生物多样性 ›› 2017, Vol. 25 ›› Issue (5): 481-489.doi: 10.17520/biods.2017006

• 综述 • 上一篇    下一篇

浅析环境特征对遗传多样性与物种多样性的平行效应

徐武美1, 2, 慈秀芹1, 2, 李捷1, *()   

  1. 1 中国科学院西双版纳热带植物园综合保护中心植物系统发育与保护生物学实验室, 昆明 650223
    2 中国科学院大学, 北京 100049
  • 收稿日期:2017-01-03 接受日期:2017-04-06 出版日期:2017-05-20
  • 通讯作者: 李捷 E-mail:jieli@xtbg.ac.cn
  • 基金项目:
    基金项目: 中国西南地区极小种群野生植物调查与种质保存(2017FY100100)课题二“滇西南地区极小种群野生植物调查与种质采集”(2017FY100102)、国家自然科学基金(31500454)及中科院研究所“一三五”项目(XTBG-T01)

Parallel effects of environmental properties on genetic diversity and species diversity

Wumei Xu1, 2, Xiuqin Ci1, 2, Jie Li1, *()   

  1. 1 Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223
    2 University of Chinese Academy of Sciences, Beijing 100049
  • Received:2017-01-03 Accepted:2017-04-06 Online:2017-05-20
  • Contact: Li Jie E-mail:jieli@xtbg.ac.cn

遗传多样性与物种多样性是生物多样性的两个基本层次。近年来的研究表明, 环境特征可能对种群遗传多样性与群落物种多样性产生平行效应。本文对遗传多样性与物种多样性关联模型中环境特征对遗传多样性与物种多样性的平行效应部分进行了具体化介绍。基于群落形成的四个基本过程, 即突变与物种形成、选择、漂变和扩散, 探讨了环境特征对遗传多样性与物种多样性产生平行效应的理论基础。在全球变化的大背景下, 研究环境特征对遗传多样性与物种多样性的平行效应及这两个维度多样性对全球变化响应的异同具有重要的生态学与保护生物学意义。然而, 目前大多数生物多样性研究仍然只基于物种多样性一个维度, 在同一系统中同时对遗传多样性与物种多样性进行整合研究的工作仍然较少。希望通过本文的总结与讨论,能对国内遗传多样性与物种多样性整合研究起到参考与促进作用。

关键词: 环境特征, 遗传多样性, 物种多样性, 平行效应, 全球变化, 生物多样性保护

Genetic diversity and species diversity are the two basic levels of biodiversity; recent studies have indicated the parallel effects of environment properties on these two levels of biodiversity. Here we introduce the species-genetic diversity correlation model regarding the parallel effects of environment properties on genetic diversity and species diversity. Based on the four basic processes in community ecology and population genetics (i.e. mutation and speciation, selection, drift, dispersal), we further discuss the theoretical foundations of the parallel effects of environment properties on these two levels of biodiversity. The studies conducted on these effects have shown significant importance in ecology and conservation biology, especially in the age of global change; however, few studies consider these two levels of biodiversity together but most consider only one in the biodiversity research so far. Therefore, we review the recent progress and outline the future directions in the study of the parallel effects of environmental properties on genetic diversity and species diversity. We hope this will benefit and promote the related studies in China.

Key words: environmental properties, genetic diversity, species diversity, parallel effects, global change, biodiversity conservation

图1

环境特征对遗传多样性与物种多样性的平行效应理论模型(参考Vellend和Geber, 2005)"

表1

不同生态过程对遗传多样性与物种多样性的平行效应(参考Vellend和Geber, 2005)"

生态过程 Ecological processes 遗传多样性 Genetic diversity 物种多样性 Species diversity
突变与物种形成 Mutation and speciation 新等位基因的产生 The creation of new alleles 新物种的形成 The creation of new species
漂变 Drift 种群内等位基因频率的随机变化
Random changes in the relative frequencies of alleles within a population
群落内物种相对多度的随机变化
Random changes in the relative abundance of species within a community
扩散 Dispersal 种群间等位基因的移动
Movement of alleles among populations
群落间物种的移动
Movement of species among communities
选择 Selection 仅对种群内某些等位基因有利的生态过程
Processes that favour particular alleles over others within a population
仅对群落内某些物种有利的生态过程
Processes that favour particular species over others within a community

图2

根据平衡理论所预测的遗传多样性与物种多样性的正相关性(参考Vellend, 2003)。假设岛屿A、B、C、D与大陆的距离相同, 而岛屿面积为D > A > B > C; 岛屿B、E、F、G具有相同的面积且距离大陆的距离(隔离程度)为G > F > E > B。假定岛屿之间不存在物种与基因流, 根据平衡理论预测, 生境面积(图2a)与隔离程度(图2b)是种群遗传多样性与群落物种多样性呈正相关的驱动因素"

图3

基于Tilman资源竞争模型的资源可利用性与异质性对种群遗传多样性与群落物种多样性的影响(参考Vellend和Geber, 2005)。ZNGI为零增长线, 如果两个物种或同一物种不同基因型的ZNGI线相交, 表明它们可能稳定共存, 但取决于资源可利用性在二维空间的分布状况。方框内表示在不同资源可利用性水平下可共存的物种或基因型。群落1(C1)具有较低的环境异质性, 在这种环境下, 只有物种S1的一个基因型G2 (S1, G2)存在竞争优势并长期存在; 群落2 (C2)具有较高的环境异质性, 在这种环境下, 所有物种的所有基因型都能够长期稳定共存。黑色箭头表示资源可利用性的增加方向, 随着群落内资源可利用性的不断增加, 二维资源可利用区域不断向上或向右移动, 最终由于资源可利用性增加而导致种群遗传多样性与群落物种多样性一同降低。"

图4

根据进化速率假设所预测的遗传多样性与物种多样性的纬度梯度分布格局(参考Rohde, 1992; Gaston, 2000; Araujo & Costa-Pereira, 2013; Dowle et al, 2013)"

[1] Adams RI, Hadly EA (2013) Genetic diversity within vertebrate species is greater at lower latitudes. Evolutionary Ecology, 27, 133-143.
[2] Antonovics J (1976) The input from population genetics: “the new ecological genetics”. Systematic Botany, 1, 233-245.
[3] Araujo MS, Costa-Pereira R (2013) Latitudinal gradients in intraspecific ecological diversity. Biology Letters, 9, 20130778.
[4] Avolio ML, Smith MD (2013) Correlations between genetic and species diversity: effects of resource quantity and heterogeneity. Journal of Vegetation Science, 24, 1185-1194.
[5] Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecology Letters, 15, 365-377.
[6] Bertin A, Gouin N, Baumel A, Gianoli E, Serratosa J, Osorio R, Manel S (2016) Genetic variation of loci potentially under selection confounds species-genetic diversity correlations in a fragmented habitat. Molecular Ecology, 26, 431-443.
[7] Biswas SR, Mallik AU (2010) Disturbance effects on species diversity and functional diversity in riparian and upland plant communities. Ecology, 91, 28-35.
[8] Chu CJ, Maestre FT, Xiao S, Weiner J, Wang YS, Duan ZH, Wang G (2008) Balance between facilitation and resource competition determines biomass-density relationships in plant populations. Ecology Letters, 11, 1189-1197.
[9] Clark CM, Tilman D (2008) Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature, 451, 712-715.
[10] Cleary DF, Fauvelot C, Genner MJ, Menken SB, Mooers AO (2006) Parallel responses of species and genetic diversity to El Nino Southern Oscillation-induced environmental destruction. Ecology Letters, 9, 304-310.
[11] Connell JH (1978) Diversity in tropical rain forests and coral reefs-high diversity of trees and corals is maintained only in a non-equilibrium state. Science, 199, 1302-1310.
[12] Dowle EJ, Morgan-Richards M, Trewick SA (2013) Molecular evolution and the latitudinal biodiversity gradient. Heredity, 110, 501-510.
[13] Ellegren H, Galtier N (2016) Determinants of genetic diversity. Nature Reviews Genetics, 17, 422-433.
[14] Eo SH, Wares JP, Carroll JP (2008) Population divergence in plant species reflects latitudinal biodiversity gradients. Biology Letters, 4, 382-384.
[15] Evanno G, Castella E, Antoine C, Paillat G, Goudet J (2009) Parallel changes in genetic diversity and species diversity following a natural disturbance. Molecular Ecology, 18, 1137-1144.
[16] Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution, and Systematics, 34, 487-515.
[17] Fourtune L, Paz-Vinas I, Loot G, Prunier JG, Blanchet S (2016) Lessons from the fish: a multi-species analysis reveals common processes underlying similar species-genetic diversity correlations. Freshwater Biology, 61, 1830-1845.
[18] Frey D, Arrigo N, Granereau G, Sarr A, Felber F, Kozlowski G (2016) Parallel declines in species and genetic diversity driven by anthropogenic disturbance: a multispecies approach in a French Atlantic dune system. Evolutionary Applications, 9, 479-488.
[19] Gaston KJ (2000) Global patterns in biodiversity. Nature, 405, 220-227.
[20] Ge F (2008) Modern Ecology. Science Press, Beijing.
(in Chinese) [戈峰 (主编) (2008) 现代生态学. 科学出版社, 北京. ]
[21] Gram WK, Sork VL (2001) Association between environmental and genetic heterogeneity in forest tree populations. Ecology, 82, 2012-2021.
[22] Grime JP (1973) Competitive exclusion in herbaceous vegetation. Nature, 242, 344-347.
[23] Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen EI, Ewers RM, Foster BL, Jenkins CN, King AJ, Laurance WF, Levey DJ, Margules CR, Melbourne BA, Nicholls AO, Orrock JL, Song DX, Townshend JR (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances, 1, e1500052.
[24] Harpole WS, Tilman D (2007) Grassland species loss resulting from reduced niche dimension. Nature, 446, 791-793.
[25] Hautier Y, Niklaus PA, Hector A (2009) Competition for light causes plant biodiversity loss after eutrophication. Science, 324, 636-638.
[26] He T, Lamont BB, Krauss SL, Enright NJ, Miller BP (2008) Covariation between intraspecific genetic diversity and species diversity within a plant functional group. Journal of Ecology, 96, 956-961.
[27] Huang Y, Tran I, Agrawal AF (2016) Does genetic variation maintained by environmental heterogeneity facilitate adaptation to novel selection? The American Naturalist, 188, 27-37.
[28] Inza MV, Zelener N, Fornes L, Gallo LA (2012) Effect of latitudinal gradient and impact of logging on genetic diversity of Cedrela lilloi along the Argentine Yungas Rainforest. Ecology and Evolution, 2, 2722-2736.
[29] Jarzyna MA, Jetz W (2016) Detecting the multiple facets of biodiversity. Trends in Ecology and Evolution, 31, 527-538.
[30] Lamy T, Jarne P, Laroche F, Pointier JP, Huth G, Segard A, David P (2013) Variation in habitat connectivity generates positive correlations between species and genetic diversity in a metacommunity. Molecular Ecology, 22, 4445-4456.
[31] Laroche F, Jarne P, Lamy T, David P, Massol F (2015) A neutral theory for interpreting correlations between species and genetic diversity in communities. The American Naturalist, 185, 59-69.
[32] Leonardi S, Piovani P, Scalfi M, Piotti A, Giannini R, Menozzi P (2012) Effect of habitat fragmentation on the genetic diversity and structure of peripheral populations of beech in central Italy. Journal of Heredity, 103, 408-417.
[33] Liu XJ, Zhang Y, Han WX, Tang AH, Shen JL, Cui ZL, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang FS (2013) Enhanced nitrogen deposition over China. Nature, 494, 459-462.
[34] Lundholm JT (2009) Plant species diversity and environmental heterogeneity: spatial scale and competing hypotheses. Journal of Vegetation Science, 20, 377-391.
[35] MacArthur RH, Wilson EO (1963) An equilibrium theory of insular zoogeography. Evolution, 17, 373-387.
[36] Moritz C (2002) Strategies to protect biological diversity and the evolutionary processes that sustain it. Systematic Biology, 51, 238-254.
[37] Pauls SU, Nowak C, Balint M, Pfenninger M (2013) The impact of global climate change on genetic diversity within populations and species. Molecular Ecology, 22, 925-946.
[38] Peakall R, Smouse PE (2012) GenAlEx 65: genetic analysis in Excel—Population genetic software for teaching and research—an update. Bioinformatics, 28, 2537-2539.
[39] Pope LC, Riginos C, Ovenden J, Keyse J, Blomberg SP (2015) Population genetic diversity in the Australian “seascape”: a bioregion approach. PLoS ONE, 10, e0136275.
[40] Ravenscroft CH, Whitlock R, Fridley JD (2015) Rapid genetic divergence in response to 15 years of simulated climate change. Global Change Biology, 21, 4165-4176.
[41] Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conservation Biology, 17, 230-237.
[42] Ricklefs RE (1977) Environmental heterogeneity and plant species diversity: a hypothesis. The American Naturalist, 111, 376-381.
[43] Rohde K (1992) Latitudinal gradients in species diversity: the search for the primary cause. Oikos, 65, 514-527.
[44] Schrey AW, Grispo M, Awad M, Cook M, McCoy ED, Mushinsky H, Albayrak T, Bensch S, Burke T, Butler LK, Dor R, Fokidis HB, Jensen H, Imboma T, Kessler-Rios MM, Marzal A, Stewart IRK, Westerdahl H, Westneat DF, Zehtindjiev P, Martin LB (2011) Broad-scale latitudinal patterns of genetic diversity among native European and introduced house sparrow (Passer domesticus) populations. Molecular Ecology, 20, 1133-1143.
[45] Silvertown J, Biss PM, Freeland J (2009) Community genetics: resource addition has opposing effects on genetic and species diversity in a 150-year experiment. Ecology Letters, 12, 165-170.
[46] Stein A, Gerstner K, Kreft H (2014) Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters, 17, 866-880.
[47] Stevens RD, Gavilanez MM, Tello JS, Ray DA (2012) Phylogenetic structure illuminates the mechanistic role of environmental heterogeneity in community organization. Journal of Animal Ecology, 81, 455-462.
[48] Struebig MJ, Kingston T, Petit EJ, Le Comber SC, Zubaid A, Mohd-Adnan A, Rossiter SJ (2011) Parallel declines in species and genetic diversity in tropical forest fragments. Ecology Letters, 14, 582-590.
[49] Taberlet P, Zimmermann NE, Englisch T, Tribsch A, Holderegger R, Alvarez N, Niklfeld H, Coldea G, Mirek Z, Moilanen A, Ahlmer W, Marsan PA, Bona E, Bovio M, Choler P, Cieslak E, Colli L, Cristea V, Dalmas JP, Frajman B, Garraud L, Gaudeul M, Gielly L, Gutermann W, Jogan N, Kagalo AA, Korbecka G, Kupfer P, Lequette B, Letz DR, Manel S, Mansion G, Marhold K, Martini F, Negrini R, Nino F, Paun O, Pellecchia M, Perico G, Piekos-Mirkowa H, Prosser F, Puscas M, Ronikier M, Scheuerer M, Schneeweiss GM, Schonswetter P, Schratt-Ehrendorfer L, Schupfer F, Selvaggi A, Steinmann K, Thiel-Egenter C, van Loo M, Winkler M, Wohlgemuth T, Wraber T, Gugerli F, IntraBioDiv Consortium, Vellend M (2012) Genetic diversity in widespread species is not congruent with species richness in alpine plant communities. Ecology Letters, 15, 1439-1448.
[50] Thom D, Seidl R (2015) Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biological Reviews, 91, 760-781.
[51] Tilman D (1982) Resource Competition and Community Structure. Princeton University Press, Princeton.
[52] Vellend M (2003) Island biogeography of genes and species. The American Naturalist, 162, 358-365.
[53] Vellend M (2004) Parallel effects of land-use history on species diversity and genetic diversity of forest herbs. Ecology, 85, 3043-3055.
[54] Vellend M (2010) Conceptual synthesis in community ecology. Quarterly Review of Biology, 85, 183-206.
[55] Vellend M (2016) The Theory of Ecological Communities. Princeton University Press, Princeton.
[56] Vellend M, Geber MA (2005) Connections between species diversity and genetic diversity. Ecology Letters, 8, 767-781.
[57] Vik U, Jorgensen MH, Kauserud H, Nordal I, Brysting AK (2010) Microsatellite markers show decreasing diversity but unchanged level of clonality in Dryas octopetala (Rosaceae) with increasing latitude. American Journal of Botany, 97, 988-997.
[58] Wassen MJ, Venterink HO, Lapshina ED, Tanneberger F (2005) Endangered plants persist under phosphorus limitation. Nature, 437, 547-550.
[59] Wei X, Jiang M (2012) Contrasting relationships between species diversity and genetic diversity in natural and disturbed forest tree communities. New Phytologist, 193, 779-786.
[60] Whittaker RH (1972) Evolution and measurement of species diversity. Taxon, 21, 213-251.
[61] Willig MR, Kaufman DM, Stevens RD (2003) Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annual Review of Ecology, Evolution, and Systematics, 34, 273-309.
[62] Xu WM, Song CY, Li QM (2015) Relationship between soil resource heterogeneity and tree diversity in Xishuangbanna tropical seasonal rainforest, Southwest China. Acta Ecologica Sinica, 35, 7756-7762. (in Chinese with English abstract)
[徐武美, 宋彩云, 李巧明 (2015) 西双版纳热带季节雨林土壤养分空间异质性对乔木树种多样性的影响. 生态学报, 35, 7756-7762.]
[63] Xu WM, Liu L, He T, Cao M, Sha LQ, Hu YH, Li QM, Li J (2016a) Soil properties drive a negative correlation between species diversity and genetic diversity in a tropical seasonal rainforest. Scientific Reports, 6, 20652.
[64] Xu WM, Ci XQ, Song CY, He TH, Zhang WF, Li QM, Li J (2016b) Soil phosphorus heterogeneity promotes tree species diversity and phylogenetic clustering in a tropical seasonal rainforest. Ecology and Evolution, 6, 8719-8726.
[65] Yang ZY, Liu XQ, Zhou MH, Ai D, Wang G, Wang YS, Chu CJ, Lundholm JT (2015) The effect of environmental heterogeneity on species richness depends on community position along the environmental gradient. Scientific Reports, 5, 15723.
[66] Yeaman S, Jarvis A (2006) Regional heterogeneity and gene flow maintain variance in a quantitative trait within populations of lodgepole pine. Proceedings of the Royal Society B: Biological Sciences, 273, 1587-1593.
[67] Yuan ZY, Jiao F, Li YH, Kallenbach RL (2016) Anthropogenic disturbances are key to maintaining the biodiversity of grasslands. Scientific Reports, 6, 22132.
[68] Zhang QG, Zhang DY, Ge JP, Zhao GL, Yu ZL (2014) Progress and hotspot in integrative biodiversity research — A review for “Shuangqing Forum, No. 88”. Chinese Bulletin of Life Sciences, 26, 97-99. (in Chinese)
[张全国, 张大勇, 葛剑平, 赵桂玲, 于振良 (2014) 生物多样性整合研究的进展及热点——第88期“双清论坛”综述. 生命科学, 26, 97-99.]
[69] Zhu BR, Zhang DY (2011) A process-based theoretical framework for community ecology. Biodiversity Science, 19, 389-399. (in Chinese with English abstract)
[朱璧如, 张大勇 (2011) 基于过程的群落生态学理论框架. 生物多样性, 19, 389-399.]
[1] 彭书时 岳超 常锦峰. (2020) 陆地生物圈模型的发展与应用. 植物生态学报, 44(生态技术与方法专辑): 0-0.
[2] 邢鹏 李彪 韩一萱 顾秋锦 万洪秀. (2020) 淡水生态系统对全球变化的响应-研究进展与展望. 植物生态学报, 44(全球变化与生态系统专辑): 0-0.
[3] 张扬建 朱军涛 沈若楠 王荔. (2020) 放牧对草地生态系统的影响研究进展. 植物生态学报, 44(全球变化与生态系统专辑): 0-0.
[4] 苏金源,燕语,李冲,李丹,杜芳. (2020) 通过遗传多样性探讨极小种群野生植物的致濒机理及保护策略: 以裸子植物为例. 生物多样性, 28(3): 376-384.
[5] 刘丹,郭忠玲,崔晓阳,范春楠. (2020) 5种东北红豆杉植物群丛及其物种多样性的比较. 生物多样性, 28(3): 340-349.
[6] 刘振元,孟星亮,李正飞,张君倩,徐靖,银森录,谢志才. (2020) 南洞庭湖区软体动物物种多样性评估及保护对策. 生物多样性, 28(2): 155-165.
[7] 刘旻霞,李全弟,蒋晓轩,夏素娟,南笑宁,张娅娅,李博文. (2020) 甘南亚高寒草甸稀有种对物种多样性和物种多度分布格局的贡献. 生物多样性, 28(2): 107-116.
[8] 李霞,朱万泽,孙守琴,舒树淼,盛哲良,张军,刘亭,张志才. (2020) 大渡河中游干暖河谷区生境对植物群落分布格局和多样性的影响. 生物多样性, 28(2): 117-127.
[9] 丁威,王玉冰,向官海,迟永刚,鲁顺保,郑淑霞. (2020) 小叶锦鸡儿灌丛化对典型草原群落结构与生态系统功能的影响. 植物生态学报, 44(1): 33-43.
[10] 王玉冰,孙毅寒,丁威,张恩涛,李文怀,迟永刚,郑淑霞. (2020) 长期氮添加对典型草原植物多样性与初级生产力的影响及途径. 植物生态学报, 44(1): 22-32.
[11] 谭一波,申文辉,付孜,郑威,欧芷阳,谭长强,彭玉华,庞世龙,何琴飞,黄小荣,何峰. (2019) 环境因子对桂西南蚬木林下植被物种多样性变异的解释. 生物多样性, 27(9): 970-983.
[12] 方文静,蔡琼,朱江玲,吉成均,岳明,郭卫华,张峰,高贤明,唐志尧,方精云. (2019) 华北地区落叶松林的分布、群落结构和物种多样性. 植物生态学报, 43(9): 742-752.
[13] 秦浩,张殷波,董刚,张峰. (2019) 山西关帝山森林群落物种、谱系和功能多样性海拔格局. 植物生态学报, 43(9): 762-773.
[14] 陈自宏,王元兵,代永东,陈凯,徐玲,何謦成. (2019) 滇西太保山森林公园子囊菌门虫生真菌物种多样性及其消长动态. 生物多样性, 27(9): 993-1001.
[15] 唐丽丽,杨彤,刘鸿雁,康慕谊,王仁卿,张峰,高贤明,岳明,张梅,郑璞帆,石福臣. (2019) 华北地区荆条灌丛分布及物种多样性空间分异 规律. 植物生态学报, 43(9): 825-833.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed