Biodiversity Science ›› 2017, Vol. 25 ›› Issue (6): 621-626.doi: 10.17520/biods.2017117

• Original Papers • Previous Article     Next Article

Polyploidy and the formation of species diversity in Aspleniaceae

Yanfen Chang*()   

  1. Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303
  • Received:2017-04-13 Accepted:2017-06-28 Online:2017-07-10
  • Chang Yanfen

Ferns are considered to have the highest frequency of polyploidy in plants. Based on the published cytological data of 188 species, we analyzed the relationship between polyploidy and the formation of species diversity in the fern family Aspleniaceae, which comprises approximately 800 species. The results show that polyploids, including triploids, tetraploids, hexaploids, octoploids, decaploids, dodecaploids and hexadecaploids, have been documented in the family. Of the 188 Aspleniaceae species with cytological data, 88.8% exhibit polyploidy, 41.0% show intraspecific polyploidy and 47.9% are the result of polyploid speciation. In addition, the diverse ploidy levels suggest that these species have a complex evolutionary history and their taxonomic problems require further study. The perplexity and future directions of study of Aspleniaceae were also discussed.

Key words: Pteridophytes, polyploid, species diversity, reticulation, apomixes

[1] Bellefroid E, Rambe K, Leroux O, Viane R (2010) The base number of ‘loxoscaphoid’ Asplenium species and its implication for cytoevolution in Aspleniaceae. Annals of Botany, 106, 157-171.
[2] Bennert HW, Fischer G (1993) Biosystematics and evolution of the Asplenium trichomanes complex. Webbia, 48, 743-760.
[3] Braithwaite AF (1986) The Asplenium aethiopicum complex in South Africa. Botanical Journal of the Linnean Society, 93, 343-378.
[4] Brysting AK, Mathiesen C, Marcussen T (2011) Challenges in polyploid phylogenetic reconstruction: a case story from the arctic-alpine Cerastium alpinum complex. Taxon, 60, 333-347.
[5] Brysting AK, Oxelman B, Huber KT, Moulton V, Brochmann C (2007) Untangling complex histories of genome mergings in high polyploids. Systematic Biology, 56, 467-476.
[6] Chang YF, Li J, Lu SG, Schneider H (2013) Species diversity and reticulate evolution in the Asplenium normale complex (Aspleniaceae) in China and adjacent areas. Taxon, 62, 673-687.
[7] Cheng X, Murakami N (1998) Cytotaxonomic study of genus Hymenasplenium (Aspleniaceae) in Xishuangbanna, southwestern China. Journal of Plant Research, 111, 495-500.
[8] Cheng X, Zhang SZ (2010) Index to chromosome numbers of Chinese Pteridophyta (1969-2009). Journal of Fairylake Botanic Garden, 9, 1-58.
[9] Dyer RJ, Savolainen V, Schneider H (2012) Apomixis and reticulate evolution in the Asplenium monanthes fern complex. Annals of Botany, 110, 1515-1529.
[10] Ebihara A, Ishikawa H, Matsumoto S, Lin SU, Iwatsuki K, Takamiya M, Watano Y, Ito M (2005) Nuclear DNA, chloroplast DNA, and ploidy analysis clarified biological complexity of the Vandenboschia radicans complex (Hymenophyllaceae) in Japan and adjacent areas. American Journal of Botany, 92, 1535-1547.
[11] Ekrt L, Stech M (2008) A morphometric study and revision of the Asplenium trichomanes group in the Czech Republic. Preslia, 80, 325-347.
[12] Grant V (1981) Plant Speciation, pp. 273-317. Columbia University Press, New York.
[13] Grusz AL (2016) A current perspective on apomixis in ferns. Journal of Systematics and Evolution, 54, 656-665.
[14] Grusz AL, Windham MD, Pryer KM (2009) Deciphering the origins of apomictic polyploids in the Cheilanthes yavapensis complex (Pteridaceae). American Journal of Botany, 96, 1636-1645.
[15] Gu YF, Wei HJ, Wei R, Dai XL, Yan YH (2014) Diplazium × kidoi Sa. Kurata, a newly recorded species of Diplazium (Athyriaceae) from China. Plant Science Journal, 32, 336-339. (in Chinese with English abstract)
[顾钰峰, 韦宏金, 卫然, 戴锡玲, 严岳鸿 (2014) 中国双盖蕨属一新记录种—Diplazium × kidoi Sa. Kurata. 植物科学学报, 32, 336-339.]
[16] Haufler CH (2002) Homospory 2002: an odyssey of progress in pteridophyte genetics and evolutionary biology. BioScience, 52, 1081-1093.
[17] Haufler CH, Hooper EA, Thierrien JP (2000) Modes and mechanisms of speciation in pteridophytes; implications of contrasting patterns in ferns representing temperate and tropical habitats. Plant Species Biology, 15, 223-236.
[18] Hendry AP (2009) Evolutionary biology: speciation. Nature, 458, 162-164.
[19] Hong DY (1990) Plant Cytotaxonomy. Science Press, Beijing. (in Chinese)
[洪德元 (1990) 植物细胞分类学. 科学出版社, 北京.]
[20] Hori K, Tono A, Fujimoto K, Kato J, Ebihara A, Watano Y, Murakami N (2014) Reticulate evolution in the apogamous Dryopteris varia complex (Dryopteridaceae, subg. Erythrovariae, sect. Variae) and its related sexual species in Japan. Journal of Plant Research, 127, 661-684.
[21] Hou X, Wang ZR (2000) A subspecific taxonomic study on Asplenium trichomanes L. from China. Acta Phytotaxonomica Sinica, 38, 242-255. (in Chinese with English abstract)
[侯鑫, 王中仁 (2000) 中国铁角蕨的种下分类学研究. 植物分类学报, 38, 242-255.]
[22] Jackson RC (1976) Evolution and systematic significance of polypolidy. Annual Review of Ecology and Systematics, 7, 209.
[23] Kato M, Nakato N, Cheng X, Iwatsuki K (1992) Cytotaxonomic study of ferns of Yunnan, southwestern China. Journal of Plant Research, 105, 105-124.
[24] Lin YX, Viane R (2012) Aspleniaceae. In: Flora of China (ed. Editorial Committee of Flora of China). Science Press, Beijing & Missouri Botanical Garden Press, St. Louis.
[25] Liu HM, Dyer RJ, Guo ZY, Meng Z, Li JH, Schneider H (2012) The evolutionary dynamics of apomixis in ferns: a case study from polystichoid ferns. Journal of Botany, 2012, .
[26] Lovis JD (1964) The taxonomy of Asplenium trichomanes in Europe. British Fern Gazette, 9, 147-160.
[27] Lovis JD (1977) Evolutionary patterns and processes in ferns. Advances in Botanical Research, 4, 229-415.
[28] Manton I (1959) Cytological information on the ferns of West Tropical Africa. In: The Ferns and Fern Allies of West Tropical Africa (ed. Alston AHG). Grown Agents, London.
[29] Mitui K, Murakami N, Iwatsuki K (1989) Chromosomes and systematics of Asplenium sect. Hymenasplenium (Aspleniaceae). American Journal of Botany, 76, 1689-1697.
[30] Murakami N, Nogami S, Watanabe M, Iwatsuki K (1999) Phylogeny of Aspleniaceae inferred from rbcL nucleotide sequences. American Fern Journal, 89, 232-243.
[31] Nyhus GC (1987) The subspecies of Asplenium trichomanes in Norway. Blyttia, 45, 12-24.
[32] Perrie LR, Brownsey PJ (2005) Insights into the biogeography and polyploid evolution of New Zealand Asplenium from chloroplast DNA sequence data. American Fern Journal, 95, 1-21.
[33] Pinter I, Bakker F, Barrett JA, Cox C, Gibby M, Henderson S, Morgan-Richards M, Rumsey F, Russell S, Trewick S, Schneider H, Vogel J (2002) Phylogenetic and biosystematic relationships in four highly disjunct polyploidy complexes in the subgenera Ceterach and Phyllitis in Asplenium (Aspleniaceae). Organisms, Diversity and Evolution, 2, 299-311.
[34] Rasbach H, Rasbach K, Reichstein T, Bennert HW (1990) Asplenium trichomanes subsp. coriaceifolium, a new subspecies and two new intraspecific hybrids of the A. trichomanes complex (Aspleniaceae, Pteridophyta). I. Nomenclature and typification. Willdenowia, 19, 471-474.
[35] Rasbach H, Rasbach K, Reichstein T, Bennert HW (1991) Asplenium trichomanes subsp. coriaceifolium, a new subspecies and two new intraspecific hybrids of the A. trichomanes complex (Aspleniaceae, Pteridophyta). II. Description and illustrations. With an appendix on pairing behaviour of chromosomes in fern hybrids. Willdenowia, 21, 239-261.
[36] Reichstein T (1981) Hybrids in European Aspleniaceae (Pteridophyta). Botanica Helvetica, 91, 89-139.
[37] Rieseberg LH, Willis JH (2007) Plant speciation. Science, 317, 910-914.
[38] Sang T, Zhong Y (2000) Testing hybridization hypotheses based on incongruent gene trees. Systematic Biology, 49, 422-434.
[39] Schneider H, Navarro-gomez A, Russell SJ, Ansell S, Grundmann M, Vogel J (2013) Exploring the utility of three nuclear regions to reconstruct reticulate evolution in the fern genus Asplenium. Journal of Systematics and Evolution, 51, 142-153.
[40] Schneider H, Russell SJ, Cox CJ, Bakker F, Henderson S, Rumsey F, Barrett J, Gibby M, Vogel JC (2004) Chloroplast phylogeny of asplenioid ferns based on rbcL and trnL-F spacer sequences (Polypodiidae, Aspleniaceae) and its implications for biogeography. Systematic Botany, 29, 260-274.
[41] Shepherd LD, Perrie LR, Brownsey PJ (2008) Low copy nuclear DNA sequences reveal a predominance of allopolyploids in a New Zealand Asplenium fern complex. Molecular Phylogenetics and Evolution, 49, 240-248.
[42] Tigerschiold E (1981) The Asplenium trichomanes complex in East Central Sweden. Nordic Journal of Botany, 1, 12-16.
[43] van den Heede CG, Viane R, Chase MW (2003) Phylogenetic analysis of Asplenium subgenus Ceterach (Pteridophyta: Aspleniaceae) based on plastid and nuclear ribosomal ITS DNA sequences. American Journal of Botany, 90, 481-495.
[44] Vogel JC, Russell SJ, Barrett SA, Gibby M (1996) A noncoding region of chloroplast DNA as a tool to investigate reticulate evolution in European Asplenium. In: Pteridology in Perspective (eds Camus JM, Johns RJ, Gibby M). Royal Botanic Garden, Kew, Richmond.
[45] Wagner WH (1954) Reticulate evolution in the Appalachian Asplenium. Evolution, 8, 103-118.
[46] Wang RX, Lu SG, Deng XC (2007) Cytotaxonomic studies of the Chinese pteridophytes: a review. Acta Phytotaxonomica Sinica, 45, 98-111. (in Chinese with English abstract)
[王任翔, 陆树刚, 邓晰朝 (2007) 中国蕨类植物细胞分类学研究概况. 植物分类学报, 45, 98-111.]
[47] Wang ZR, Zhang F, Hou X (2003) A biosystematic study on Asplenium sarelii complex. Acta Botanica Sinica, 45, 1-14.
[48] Werth CR, Guttman SI, Eshbaugh WH (1985) Recurring origins of allopolyploid species in Asplenium. Science, 228, 731-733.
[49] Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH (2009) The frequency of polyploid speciation in vascular plants. Proceedings of the National Academy of Sciences, USA, 106, 13875-13879.
[50] Wu ZH (1999) Aspleniaceae. In: Flora Reipublicae Popularis Sinicae (ed. Editorial Committee of Flora Reipublicae Popularis Sinicae, Chinese Academy of Sciences), Tomus, 4(2). Science Press, Beijing. (in Chinese)
[吴兆洪 (1999) 铁角蕨科. 见:中国植物志(中国科学院中国植物志编辑委员会编), 4(2). 科学出版社, 北京.]
[51] Yatabe Y, Masuyama S, Darnaedi D, Murakami N (2001) Molecular systematics of the Asplenium nidus complex from Mt. Halimun National Park, Indonesia: evidence for reproductive isolation among three sympatric rbcL sequence types. American Journal of Botany, 88, 1517-1522.
[52] Yatabe Y, Murakami N (2003) Recognition of cryptic species in the Asplenium nidus complex using molecular data—a progress report. Telopea, 10, 487-496.
[53] Yatabe Y, Shonohara W, Matsumoto S, Murakami N (2009) Patterns of hybrid formation among cryptic species of bird-nest fern, Asplenium nidus complex (Aspleniaceae), in West Malesia. Botanical Journal of the Linnean Society, 160, 42-63.
[54] Zhang XC (2012) Lycophytes and Ferns from China. Peking University Press, Beijing. (in Chinese)
[张宪春 (2012) 中国石松类和蕨类植物. 北京大学出版社, 北京.]
[55] Zhang XC, Wei R, Liu HM, He LJ, Wang L, Zhang G (2013) Phylogeny and classification of the extant lycophytes and ferns from China. Chinese Bulletin of Botany, 48, 119-137. (in Chinese with English abstract)
[张宪春, 卫然, 刘红梅, 何丽娟, 王丽, 张钢 (2013) 中国现代石松类和蕨类的系统发育与分类系统. 植物学报, 48, 119-137.]
[56] Zou XH, Ge S (2008) Conflicting gene trees and phylogenomics. Journal of Systematics and Evolution, 46, 795-807. (in Chinese with English abstract)
[邹新慧, 葛颂 (2008) 基因树冲突与系统发育基因组学研究. 植物分类学报, 46, 795-807.]
[1] Yibo Tan, Wenhui Shen, Zi Fu, Wei Zheng, Zhiyang Ou, Zhangqiang Tan, Yuhua Peng, Shilong Pang, Qinfei He, Xiaorong Huang, Feng He. (2019) Effect of environmental factors on understory species diversity in Southwest Guangxi Excentrodendron tonkinense forests . Biodiv Sci, 27(9): 970-983.
[2] TANG Li-Li,YANG Tong,LIU Hong-Yan,KANG Mu-Yi,WANG Ren-Qing,ZHANG Feng,GAO Xian-Ming,YUE Ming,ZHANG Mei,ZHENG Pu-Fan,SHI Fu-Chen. (2019) Distribution and species diversity patterns of Vitex negundo var. heterophylla shrublands in North China . Chin J Plant Ecol, 43(9): 825-833.
[3] Zihong Chen, Yuanbing Wang, Yongdong Dai, Kai Chen, Ling Xu, Qingcheng He. (2019) Species diversity and seasonal fluctuation of entomogenous fungi of Ascomycota in Taibaoshan Forest Park in western Yunnan . Biodiv Sci, 27(9): 993-1001.
[4] FANG Wen-Jing,CAI Qiong,ZHU Jiang-Ling,JI Cheng-Jun,YUE Ming,GUO Wei-Hua,ZHANG Feng,GAO Xian-Ming,TANG Zhi-Yao,FANG Jing-Yun. (2019) Distribution, community structures and species diversity of larch forests in North China . Chin J Plant Ecol, 43(9): 742-752.
[5] Tolgor Bau, Xueshan Wang, Peng Zhang. (2019) Floristic of agarics and boletus in the Greater and Lesser Khinggan Mountains . Biodiv Sci, 27(8): 867-873.
[6] Jiao Meng, Li Jing, Zhao Huifeng, Wu Chunsheng, Zhang Aibing. (2019) Species diversity and global distribution of Limacodidae (Lepidoptera) using online databases . Biodiv Sci, 27(7): 778-786.
[7] Zhang Mingming,Yang Zhaohui,Wang Cheng,Wang Jiaojiao,Hu Canshi,Lei Xiaoping,Shi Lei,Su Haijun,Li Jiaqi. (2019) Camera-trapping survey on mammals and birds in Fanjingshan National Nature Reserve, Guizhou, China . Biodiv Sci, 27(7): 813-818.
[8] ZHANG Xin-Xin, WANG Xi, HU Ying, ZHOU Wei, CHEN Xiao-Yang, HU Xin-Sheng. (2019) Advances in the study of population genetic diversity at plant species’ margins . Chin J Plant Ecol, 43(5): 383-395.
[9] WANG Pan, ZHU Wan-Wan, NIU Yu-Bin, FAN Jin, YU Hai-Long, LAI Jiang-Shan, HUANG Ju-Ying. (2019) Effects of nitrogen addition on plant community composition and microbial biomass ecological stoichiometry in a desert steppe in China . Chin J Plant Ecol, 43(5): 427-436.
[10] Hu Yifeng, Yu Wenhua, Yue Yang, Huang Zhenglanyi, Li Yuchun, Wu Yi. (2019) Species diversity and potential distribution of Chiroptera on Hainan Island, China . Biodiv Sci, 27(4): 400-408.
[11] Zhuang Ping. (2019) Progress on the fertility of Rhododendron . Biodiv Sci, 27(3): 327-338.
[12] Yan Wenbo,Ji Shengnan,Shuai Lingying,Zhao Leigang,Zhu Dapeng,Zeng Zhigao. (2019) Spatial distribution patterns of mammal diversity in Yangxian County of Shaanxi Province on the southern slope of the Qinling Mountains . Biodiv Sci, 27(2): 177-185.
[13] Chen Zuoyi, Xu Xiaojing, Zhu Suying, Zhai Mengyi, Li Yang. (2019) Species diversity and geographical distribution of the Chaetoceros lorenzianus complex along the coast of China . Biodiv Sci, 27(2): 149-158.
[14] Jingqi Sun, Quan Chen, Hangyu Li, Yanfen Chang, Hede Gong, Liang Song, Huazheng Lu. (2019) Progress on the clonality of epiphytic ferns . Biodiv Sci, 27(11): 1184-1195.
[15] Siqi Liang, Xianchun Zhang, Ran Wei. (2019) Integrative taxonomy resolved species delimitation in a fern complex: A case study of the Asplenium coenobiale complex . Biodiv Sci, 27(11): 1205-1220.
Full text