB, Rapson GL, Sykes MT, Watkins AJ, Williams PA (1992) Distributions and climatic correlations of some exotic species along roadsides in South Island, New Zealand. Journal of Biogeography, 19, 183-193.
[50] Wood SN (2017) Generalized Additive Models: An Introduction with R. CRC, London.
[51] Wu YJ, Lei FM (2013) Species richness patterns and mechanisms along elevational gradients. Chinese Journal of Zoology, 48, 797-807. (in Chinese with English abstract)
[吴永杰, 雷富民 (2013) 物种丰富度垂直分布格局及影响机制. 动物学杂志, 48, 797-807.]
[52] Wu YJ, Yang QS, Wen ZX, Xia L, Zhang Q, Zhou HM (2013) What drives the species richness patterns of non-volant small mammals along a subtropical elevational gradient? Ecography, 36, 185-196.
[53] Wu YP, Xu H, Li YD, Luo TS, Chen DX, Lin MX (2013) Elevation patterns of tree and shrub species diversity of tropical forests in Jianfengling, Hainan Island. Scientia Silvae Sinicae, 49(4), 16-23. (in Chinese with English abstract)
[吴裕鹏, 许涵, 李意德, 骆土寿, 陈德祥, 林明献 (2013) 海南尖峰岭热带林乔灌木层物种多样性沿海拔梯度分布格局. 林业科学, 49(4), 16-23.]
[54] Xiang LG, Huang RX (1986) Study on birds in the Altai of Xinjiang: Distribution of birds. Journal of Xinjiang University, 3(3), 90-106. (in Chinese)
[向礼陔, 黄人鑫 (1986) 新疆阿尔泰山鸟类的研究——鸟类的分布. 新疆大学学报, 3(3), 90-106.]
[55] Xu SK, Xiang LG, Huang RX (1980) A new record of lizards from Sinkiang——Viviparous lizard. Journal of Xinjiang University, (2), 95-96. (in Chinese)
[许设科, 向礼陔, 黄人鑫 (1980) 新疆蜥蜴类的新记录——胎生蜥蜴. 新疆大学学报, (2), 95-96.]
[56] Zhang JT (2004) Quantitative Ecology. Science Press, Beijing. (in Chinese)
[1] Barrows CW, Hoines J, Vamstad MS, Murphy-Mariscal M, Lalumiere K, Heintz J (2016) Using citizen scientists to assess climate change shifts in desert reptile communities. Biological Conservation, 195, 82-88.
[2] Brown JH (1971) Mammals on mountaintops: Nonequilibrium insular biogeography. The American Naturalist, 105, 467-478.
[56] [张金屯 (2004) 数量生态学. 科学出版社, 北京.]
[57] Zhang RZ (2011) Zoogeography of China. Science Press, Beijing. (in Chinese)
[3] Brown JL, Sillero N, Glaw F, Bora P, Vieites DR, Vences M (2016) Spatial biodiversity patterns of Madagascar’s amphibians and reptiles. PLoS ONE, 11, e0144076.
[4] Buckley LB, Jetz W (2007) Environmental and historical constraints on global patterns of amphibian richness. Proceedings of the Royal Society of London B: Biological Sciences, 274, 1167-1173.
[57] [张荣祖 (2011) 中国动物地理. 科学出版社, 北京.]
[58] Zhao EM, Adler K (1993) Herpetology of China. Society for the Study of Amphibians and Reptiles in cooperation with Chinese Society for the Study of Amphibians and Reptiles, Oxford, Ohio.
[5] Cai B, Wang YZ, Chen YY, Li JT (2015) A revised taxonomy for Chinese reptiles. Biodiversity Science, 23, 365-382. (in Chinese with English abstract)
[蔡波, 王跃招, 陈跃英, 李家堂 (2015) 中国爬行纲动物分类厘定. 生物多样性, 23, 365-382.]
[59] Zhao KT (1979) A survey of the classification and distribution of the toad-headed agamids (Phrynocephalus) in China. Acta Scientiarum Naturalium Universitatis Neimongol, 10(2), 111-121. (in Chinese)
[赵肯堂 (1979) 中国沙蜥属的分类和分布研究. 内蒙古大学学报(自然科学版), 10(2), 111-121.]
[6] Cao MC, Zhou GS, Weng ES (2005) Application and comparison of generalized models and classification and regression tree in simulating tree species distribution. Acta Ecologica Sinica, 25, 2031-2040. (in Chinese with English abstract)
[曹铭昌, 周广胜, 翁恩生 (2005) 广义模型及分类回归树在物种分布模拟中的应用与比较. 生态学报, 25, 2031-2040.]
[60] Zhao KT (1983) Eremias in China. Chinese Journal of Zoology, 18(2), 2-5. (in Chinese)
[赵肯堂 (1983) 中国麻蜥属的初步整理. 动物学杂志, 18(2), 2-5.]
[7] Carpio AJ, Oteros J, Tortosa FS, Guerrero-Casado J (2016) Land use and biodiversity patterns of the herpetofauna: The role of olive groves. Acta Oecologica, 70, 103-111.
[8] Chettri B, Bhupathy S, Acharya BK (2010) Distribution pattern of reptiles along an eastern Himalayan elevation gradient, India. Acta Oecologica, 36, 16-22.
[61] Zhao KT (1997) Toad-headed agamids in China. Chinese Journal of Zoology, 32(1), 15-18. (in Chinese)
[赵肯堂 (1997) 中国的沙蜥属研究. 动物学杂志, 32(1), 15-18.]
[9] Cui SP, Luo X, Chen DQ, Sun JZ, Chu HJ, Li CW, Jiang ZG (2016) The adder (Vipera berus) in Southern Altay Mountains: Population characteristics, distribution, morphology and phylogenetic position. PeerJ, 4, e2342.
[10] Currie DJ (1991) Energy and large-scale patterns of animal and plant-species richness. The American Naturalist, 137, 27-49.
[62] Zhao KT (1998) Geckoes (Gekkomidae) in western China. Chinese Journal of Zoology, 33(1), 19-24. (in Chinese with English abstract)
[赵肯堂 (1998) 中国西部地区的壁虎科动物研究. 动物学杂志, 33(1), 19-24.]
[63] Zheng Z, Gong DJ, Sun CX (2014a) Elevational pattern of species richness and species range size of herpetofauna in Baishuijiang Nature Reserve: A test of Rapoport’s rule. Chinese Journal of Ecology, 33, 537-546. (in Chinese with English abstract)
[郑智, 龚大洁, 孙呈祥 (2014a) 白水江自然保护区两栖爬行动物物种丰富度和种域海拔梯度格局及对Rapoport法则的验证. 生态学杂志, 33, 537-546.]
[11] Evans KL, Warren PH, Gaston KJ (2005) Species-energy relationships at the macroecological scale: A review of the mechanisms. Biological Reviews, 80, 1-25.
[12] Forcella F, Harvey SJ (1983) Eurasian weed infestation in western Montana in relation to vegetation and disturbance. Madrono, 30, 102-109.
[64] Zheng Z, Gong DJ, Sun CX, Li XJ, Li WJ (2014b) Elevational pattern of amphibian and reptile diversity in Qinling Range and explanation. Biodiversity Science, 22, 596-607. (in Chinese with English abstract)
[郑智, 龚大洁, 孙呈祥, 李晓军, 李万江 (2014b) 秦岭两栖、爬行动物物种多样性海拔分布格局及其解释. 生物多样性, 22, 596-607.]
[13] Fu C, Hua X, Li J, Chang Z, Pu Z, Chen J (2006) Elevational patterns of frog species richness and endemic richness in the Hengduan Mountains, China: Geometric constraints, area and climate effects. Ecography, 29, 919-927.
[14] Gu JH, Gao XY (1991) Studies on the Animals in Xinjiang. Science Press, Beijing.
[65] Zhou YH, Wang GY, Ni YF (1986) A new record and subspecies of tartar sand boa. Journal of Xinjiang Agricultural University, 9(3), 42-45. (in Chinese)
[周永恒, 王国英, 倪亦非 (1986) 东方沙蟒一新纪录及一新亚种. 新疆农业大学学报, 9(3), 42-45.]
[14] (in Chinese) [谷景和, 高行宜 (1991) 新疆动物研究. 科学出版社, 北京.]
[15] Guo QF, Kelf DA, Sun ZY, Liu HX, Hu LJ, Ren H, Wen J (2013) Global variation in elevational diversity patterns. Scientific Reports, 3, 3007.
[66] Zhu Y, Kang MY (2005) Application of ordination and GLM/GAM in the research of the relationship between plant species and environment. Chinese Journal of Ecology, 24, 807-811. (in Chinese with English abstract)
[朱源, 康慕谊 (2005) 排序和广义线性模型与广义可加模型在植物种与环境关系研究中的应用. 生态学杂志, 24, 807-811.]
[16] Hawkins BA, Field R, Cornell HV, Currie DJ, Guégan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O’Brien EM, Porter EE, Turner JRG (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84, 3105-3117.
[17] Hu YM, Jin K, Huang ZW, Ding ZF, Liang JC, Pan XY, Hu HJ, Jiang ZG (2017) Elevational patterns of non-volant small mammal species richness in Gyirong Valley, Central Himalaya: Evaluating multiple spatial and environmental drivers. Journal of Biogeography, 44, 2764-2777.
[18] Huang RX, Xiang LG, Ma J (1986) Study on birds in the Altai of Xinjiang: Feeding habits of birds. Journal of Xinjiang University, 3(4), 79-92. (in Chinese)
[黄人鑫, 向礼陔, 马纪 (1986) 新疆阿尔泰山鸟类的研究——鸟类的食性. 新疆大学学报, 3(4), 79-92.]
[19] Ji DM, Wen SS (2002) Atlas of Reptiles of China. Henan Science and Technology Press, Zhengzhou. (in Chinese)
[季达明, 温世生 (2002) 中国爬行动物图鉴. 河南科学技术出版社, 郑州.]
[20] Jiang ZG, Jiang JP, Wang YZ, Zhang E, Zhang YY, Li LL, Xie F, Cai B, Cao L, Zheng GM, Dong L, Zhang ZW, Ding P, Luo ZH, Ding CQ, Ma ZJ, Tang SH, Cao WX, Li CW, Hu HJ, Ma Y, Wu Y, Wang YX, Zhou KY, Liu SY, Chen YY, Li JT, Feng ZJ, Wang Y, Wang B, Li C, Song XL, Cai L, Zang CX, Zeng Y, Meng ZB, Fang HX, Ping XG (2016) Red List of China’s Vertebrates. Biodiversity Science, 24, 500-551. (in Chinese and in English)
[蒋志刚, 江建平, 王跃招, 张鹗, 张雁云, 李立立, 谢锋, 蔡波, 曹亮, 郑光美, 董路, 张正旺, 丁平, 罗振华, 丁长青, 马志军, 汤宋华, 曹文宣, 李春旺, 胡慧建, 马勇, 吴毅, 王应祥, 周开亚, 刘少英, 陈跃英, 李家堂, 冯祚建, 王燕, 王斌, 李成, 宋雪琳, 蔡蕾, 臧春鑫, 曾岩, 孟智斌, 方红霞, 平晓鸽 (2016) 中国脊椎动物红色名录. 生物多样性, 24, 500-551.]
[21] Jing XH, Zang RG, Ding Y, Zhang WY, Zhang XP, Bai ZQ, Guo ZJ (2010) Distribution pattern of species diversity along altitudinal gradient in the northern slope of Xiaodonggou in Altai Mountains, Xinjiang. Scientia Silvae Sinicae, 46(1), 23-28. (in Chinese with English abstract)
[井学辉, 臧润国, 丁易, 张炜银, 张新平, 白志强, 郭仲军 (2010) 新疆阿尔泰山小东沟北坡植物多样性沿海拔梯度分布格局. 林业科学, 46(1), 23-28.]
[22] Kessler M (2000) Elevational gradients in species richness and endemism of selected plant groups in the central Bolivian Andes. Plant Ecology, 149, 181-193.
[23] Kiester AR (1971) Species density of North American amphibians and reptiles. Systematic Zoology, 20, 127-137.
[24] Liu YL (2010) Ecological Environment of Altai: Along Xinjiang Kuytun-Beitun Railway. China Environmental Science Press, Beijing. (in Chinese)
[刘晏良 (2010) 阿勒泰生态环境: 新疆奎北铁路沿线. 中国环境科学出版社, 北京.]
[25] Lomolino MV (2001) Elevation gradients of species-density: Historical and prospective views. Global Ecology and Biogeography, 10, 3-13.
[26] Luo ZH, Tang SH, Li CW, Fang HX, Hu HJ, Yang J, Ding JJ, Jiang ZG (2012) Environmental effects on vertebrate species richness: Testing the energy, environmental stability and habitat heterogeneity hypotheses. PLoS ONE, 7, e35514.
[27] Ma Y (1981a) On geographic distribution of the rodents in northern Xinjiang. Acta Zoologica Sinica, 27, 180-188. (in Chinese)
[马勇 (1981a) 新疆北部地区啮齿动物地理分布的研究. 动物学报, 27, 180-188.]
[28] Ma Y (1981b) On the dividing of the zoogeographical regions of rodents of northern Xinjiang. Acta Zoologica Sinica, 27, 395-402. (in Chinese)
[马勇 (1981b) 新疆北部地区动物地理区划的几个问题. 动物学报, 27, 395-402.]
[29] Ma Y, Wang FG, Jin SK, Li SH (1987) Glires (Rodents and Lagomorphs) of Northern Xinjiang and Their Zoogeographical Distribution. Science Press, Beijing. (in Chinese)
[马勇, 王逢桂, 金善科, 李思华 (1987) 新疆北部地区啮齿动物的分类和分布. 科学出版社, 北京.]
[30] McCain CM (2009) Global analysis of bird elevational diversity. Global Ecology and Biogeography, 18, 346-360.
[31] McCain CM (2010) Global analysis of reptile elevational diversity. Global Ecology and Biogeography, 19, 541-553.
[32] Porter WP, Gates DM (1969) Thermodynamic equilibria of animals with environment. Ecological Monographs, 39, 227-244.
[33] Qian H (2010) Environment-richness relationships for mammals, birds, reptiles, and amphibians at global and regional scales. Ecological Research, 25, 629-637.
[34] Qian H, Wang X, Wang S, Li Y (2007) Environmental determinants of amphibian and reptile species richness in China. Ecography, 30, 471-482.
[35] Rahbek C (1995) The elevational gradient of species richness: A uniform pattern? Ecography, 18, 200-205.
[36] Richerson PJ, Lum KL (1980) Patterns of plant species diversity in California: Relation to weather and topography. The American Naturalist, 116, 504-536.
[37] Schall JJ, Pianka ER (1978) Geographical trends in numbers of species. Science, 201, 679-686.
[38] Shi L, Liu GS, Li ZH, Yuan H (2006) An record of Coluber spinalis from Altai Mountain. Journal of Xinjiang Agricultural University, 29(1), 55-57. (in Chinese with English abstract)
[时磊, 刘国仕, 李志惠, 原洪 (2006) 阿尔泰山发现黄脊游蛇. 新疆农业大学学报, 29(1), 55-57.]
[39] Shi L, Zhou YH, Yuan H (2002) Reptile fauna and zoogeographic division of Xinjiang Uygur Autonomous Region. Sichuan Journal of Zoology, 21(3), 152-157. (in Chinese)
[时磊, 周永恒, 原洪 (2002) 新疆维吾尔自治区爬行动物区系与地理区划. 四川动物, 21(3), 152-157.]
[1] Dan Liu,Zhongling Guo,Xiaoyang Cui,Chunnan Fan. (2020) Comparison of five associations of Taxus cuspidata and their species diversity . Biodiv Sci, 28(3): 340-349.
[2] Zhenyuan Liu,Xingliang Meng,Zhengfei Li,Junqian Zhang,Jing Xu,Senlu Yin,Zhicai Xie. (2020) Diversity assessment and protection strategies for the mollusk community in the southern Dongting Lake . Biodiv Sci, 28(2): 155-165.
[3] Xia Li,Wanze Zhu,Shouqin Sun,Shumiao Shu,Zheliang Sheng,Jun Zhang,Ting Liu,Zhicai Zhang. (2020) Influence of habitat on the distribution pattern and diversity of plant community in dry and warm valleys of the middle reaches of the Dadu River, China . Biodiv Sci, 28(2): 117-127.
[4] Minxia Liu,Quandi Li,Xiaoxuan Jiang,Sujuan Xia,Xiaoning Nan,Yaya Zhang,Bowen Li. (2020) Contribution of rare species to species diversity and species abundance distribution pattern in the Gannan subalpine meadow . Biodiv Sci, 28(2): 107-116.
[5] DING Wei,WANG Yu-Bing,XIANG Guan-Hai,CHI Yong-Gang,LU Shun-Bao,ZHENG Shu-Xia. (2020) Effects of Caragana microphylla encroachment on community structure and ecosystem function of a typical steppe . Chin J Plant Ecol, 44(1): 33-43.
[6] WANG Yu-Bing,SUN Yi-Han,DING Wei,ZHANG En-Tao,LI Wen-Huai,CHI Yong-Gang,ZHENG Shu-Xia. (2020) Effects and pathways of long-term nitrogen addition on plant diversity and primary productivity in a typical steppe . Chin J Plant Ecol, 44(1): 22-32.
[7] Yibo Tan,Wenhui Shen,Zi Fu,Wei Zheng,Zhiyang Ou,Zhangqiang Tan,Yuhua Peng,Shilong Pang,Qinfei He,Xiaorong Huang,Feng He. (2019) Effect of environmental factors on understory species diversity in Southwest Guangxi Excentrodendron tonkinense forests . Biodiv Sci, 27(9): 970-983.
[8] TANG Li-Li,YANG Tong,LIU Hong-Yan,KANG Mu-Yi,WANG Ren-Qing,ZHANG Feng,GAO Xian-Ming,YUE Ming,ZHANG Mei,ZHENG Pu-Fan,SHI Fu-Chen. (2019) Distribution and species diversity patterns of Vitex negundo var. heterophylla shrublands in North China . Chin J Plant Ecol, 43(9): 825-833.
[9] Zihong Chen,Yuanbing Wang,Yongdong Dai,Kai Chen,Ling Xu,Qingcheng He. (2019) Species diversity and seasonal fluctuation of entomogenous fungi of Ascomycota in Taibaoshan Forest Park in western Yunnan . Biodiv Sci, 27(9): 993-1001.
[10] FANG Wen-Jing,CAI Qiong,ZHU Jiang-Ling,JI Cheng-Jun,YUE Ming,GUO Wei-Hua,ZHANG Feng,GAO Xian-Ming,TANG Zhi-Yao,FANG Jing-Yun. (2019) Distribution, community structures and species diversity of larch forests in North China . Chin J Plant Ecol, 43(9): 742-752.
[11] Tolgor Bau, Xueshan Wang, Peng Zhang. (2019) Floristic of agarics and boletus in the Greater and Lesser Khinggan Mountains . Biodiv Sci, 27(8): 867-873.
[12] Jiao Meng, Li Jing, Zhao Huifeng, Wu Chunsheng, Zhang Aibing. (2019) Species diversity and global distribution of Limacodidae (Lepidoptera) using online databases . Biodiv Sci, 27(7): 778-786.
[13] Zhang Mingming,Yang Zhaohui,Wang Cheng,Wang Jiaojiao,Hu Canshi,Lei Xiaoping,Shi Lei,Su Haijun,Li Jiaqi. (2019) Camera-trapping survey on mammals and birds in Fanjingshan National Nature Reserve, Guizhou, China . Biodiv Sci, 27(7): 813-818.
[14] WANG Pan, ZHU Wan-Wan, NIU Yu-Bin, FAN Jin, YU Hai-Long, LAI Jiang-Shan, HUANG Ju-Ying. (2019) Effects of nitrogen addition on plant community composition and microbial biomass ecological stoichiometry in a desert steppe in China . Chin J Plant Ecol, 43(5): 427-436.
[15] ZHANG Xin-Xin, WANG Xi, HU Ying, ZHOU Wei, CHEN Xiao-Yang, HU Xin-Sheng. (2019) Advances in the study of population genetic diversity at plant species’ margins . Chin J Plant Ecol, 43(5): 383-395.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed