生物多样性 ›› 2014, Vol. 22 ›› Issue (1): 66-71.doi: 10.3724/SP.J.1003.2014.13248

所属专题: 基因组和生物多样性

• • 上一篇    下一篇

发育重塑与生物多样性

张睿*(), 国春策, 山红艳, 孔宏智   

  1. 中国科学院植物研究所系统与进化植物学国家重点实验室, 北京 100093
  • 收稿日期:2013-11-29 接受日期:2014-01-24 出版日期:2014-01-20
  • 通讯作者: 张睿 E-mail:iloverdz@ibcas.ac.cn
  • 基金项目:
    国家自然科学基金重点项目(30530090)

Developmental repatterning and biodiversity

Rui Zhang*(), Chunce Guo, Hongyan Shan, Hongzhi Kong   

  1. State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093
  • Received:2013-11-29 Accepted:2014-01-24 Online:2014-01-20
  • Contact: Zhang Rui E-mail:iloverdz@ibcas.ac.cn

多细胞生物的成熟个体都是由单细胞的受精卵发育而来的。如果把成熟个体的表型看成生命存在的式样或模式(pattern), 那么发育就是形成和产生这种式样或模式的过程, 即塑造(patterning)或发育塑造(developmental patterning)。相应地, 对原来发育过程进行修饰或改变而产生新表型的过程就是发育重塑(developmental repatterning)。已有的研究结果表明, 发育重塑在多细胞生物的进化过程中非常普遍, 也非常重要。根据突变的类型和后果, 发育重塑既包括对相同基因在表达的时、空和量上的改变, 分别为异时(heterochrony)、异位(heterotopy)和异量(heterometry), 又包括对基因类型的改变, 即异型(heterotypy)。本文通过对一些经典案例的介绍, 揭示了发育重塑与表型变化的关系, 探讨发育重塑对生物多样性的贡献。

关键词: 生物多样性, 发育重塑, 异时, 异位, 异量, 异型

Adult individuals of multicellular organisms are derived from single cells, the zygote. If the phenotype of a mature organism is regarded as a pattern of existence, then the process that generates the pattern can be called developmental patterning. Consequently, modification or alteration of the original developmental trajectory to generate novel phenotype(s) is the process of developmental repatterning. Accumulated data in recent years suggest that developmental repatterning is not only widespread, but is also very important during the evolution of multicellular organisms. According to the type and consequence of mutation, developmental repatterning can be divided into four main types: heterochrony, heterotopy, heterometry, and heterotypy. Heterochrony, heterotopy and heterometry refer to changes of gene expression over time, space and in amount/concentration, respectively, while heterotypy is the replacement of gene product. Here, by introducing examples of developmental repatterning, we explain the relationship between developmental repatterning and phenotypic evolution, and discuss its contribution to biodiversity.

Key words: biodiversity, developmental repatterning, heterochrony, heterotopy, heterometry, heterotypy

[30] Kramer EM, Irish VF (1999) Evolution of genetic mechanisms controlling petal development.Nature, 399, 144-148.
[31] Kramer EM, Jaramillo MA, Di Stilio VS (2004) Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS-box genes in angiosperms.Genetics, 166, 1011-1023.
[32] McGregor AP, Orgogozo V, Delon I, Zanet J, Srinivasan DG, Payre F, Stern DL (2007) Morphological evolution through multiple cis-regulatory mutations at a single gene.Nature, 448, 587-590.
[33] McNamara KJ (1986) A guide to the nomenclature of heterochrony.Journal of Paleontology, 60, 4-13.
[34] Mondragón-Palomino M, Theißen G (2008) MADS about the evolution of orchid flowers.Trends in Plant Science, 13, 51-59.
[35] Parker ST, McKinney ML (1999) Origins of Intelligence: the Evolution of Cognitive Development in Monkeys, Apes, and Humans. Johns Hopkins University Press, Baltimore.
[36] Prud’homme B, Gompel N, Carroll SB (2007) Emerging principles of regulatory evolution.Proceedings of the National Academy of Sciences, USA, 104, 8605-8612.
[37] Ronshaugen M, McGinnis N, McGinnis W (2002) Hox protein mutation and macroevolution of the insect body plan.Nature, 415, 914-917.
[38] Saga Y, Takeda H (2001) The making of the somite: molecular events in vertebrate segmentation.Nature Reviews Genetics, 2, 835-845.
[39] Sander K (2002) Ernst Haeckel’s ontogenetic recapitulation: irritation and incentive from 1866 to our time.Annals of Anatomy, 184, 523-533.
[40] Sasai Y, Lu B, Steinbeisser H, Geissert D, Gont LK, De Robertis EM (1994) Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes.Cell, 79, 779-790.
[41] Stern DL (2013) The genetic causes of convergent evolution.Nature Reviews Genetics, 14, 751-764.
[42] Stollewerk A, Schoppmeier M, Damen WG (2003) Involve- ment of Notch and Delta genes in spider segmentation.Nature, 423, 863-865.
[43] Sucena E, Delon I, Jones I, Payre F, Stern DL (2003) Regulatory evolution of shavenbaby/ovo underlies multiple cases of morphological parallelism.Nature, 424, 935-938.
[44] Turck F, Fornara F, Coupland G (2008) Regulation and identity of florigen: FLOWERING LOCUS T moves center stage.Annual Review of Plant Biology, 59, 573-594.
[45] von Baer KE (1828) Uber Entwicklungsgeschichte der Tiere: Beobachtung und Reflection. Bornträger, Königsberg.
[46] Wang YQ, Su B (2004) Molecular evolution of microcephalin, a gene determining human brain size.Human Molecular Genetics, 13, 1131-1137.
[47] Weatherbee SD, Frederik Nijhout H, Grunert LW, Halder G, Galant R, Selegue J, Carroll SB (1999)Ultrabithorax function in butterfly wings and the evolution of insect wing patterns.Current Biology, 9, 109-115.
[48] Weatherbee SD, Halder G, Kim J, Hudson A, Carroll S (1998) Ultrabithorax regulates genes at several levels of the wing-patterning hierarchy to shape the development of the Drosophila haltere.Genes & Development, 12, 1474-1482.
[49] Wharton KA, Ray RP, Gelbart WM (1993) An activity gradient of decapentaplegic is necessary for the specification of dorsal pattern elements in the Drosophila embryo.Development, 117, 807-822.
[1] Abzhanov A, Kuo WP, Hartmann C, Grant BR, Grant PR, Tabin CJ (2006) The calmodulin pathway and evolution of elongated beak morphology in Darwin’s finches.Nature, 442, 563-567.
[2] Abzhanov A, Protas M, Grant BR, Grant PR, Tabin CJ (2004) Bmp4 and morphological variation of beaks in Darwin’s finches.Science, 305, 1462-1465.
[3] Airoldi CA, Bergonzi S, Davies B (2010) Single amino acid change alters the ability to specify male or female organ identity.Proceedings of the National Academy of Sciences, USA, 107, 18898-18902.
[4] Ali F, Meier R (2008) Positive selection in ASPM is correlated with cerebral cortex evolution across primates but not with whole-brain size.Molecular Biology and Evolution, 25, 2247-2250.
[5] Arthur W (2004) Biased Embryos and Evolution. Cambridge University Press, Cambridge.
[6] Arthur W (2011) Evolution: A Developmental Approach. John Wiley & Sons, Inc., Malaysia.
[7] Arthur W, Chipman AD (2005) The centipede Strigamia maritima: what it can tell us about the development and evolution of segmentation.BioEssays, 27, 653-660.
[8] Bond J, Roberts E, Mochida GH, Hampshire DJ, Scott S, Askham JM, Springell K, Mahadevan M, Crow YJ, Markham AF (2002) ASPM is a major determinant of cerebral cortical size.Nature Genetics, 32, 316-320.
[9] Bowman R (1961) Morphological differentiation and adaptation in the Galápagos finches.University of California Publications in Zoology, 58, 1-302.
[10] Carroll SB (1995) Homeotic genes and the evolution of arthropods and chordates.Nature, 376, 479-485.
[11] Carroll SB (2005) Endless Forms Most Beautiful: The New Science of Evo Devo and the Making of the Animal Kingdom. W.W. Norton & Company, New York.
[12] Carroll SB, Grenier J, Weatherbee S (2009) From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design. Blackwell Science, Malden, Massachusetts.
[13] Causier B, Castillo R, Zhou J, Ingram R, Xue Y, Schwarz-Sommer Z, Davies B (2005) Evolution in action: following function in duplicated floral homeotic genes.Current Biology, 15, 1508-1512.
[14] Chipman AD, Akam M (2008) The segmentation cascade in the centipede Strigamia maritima: involvement of the Notch pathway and pair-rule gene homologues.Developmental Biology, 319, 160-169.
[15] Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development.Nature, 353, 31-37.
[16] Conlon RA, Reaume AG, Rossant J (1995) Notch1 is required for the coordinate segmentation of somites.Development, 121, 1533-1545.
[17] Fainsod A, Steinbeisser H, De Robertis E (1994) On the function of BMP-4 in patterning the marginal zone of the Xenopus embryo.The EMBO Journal, 13, 5015-5025.
[18] Francois V, Solloway M, O’Neill JW, Emery J, Bier E (1994) Dorsal-ventral patterning of the Drosophila embryo depends on a putative negative growth factor encoded by the short gastrulation gene.Genes & Development, 8, 2602-2616.
[19] Galant R, Carroll SB (2002) Evolution of a transcriptional repression domain in an insect Hox protein.Nature, 415, 910-913.
[20] Goto K, Meyerowitz EM (1994) Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA.Genes & Development, 8, 1548-1560.
[21] Hileman LC, Irish VF (2009) More is better: the uses of developmental genetic data to reconstruct perianth evolution.American Journal of Botany, 96, 83-95.
[22] Holley SA, Jackson PD, Sasai Y, Lu B, De Robertis EM, Hoffmann FM, Ferguson EL (1995) A conserved system for dorsal-ventral patterning in insects and vertebrates involving sog and chordin.Nature, 376, 249-253.
[23] Jack T, Brockman LL, Meyerowitz EM (1992) The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS-box and is expressed in petals and stamens.Cell, 68, 683-697.
[24] Jackson AP, Eastwood H, Bell SM, Adu J, Toomes C, Carr IM, Roberts E, Hampshire DJ, Crow YJ, Mighell AJ (2002) Identification of microcephalin, a protein implicated in determining the size of the human brain.The American Journal of Human Genetics, 71, 136-142.
[25] Kanno A, Saeki H, Kameya T, Saedler H, Theissen G (2003) Heterotopic expression of class B floral homeotic genes supports a modified ABC model for tulip (Tulipa gesneriana).Plant Molecular Biology, 52, 831-841.
[26] Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999) Activation tagging of the floral inducer FT.Science, 286, 1962-1965.
[27] Khaitovich P, Enard W, Lachmann M, Pääbo S (2006) Evolution of primate gene expression.Nature Reviews Genetics, 7, 693-702.
[28] Khaitovich P, Hellmann I, Enard W, Nowick K, Leinweber M, Franz H, Weiss G, Lachmann M, Pääbo S (2005) Parallel patterns of evolution in the genomes and transcriptomes of humans and chimpanzees.Science, 309, 1850-1854.
[29] Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions.Plant and Cell Physiology, 43, 1096-1105.
[50] Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors.Nature, 346, 35-39.
[1] 李熠 唐志尧 闫昱晶 王科 蔡磊 贺金生 古松 姚一建. (2020) 物种分布模型在大型真菌红色名录评估及保护中的应用: 以冬虫夏草为例(大型真菌红色名录专辑). 生物多样性, 28(1): 0-0.
[2] 杨锐, 彭钦一, 曹越, 钟乐, 侯姝彧, 赵智聪, 黄澄. (2019) 中国生物多样性保护的变革性转变及路径. 生物多样性, 27(9): 1032-1040.
[3] 李顺, 邹亮, 宫一男, 杨海涛, 王天明, 冯利民, 葛剑平. (2019) 激光雷达技术在动物生态学领域的研究进展. 生物多样性, 27(9): 1021-1031.
[4] 李永民, 吴孝兵. (2019) 安徽省两栖爬行动物名录修订. 生物多样性, 27(9): 1002-1011.
[5] 杨云卉, 白可喻, Devra Jarvis, 龙春林. (2019) 西双版纳黄瓜农家品种及其传统知识. 生物多样性, 27(7): 743-748.
[6] 孙蓓蓓, 俞存根, 刘惠, 颜文超, 张文俊, 戴冬旭. (2019) 南麂列岛东侧海域春秋季虾蟹类生物多样性. 生物多样性, 27(7): 787-795.
[7] 丁陆彬, 马楠, 王国萍, 何思源, 闵庆文. (2019) 生物多样性相关传统知识研究热点与前沿的可视化分析. 生物多样性, 27(7): 716-727.
[8] 孔嘉鑫, 张昭臣, 张健. (2019) 基于多源遥感数据的植物物种分类与识别: 研究进展与展望. 生物多样性, 27(7): 796-812.
[9] 曹宁, 薛达元. (2019) 论壮族传统文化对生物多样性的保护: 以广西靖西市为例. 生物多样性, 27(7): 728-734.
[10] 张渊媛. (2019) 生物多样性相关传统知识的国际保护及中国应对策略. 生物多样性, 27(7): 708-715.
[11] 桂旭君, 练琚愉, 张入匀, 李艳朋, 沈浩, 倪云龙, 叶万辉. (2019) 鼎湖山南亚热带常绿阔叶林群落垂直结构及其物种多样性特征. 生物多样性, 27(6): 619-629.
[12] 张晓玲, 李亦超, 王芸芸, 蔡宏宇, 曾辉, 王志恒. (2019) 未来气候变化对不同国家茶适宜分布区的影响. 生物多样性, 27(6): 595-606.
[13] 刘艳, 杨钰爽. (2019) 生物多样性保护优先区对重庆苔藓植物多样性保护的重要性. 生物多样性, 27(6): 677-682.
[14] 邢圆, 吴小平, 欧阳珊, 张君倩, 徐靖, 银森录, 谢志才. (2019) 赣江水系大型底栖动物多样性与受胁因子初探. 生物多样性, 27(6): 648-657.
[15] 王攀, 朱湾湾, 牛玉斌, 樊瑾, 余海龙, 赖江山, 黄菊莹. (2019) 氮添加对荒漠草原植物群落组成与微生物生物量生态化学计量特征的影响. 植物生态学报, 43(5): 427-436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed