Biodiversity Science ›› 2017, Vol. 25 ›› Issue (9): 981-989.doi: 10.17520/biods.2017052

• Original Papers: Plant Diversity • Previous Article     Next Article

Spatio-temporal variation of benthic diatom diversity and community structure in a sandy intertidal zone of the Nanji Islands, China

Yuhang Li1, Wandong Chen2, Houcai Cai2, Zhongmin Sun1, 4, Kuidong Xu1, 3, 4, *()   

  1. 1 Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071
    2 Nanji Islands National Marine Natural Reserve Administration Bureau, Pingyang, Zhejiang 325401
    3 Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266071
    4 University of Chinese Academy of Sciences, Beijing 100049
  • Received:2017-02-21 Accepted:2017-07-26 Online:2017-10-04
  • Xu Kuidong E-mail:kxu@qdio.ac.cn
  • About author:# Co-first authors

To know the status and 20 years’ variation of benthic diatom biodiversity and community structure in intertidal sandy sediment in the Nanji Islands National Marine Nature Reserve (NINMNR) of China, we investigated community composition and seasonal variations of marine benthic diatoms between November 2013 and August 2014 in the intertidal zone of the Huokun’ao sandy beach in the NINMNR, and compared this to historic data obtained from intertidal sandy sediments of the Nanji Islands. A total of 120 benthic diatom species belonging to 49 genera were identified. Among these, 17 species were classified as dominant species, including Fallacia litoricola, Diploneis smithii and D. parca. The Shannon diversity index (H?) values of benthic diatoms varied between 2.388 and 3.455. The peak of H? appeared in spring, and the lowest value occurred in fall. Spatially, the highest H? value was present in the middle tidal zone and the lowest was found in the high tide zone. The result of analysis of similarities (ANOSIM) showed there were significant differences in the benthic community between the high, middle and low tidal areas, while no significant differences were observed between the four seasons. The result of BIOENV suggested that salinity was the most important factor regulating the benthic diatom community. The present study and historic data indicate that the community structure of benthic diatoms in the sandy sediments of Nanji Islands changed markedly over the past few decades. Compared with data obtained from three surveys conducted between 1981 and 1993, the number of diatom orders has decreased from 16 to 14, while the number of families has increased from 24 to 31, and the number of genera and species has significantly increased from 29 to 49 and from 55 to 120, respectively. The increase of diatom taxa is likely due to the enhanced intensity of taxonomic study. Nonetheless, the average taxonomic distinctness index (Δ+) values decreased from 79.79 to71.41. Strikingly, large attached diatoms recorded in the past have been replaced by small attached forms as well as epipelons. This could be the result of intense human activities and the long-term effects of over-discharged organic matter.

Key words: marine benthic diatoms, biodiversity, community structure, dominant species, Nanji Islands

Fig. 1

Sampling sites of benthic diatoms from the intertidal zone of Huokun’ao in the Nanji Islands. H, M, and L represent high tide zone, middle tide zone and low tide zone, respectively."

Fig. 2

Seasonal changes in environmental factors in the intertidal zone of Huokun’ao, Nanji Islands. H, M, and L represent high tide zone, middle tide zone and low tide zone, respectively."

Fig. 3

Diatom abundance and sediments chlorophyll a concentration in intertidal zone of Huokun’ao, Nanji Islands. H, M, and L represent high tide zone, middle tide zone and low tide zone, respectively."

Table 1

Dominant species of benthic diatoms in the intertidal zone of Huokun’ao, Nanji Islands"

物种 Species 优势度
Dominant index (Y)
海岸曲解藻 Fallacia litoricola 0.1942
史氏双壁藻 Diploneis smithii 0.1780
稀疏双壁藻 Diploneis parca 0.1585
似叶状舟形藻 Navicula phylleptosoma 0.0718
匙形菱形藻 Nitzschia spathulata 0.0550
钳状曲解藻 Fallacia forcipata 0.0522
沙生舟形藻 Navicula arenaria 0.0520
琴状福氏藻 Fogedia lyra 0.0509
矩形羽纹藻Pinnularia rectangulata 0.0447
方格舟形藻 Navicula cancellata 0.0397
线性蹄状藻 Hippodonta linearis 0.0274
格氏双眉藻 Amphora graeffeana 0.0273
直菱板藻加拉变种
Hantzschia virgata var. kariana
0.0264
海岸曲解藻长圆变种
Diploneis litoralis var. clathrata
0.0254
新西兰美壁藻 Diploneis novaeseelandiae 0.0243
蹄状藻一种 Hippodonta sp. 0.0234
海洋菱板藻 Hantzschia marina 0.0223

Table 2

Diversity (H° ), evenness (J° ) and dominance index (1-λ) of benthic diatoms in the intertidal zone of Huokun’ao, Nanji Islands. H, M, and L represent high tide zone, middle tide zone, and low tide zone, respectively."

春季 Spring 夏季 Summer 秋季 Autumn 冬季 Winter
H M L H M L H M L H M L
J° 0.7861 0.8761 0.7394 0.7785 0.8053 0.8284 0.6955 0.8034 0.8681 0.8644 0.8301 0.8108
H' 2.817 3.445 2.629 2.648 2.525 2.991 2.388 2.648 2.722 2.968 2.902 2.702
1-λ 0.9112 0.9549 0.8511 0.8766 0.8856 0.9304 0.839 0.8974 0.9103 0.9302 0.9199 0.9041

Fig. 4

K-dominance curve of the benthic diatom community in the intertidal zone of Huokun’ao, Nanji Islands"

Fig. 5

Clustering and Non-metric Multidimensional scaling (MDS) of benthic diatom community in the intertidal zone of Huokun’ao, Nanji Islands. SP, SU, AU, and WI represent spring, summer, autumn and winter, respectively. H, M, and L represent high tide zone, middle tide zone, and low tide zone, respectively."

Fig. 6

95% confidence intervals of average taxonomic distinctness index (Δ+) and variation in taxonomic distinctness index (Λ+), comparing with benthic diatoms data between this study and 1981-1993 (Zhu et al, 1998a, b). The distance between each taxon was set to 1."

Table 3

Changes of benthic diatom genera from the intertidal sandy sediments of Huokun’ao, Nanji Islands"

属 Genus 1981-1993* 2013-2014# 属 Genus 1981-1993* 2013-2014#
曲壳藻属 Achnanthes + + 蹄状藻属 Hippodonta +
长曲壳藻属 Achnanthidium + 泥生藻属 Luticola +
辐裥藻属 Actinoptychus + 胸隔藻属 Mastogloia +
双眉藻属 Amphora + + 直链藻属 Melosira + +
蛛网藻属 Arachnoidiscus + 栖沙藻属 Moreneis +
沟盘藻属 Aulacodiscus + 舟形藻属 Navicula + +
棍形藻属 Bacillaria + 菱形藻属 Nitzschia + +
中鼓藻属 Bellerochea + 齿状藻属 Odontella + +
伯克力藻属 Berkeleya + + 书形藻属 Parlibellus +
盒形藻属 Biddulphia + 石舟藻属 Petroneis + +
对纹藻属 Biremis + 羽纹藻属 Pinnularia +
美壁藻属 Caloneis + 斜脊藻属 Plagiotropis +
脊弯藻属 Carinasigma + 平面藻属 Planothidium +
链形藻属 Catenula + 斜纹藻属 Pleurosigma + +
梯舟藻属 Climaconeis + 柄链藻属 Podosira +
卵形藻属 Cocconeis + 普氏藻属 Proschkinia +
圆筛藻属 Coscinodiscus + + 沙网藻属 Psammodictyon +
筒柱藻属 Cylindrotheca + 杆线藻属 Rhabdonema +
桥弯藻属 Cymbella + 洛氏藻属 Roperia +
迪氏藻属 Dickieia + 半舟藻属 Seminavis +
双壁藻属 Diploneis + + 骨条藻属 Skeletonema +
唐氏藻属 Donkina + 辐节藻属 Stauroneis + +
内茧藻属 Entomoneis + + 班盘藻属 Sticotodiscus +
曲解藻属 Fallacia + + 条纹藻属 Striatella +
福氏藻属 Fogedia + 双菱藻属 Surirella +
斑条藻属 Grammatophora + + 针杆藻属 Synedra +
布纹藻属 Gyrosigma + + 平片藻属 Tabularia +
海生双眉藻属 Halamphora + 海链藻属 Thalassiosira +
菱板藻属 Hantzschia + + 粗纹藻属 Trachyneis + +
海氏藻属 Haslea + 盘杆藻属 Tryblionella +
[1] Cai HC, Peng X (2001) Welcome to the Kingdom of Shellfish and Algae. Shanghai People’s Fine Arts Publishing House, Shanghai. (in Chinese)
[蔡厚才, 彭欣 (2011) 走进贝藻王国. 上海人民美术出版社, 上海.]
[2] Clarke KR, Gorley RN (2006) PRIMER v6: User Manual/ Tutorial (Plymouth Routines in Multivariate Ecological research). Primer-E Ltd., Plymouth.
[3] Du GY, Chung IK (2007) Spatio-termporal variation of intertidal microphytobenthos in the Nakdong estuary. The Sea, 12, 186-190.
[4] Du GY, Son M, Yun M, An S, Chung IK (2009) Microphytobenthic biomass and species composition in intertidal flats of the Nakdong River estuary, Korea. Estuarine, Coastal and Shelf Science, 82, 663-672.
doi: 10.1016/j.ecss.2009.03.004
[5] Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 281, 237-240.
doi: 10.1126/science.281.5374.237
[6] Hendey NI (1964) An Introductory Account of the Smaller Algae of British Coastal Water. V. Bacillariophyceae (Diatoms). H. M. Stationary Office, London.
doi: 10.2307/2258001
[7] Jean-Marc G, Laurent C, Jennifer CG (2008) Can the intertidal benthic microalgal primary production account for the “Missing Carbon Sink”? Journal of Oceanography, Research and Data, 1, 13-19.
[8] Mann DG, Vanormelingen P (2013) An inordinate fondness? The number, distributions, and origins of diatom species. Journal of Eukaryotic Microbiology, 60, 414-420.
doi: 10.1111/jeu.12047 pmid: 23710621
[9] Medlin LK, Kaczmarska I (2004) Evolution of the diatoms. V. Morphological and cytological support for the major clades and a taxonomic revision. Phycologia, 43, 245-270.
doi: 10.2216/i0031-8884-43-3-245.1
[10] Pielou EC (1975) Ecological Diversity. John Wiley & Sons Inc., New York.
[11] Pielou EC (1984) The Interpretation of Ecological Data: A Primer on Classification and Ordination. John Wiley & Sons Inc., New York.
[12] Ribeiro L (2010) Intertidal Benthic Diatoms of the Tagus Estuary: Taxonomic Compositoin and Spatial-temporal Variation. PhD dissertation, University of Lisbon, Lisbon.
doi: 10.1016/j.anbehav.2011.07.031
[13] Ribeiro L, Brotas V, Rincé Y, Jesus B (2013) Structure and diversity of intertidal benthic diatom assemblages in contrasting shores: a case study from the Tagus estuary. Journal of Phycology, 49, 258-270.
doi: 10.1111/jpy.12031 pmid: 27008515
[14] Sabbe K (1993) Short-term fluctuations in benthic diatom number on an intertidal sandflat in the Westerschelde estuary (Zeeland, The Netherlands). Hydrobiologia, 269/270, 275-284.
doi: 10.1007/BF00028026
[15] Sabbe K (1997) Systematics and Ecology of Intertidal Benthic Diatoms of the Westerschelde Estuary (The Netherlands). PhD dissertation, Ghent University, Ghent.
[16] Schindler DW (1999) Carbon cycling: the mysterious missing sink. Nature, 198, 105-107.
doi: 10.1038/18111
[17] Shannon CE (1948) A mathematical theory of communication. Bell System Technical Journal, 27, 379-423.
doi: 10.1002/bltj.1948.27.issue-3
[18] Simpson EH (1949) Measurement of diversity. Nature, 163, 688.
doi: 10.1038/163688a0
[19] Underwood GJC, Kromkamp J (1999) Primary production by phytoplankton and microphytobenthos in estuaries. In: Advances in Ecological Research (eds Nedwell DB, Raffaelli DG), pp. 93-153. Academic Press, London.
[20] Yu YY (2011) Practices and Lessons from Island-based Conservation of Biodiversity in Nanji Islands, China. Ocean Press, Beijing. (in Chinese)
[俞永跃 (2011) 基于海岛管理的南麂列岛生物多样性保护实践与经验. 海洋出版社, 北京.]
[21] Zhu GH, Wang X, Wang CS, Gao AG (1998a) Ecological studies on nanoalgae and microalgae in Nanji Island National Marine Nature Conservation Area. I. Species composition and ecological characteristics. Journal of Marine Sciences, 16(2), 1-21. (in Chinese with English abstract)
[朱根海, 王旭, 王春生, 高爱根 (1998a) 南麂列岛国家海洋自然保护区微、小型藻类生态研究. I. 种类组成与生态特点. 东海海洋, 16(2), 1-21.]
[22] Zhu GH, Wang X, Wang CS, Gao AG (1998b) Ecological studies on nanoalgae and microalgae in Nanji Islands National Marine Natural Conservation Area. II. Quantitative distribution. Journal of Marine Sciences, 16(2), 22-28. (in Chinese with English abstract)
[朱根海, 王旭, 王春生, 高爱根 (1998b) 南麂列岛国家海洋自然保护区微、小型藻类生态研究. II. 数量分布. 东海海洋, 16(2), 23-28.]
[1] Lintao Huang Hui Huang Lei Jiang. (2020) A revised taxonomy for Chinese hermatypic corals . Biodiv Sci, 28(4): 515-523.
[2] Zhixia Zhao,Changming Zhao,Shuyu Deng,Guozhen Shen,Zongqiang Xie,Gaoming Xiong,Junqing Li. (2020) Community structure and dynamics of a remnant forest dominated by Thuja sutchuenensis after deforestation . Biodiv Sci, 28(3): 333-339.
[3] Kai Wang,Jinlong Ren,Hongman Chen,Zhitong Lyu,Xianguang Guo,Ke Jiang,Jinmin Chen,Jiatang Li,Peng Guo,Yingyong Wang,Jing Che. (2020) The updated checklists of amphibians and reptiles of China . Biodiv Sci, 28(2): 189-218.
[4] Xiongwei Yang,Ankang Wu,Qixian Zou,Guangrong Li,Mingming Zhang,Canshi Hu,Haijun Su. (2020) Field monitoring of mammals and birds using infrared cameras in Mayanghe National Nature Reserve, Guizhou, China . Biodiv Sci, 28(2): 219-225.
[5] Haiou Liu,Fengchun Zhang,Fuwei Zhao,Leshan Du,Dayuan Xue. (2020) Biodiversity sensitive issues from changes in the strategic objectives of the financial mechanism for the Convention on Biological Diversity . Biodiv Sci, 28(2): 244-252.
[6] Yisheng Ma,Qingqing Ma,Nianjun He,Dapeng Zhu,Kaihui Zhao,Hongcai Liu,Shuai Li,Liang Sun,Liubin Tang. (2020) Camera-trapping survey of mammals and birds in the Foping National Nature Reserve, China . Biodiv Sci, 28(2): 226-230.
[7] Wenying Zhuang,Yi Li,Huandi Zheng,Zhaoqing Zeng,Xincun Wang. (2020) Threat status of non-lichenized macro-ascomycetes in China and its threatening factors . Biodiv Sci, 28(1): 26-40.
[8] Yi Li,Zhiyao Tang,Yujing Yan,Ke Wang,Lei Cai,Jinsheng He,Song Gu,Yijian Yao. (2020) Incorporating species distribution model into the red list assessment and conservation of macrofungi: A case study with Ophiocordyceps sinensis . Biodiv Sci, 28(1): 99-106.
[9] WANG Yu-Bing,SUN Yi-Han,DING Wei,ZHANG En-Tao,LI Wen-Huai,CHI Yong-Gang,ZHENG Shu-Xia. (2020) Effects and pathways of long-term nitrogen addition on plant diversity and primary productivity in a typical steppe . Chin J Plant Ecol, 44(1): 22-32.
[10] Yongmin Li,Xiaobing Wu. (2019) A revised species list of amphibians and reptiles in the Anhui Province . Biodiv Sci, 27(9): 1002-1011.
[11] FANG Wen-Jing,CAI Qiong,ZHU Jiang-Ling,JI Cheng-Jun,YUE Ming,GUO Wei-Hua,ZHANG Feng,GAO Xian-Ming,TANG Zhi-Yao,FANG Jing-Yun. (2019) Distribution, community structures and species diversity of larch forests in North China . Chin J Plant Ecol, 43(9): 742-752.
[12] Shun Li,Liang Zou,Yinan Gong,Haitao Yang,Tianming Wang,Limin Feng,Jianping Ge. (2019) Advances in LiDAR technology in the field of animal ecology . Biodiv Sci, 27(9): 1021-1031.
[13] Rui Yang,Qinyi Peng,Yue Cao,Le Zhong,Shuyu Hou,Zhicong Zhao,Cheng Huang. (2019) Transformative changes and paths toward biodiversity conservation in China . Biodiv Sci, 27(9): 1032-1040.
[14] Junning Li, Tong Li, Yulian Wei. (2019) Relationship between diversity of wood-decaying fungi and their host wood in the Fenglin National Nature Reserve . Biodiv Sci, 27(8): 880-886.
[15] Zhang Yuanyuan. (2019) China’s strategy for incorporating traditional knowledge associated with biodiversity into international multi-lateral agreements . Biodiv Sci, 27(7): 708-715.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed