生物多样性 ›› 2013, Vol. 21 ›› Issue (4): 445-455.doi: 10.3724/SP.J.1003.2013.11094

所属专题: 微生物多样性专辑

• • 上一篇    下一篇


王风平, 周悦恒, 张新旭, 肖湘*()   

  1. 上海交通大学生命科学与技术学院 微生物代谢国家重点实验室 上海交通大学海洋工程国家重点实验室 上海 200240
  • 收稿日期:2013-04-11 接受日期:2012-07-17 出版日期:2013-07-20
  • 通讯作者: 肖湘 E-mail:xoxiang@sjtu.edu.cn
  • 基金项目:
    国家重点基础研究发展计划项目(2011CB808800);国家自然科学基金(91228201, 31290232)

Biodiversity of deep-sea microorganisms

Fengping Wang, Yueheng Zhou, Xinxu Zhang, Xiang Xiao*()   

  1. State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240
  • Received:2013-04-11 Accepted:2012-07-17 Online:2013-07-20
  • Contact: Xiao Xiang E-mail:xoxiang@sjtu.edu.cn

海洋面积约占地球总面积的70%, 平均深度3,800 m, 海底平均压力38 MPa, 海水以下更是包含有物理化学性质迥异的多种地质结构, 例如海洋沉积物、洋壳、热液口以及冷泉等。这些性质迥异的地质结构环境造就了丰富的生物多样性, 构成了地球上最大的微生物生态系统。深海海水中最主要的微生物类群是α-, γ-变形菌(Alpha- & Gammaproteobacteria), 以及海洋古菌群 I(Marine Group I)。深海沉积物中微生物含量与有机物含量和距离大陆板块的距离相关, 以异养微生物为主。深海冷泉区富集了厌氧甲烷氧化古菌ANME和硫酸盐还原菌(Deltaproteobacteria); 深海热液区由于具有化学物质的多样性和快速的动态变化而导致形成微生物的高度多样性。洋壳主要由基性、超基性岩构成, 含有丰富的矿物, 其中不乏参与铁、锰、硫等关键代谢反应的化能自养微生物。同时, 由于环境中99%以上的微生物没有已培养的亲缘种, 因此对深海微生物的多样性、生理功能特性以及生物地球化学作用的理解和研究仍然存在巨大的挑战。本文将尝试从不同的深海环境分区来综述深海海水、沉积物、洋壳, 以及冷泉区和热液口等特殊生态环境中微生物的分布和多样性。

关键词: 微生物, 生物多样性, 深部生物圈, 微生物生态

The oceans, with an average depth of 3,800 meters and an average pressure about 38 MPa, cover about 70% of the surface of the Earth. Geological structures under the seawater, such as marine sediments, oceanic crust, hydrothermal vents, and the cold seeps, vary significantly with regard to physical and chemical properties. In combination, these diverse environments contain the largest microbial ecosystem in the world. In deep seawater, the major microorganism groups are Alpha-& Gammaproteobacteria, and Marine Group I. In deep-sea sediments, the abundance of microbes is related to the content of organic matter and distance from land. Methane Oxidizing Archaea (ANME) and sulfate reducing bacteria (Deltaproteobacteria) are common in deep-sea cold seep environments; while in hydrothermal vents, the richness and dynamics of chemical substances have led to highly diversified archaeal and bacterial groups. In contrast, the oceanic crust is mainly composed of basic and ultrabasic rocks rich in minerals, and as a result houses microorganisms that are mainly autotrophic, utilizing iron, manganese and sulfur. Because more than 99% of deep-sea microorganisms cannot be cultured, an understanding of their diversity, physiological features, and biogeochemical roles remains to be fully achieved. In this article, we review and summarize what is known about the distribution and diversity of deep-sea microorganisms in diverse habitats. It is emphasized that there is much to learn about these microbes.

Key words: microbiology, biodiversity, deep subsurface biosphere, microbial ecology

1 Arístegui J, Duarte CM, Agustí S, Doval M, Álvarez-Salgado XA, Hansell DA (2002) Dissolved organic carbon support of respiration in the dark ocean.Science, 298, 1967.
2 Auguet JC, Barberan A, Casamayor EO (2009) Global ecological patterns in uncultured Archaea.The ISME Journal, 4, 182-190.
3 Bach W, Edwards KJ (2003) Iron and sulfide oxidation within the basaltic ocean crust: implications for chemolith- oautotrophic microbial biomass production.Geochimica et Cosmochimica Acta, 67, 3871-3887.
4 Bartlett DH (1999) Microbial adaptations to the psychro- sphere/piezosphere.Journal of Molecular Microbiology and Biotechnology, 1, 93-100.
5 Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation.Science, 325, 184-187.
6 Behrens S, Lösekann T, Pett-Ridge J, Weber PK, Ng WO, Stevenson BS, Hutcheon ID, Relman DA, Spormann AM (2008) Linking microbial phylogeny to metabolic activity at the single-cell level by using enhanced element labeling-catalyzed reporter deposition fluorescence in situ hybridization (EL-FISH) and NanoSIMS.Applied and Environmental Microbiology, 74, 3143-3150.
7 Biddle JF, Lipp JS, Lever MA, Lloyd KG, Sørensen KB, Anderson R, Fredricks HF, Elvert M, Kelly TJ, Schrag DP, Sogin ML, Brenchley JE, Teske A, House CH, Hinrichs KU (2006) Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. Proceedings of the National Academy of Sciences, USA, 103, 3846-3851.
8 Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane.Nature, 407, 623-626.
9 Bowman JP, McCuaig RD (2003) Biodiversity, community structural shifts, and biogeography of prokaryotes within Antarctic continental shelf sediment.Applied and Environmental Microbiology, 69, 2463-2483.
10 Brazelton WJ, Ludwig KA, Sogin ML, Andreishcheva EN, Kelley DS, Shen CC, Edwards RL, Baross JA (2010) Archaea and bacteria with surprising microdiversity show shifts in dominance over 1,000-year time scales in hydrothermal chimneys. Proceedings of the National Academy of Sciences, USA, 107, 1612-1617.
11 Brazelton WJ, Schrenk MO, Kelley DS, Baross JA (2006) Methane-and sulfur-metabolizing microbial communities dominate the Lost City hydrothermal field ecosystem.Applied and Environmental Microbiology, 72, 6257-6270.
12 Brown MV, Philip GK, Bunge JA, Smith MC, Bissett A, Lauro FM, Fuhrman JA, Donachie SP (2009) Microbial community structure in the North Pacific ocean.The ISME Journal, 3, 1374-1386.
13 Brust J, Waniek JJ (2010) Atmospheric dust contribution to deep-sea particle fluxes in the subtropical Northeast Atlantic.Deep Sea Research Part I: Oceanographic Research Papers, 57, 988-998.
14 Canfield DE, Jørgensen BB, Fossing H, Glud R, Gundersen J, Ramsing NB, Thamdrup B, Hansen JW, Nielsen LP, Hall PO (1993) Pathways of organic carbon oxidation in three continental margin sediments.Marine Geology, 113, 27-40.
15 Christensen JP (1989) Sulfate reduction and carbon oxidation rates in continental shelf sediments, an examination of offshelf carbon transport.Continental Shelf Research, 9, 223-246.
16 Claypool GE, Kvenvolden KA (1983) Methane and other hydrocarbon gases in marine sediment.Annual Review of Earth and Planetary Sciences, 11, 299-327.
17 Corliss JB, Dymond J, Gordon LI, Edmond JM, Herzen RP, Ballard RD, Green K, Williams D, Bainbridge A, Crane K, Andel TH (1979) Submarine thermal Sprirngs on the Galapagos Rift.Science, 203, 1073-1083.
18 D’Hondt S, Jørgensen BB, Miller DJ, Batzke A, Blake R, Cragg BA, Cypionka H, Dickens GR, Ferdelman T, Hinrichs KU, Holm NG, Mitterer R, Spivack A, Wang GZ, Bekins B, Engelen B, Ford K, Gettemy G, Rutherford SD, Sass H, Skilbeck CG, Aiello IW, Guèrin G, House GH, Inagaki F, Meister P, Naehr T, Niitsuma S, Parkes RJ, Schippers A, Smith DC, Teske A, Wiegel J, Padilla CN, Acosta JLS (2004) Distributions of microbial activities in deep subseafloor sediments.Science, 306, 2216-2221.
19 D’Hondt S, Spivack AJ, Pockalny R, Ferdelman TG, Fischer JP, Kallmeyer J, Abrams LJ, Smith DC, Graham D, Hasiuk F, Schrum H, Stancin AM (2009) Subseafloor sedimentary life in the South Pacific Gyre. Proceedings of the National Academy of Sciences, USA, 106, 11651-11656.
20 Dekas AE, Poretsky RS, Orphan VJ (2009) Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia.Science, 326, 422-426.
21 DeLong EF (1992) Archaea in coastal marine environments. Proceedings of the National Academy of Sciences, USA, 89, 5685-5689.
22 DeLong EF, Preston CM, Mincer T, Rich V, Hallam SJ, Frigaard NU, Martinez A, Sullivan MB, Edwards R, Brito BR, Chisholm SW, Karl DM (2006) Community genomics among stratified microbial assemblages in the ocean’s interior.Science, 311, 496-503.
23 DeLong EF, Wu KY, Prézelin BB, Jovine RV (1994) High abundance of Archaea in Antarctic marine picoplankton.Nature, 371, 695-697.
24 Dick GJ, Lee YE, Tebo BM (2006) Manganese (II)-oxidizing Bacillus spores in Guaymas Basin hydrothermal sediments and plumes.Applied and Environmental Microbiology, 72, 3184-3190.
25 Edwards KJ, Bach W, McCollom TM, Rogers DR (2004) Neutrophilic iron-oxidizing bacteria in the ocean: their habitats, diversity, and roles in mineral deposition, rock alteration, and biomass production in the deep-sea.Geomicrobiology Journal, 21, 393-404.
26 Edwards KJ, Becker K, Colwell F (2012) The deep, dark energy biosphere: intraterrestrial life on Earth.Annual Review of Earth and Planetary Sciences, 40, 551-568.
27 Edwards KJ, Rogers DR, Wirsen CO, McCollom TM (2003) Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidizing, chemolithoautotrophic α- and γ-Proteobacteria from the deep sea.Applied and Environmental Microbiology, 69, 2906-2913.
28 Edwards KJ, Wheat CG, Sylvan JB (2011) Under the sea: microbial life in volcanic oceanic crust.Nature Reviews Microbiology, 9, 703-712.
29 Elsaied HE, Hayashi T, Naganuma T (2004) Molecular an- alysis of deep-sea hydrothermal vent aerobic methanotrophs by targeting genes of 16S rRNA and particulate methane monooxygenase.Marine Biotechnology, 6, 503-509.
30 Emerson D, Fleming EJ, McBeth JM (2010) Iron-oxidizing bacteria: an environmental and genomic perspective.Annual Review of Microbiology, 64, 561-583.
31 Engelen B, Ziegelmüller K, Wolf L, Köpke B, Gittel A, Cypionka H, Treude T, Nakagawa S, Inagaki F, Lever MA, Steinsbu BO (2008) Fluids from the oceanic crust support microbial activities within the deep biosphere.Geomicrobiology Journal, 25, 56-66.
32 Expedition 336 Scientists (2011) Mid-Atlantic Ridge Micro- biology: Initiation of Long-Term Coupled Microbiological, Geochemical, and Hydrological Experimentation Within the Seafloor at North Pond, Western Flank of the Mid-Atlantic Ridge. IODP Prel Rept, 336.
33 Fang JS, Zhang L (2011) Exploring the deep biosphere.Science China: Earth Sciences, 54, 157-165.
34 Flores GE, Campbell JH, Kirshtein JD, Meneghin J, Podar M, Steinberg JI, Seewald JS, Tivry MK, Voytek MA, Yang ZK, Reysenbach AL (2011) Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge.Environmental Microbiology, 13, 2158-2171.
35 Fry JC, Parkes RJ, Cragg BA, Weightman AJ, Webster G (2008) Prokaryotic biodiversity and activity in the deep subseafloor biosphere.FEMS Microbiology Ecology, 66, 181-196.
36 Fuhrman JA (1992) Novel major archaebacterial group from marine plankton.Nature, 356, 148-149.
37 Fuhrman JA, Ouverney CC (1998) Marine microbial diversity studied via 16S rRNA sequences: cloning results from coastal waters and counting of native archaea with fluorescent single cell probes.Aquatic Ecology, 32, 3-15.
38 Gao HC, Obraztova A, Stewart N, Popa R, Fredrickson JK, Tiedje JM, Nealson KH, Zhou JZ (2006) Shewanella loihica sp. nov., isolated from iron-rich microbial mats in the Pacific Ocean.International Journal of Systematic and Evolutionary Microbiology, 56, 1911-1916.
39 Hallam SJ, Mincer TJ, Schleper C, Preston CM, Roberts K, Richardson PM, DeLong EF (2006) Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota.PLoS Biology, 4(4), e95.
40 Huber JA, Butterfield DA, Baross JA (2002) Temporal changes in archaeal diversity and chemistry in a mid-ocean ridge subseafloor habitat.Applied and Environmental Micro- biology, 68, 1585-1594.
41 Inagaki F, Nunoura T, Nakagawa S, Teske A, Lever M, Lauer A, Suzuki M, Takai K, Delwiche M, Colwell FS, Nealson KH, Horikoshi K, D’Hondt S, Jørgensen BB (2006) Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proceedings of the National Academy of Sciences, USA, 103, 2815-2820.
42 Inagaki F, Suzuki M, Takai K, Oida H, Sakamoto T, Aoki K, Nealson KH, Horikoshi K (2003) Microbial communities associated with geological horizons in coastal subseafloor sediments from the Sea of Okhotsk.Applied and Environmental Microbiology, 69, 7224-7235.
43 IWG Supporting Office (2010) Illuminating earth through subseafloor sampling, observation, and experimentation: The international ocean discovery program, science plan for 2013-2023. Washington DC.
44 Johnson HP, Pruis MJ (2003) Fluxes of fluid and heat from the oceanic crustal reservoir.Earth and Planetary Science Letters, 216, 565-574.
45 Jørgensen BB (1982) Mineralization of organic matter in the sea bed: the role of sulphate reduction.Nature, 296, 643-645.
46 Jørgensen BB, Nelson DC (2004) Sulfide oxidation in marine sediments: geochemistry meets microbiology.Geological Society of America, 379, 63-81.
47 Joye SB, Boetius A, Orcutt BN, Montoya JP, Schulz HN, Erickson MJ, Lugo SK (2004) The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps.Chemical Geology, 205, 219-238.
48 Kallmeyer J, Pockalny R, Adhikari RR, Smith DC, D’Hondt S (2012) Global distribution of microbial abundance and biomass in subseafloor sediment. Proceedings of the National Academy of Sciences, USA, 109, 16213-16216.
49 Karner MB, DeLong EF, Karl DM (2001) Archaeal dominance in the mesopelagic zone of the Pacific Ocean.Nature, 409, 507-510.
50 Kaye JZ, Baross JA (2006) High incidence of halotolerant bacteria in Pacific hydrothermal-vent and pelagic environments.FEMS Microbiology Ecology, 32, 249-260.
51 Kelley DS, Baross JA, Delaney JR (2002) Volcanoes, fluids, and life at mid-ocean ridge spreading centers.Annual Review of Earth and Planetary Sciences, 30, 385-491.
52 Kelley DS, Karson JA, Blackman DK, Früh-Green GL, Butterfield DA, Lilley MD, Olson EJ, Schrenk MO, Roe KK, Lebon GT, Rivizzigno P (2001) An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30 degrees N.Nature, 412, 145-149.
53 Kelley DS, Karson JA, Früh-Green GL, Yoerger DR, Shank TM, Butterfield DA, Hayes JM, Schrenk MO, Olson EJ (2005) A serpentinite-hosted ecosystem: the Lost City hydrothermal field.Science, 307, 1428-1434.
54 Knittel K, Lösekann T, Boetius A, Kort R, Amann R (2005) Diversity and distribution of methanotrophic archaea at cold seeps.Applied and Environmental Microbiology, 71, 467-479.
55 Könneke M, Bernhard AE, José R, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia- oxidizing marine archaeon.Nature, 437, 543-546.
56 Lam P, Cowen JP, Popp BN, Jones RD (2008) Microbial ammonia oxidation and enhanced nitrogen cycling in the Endeavour hydrothermal plume.Geochimica et Cos- mochimica Acta, 72, 2268-2286.
57 Lever MA (2011) Acetogenesis in the energy-starved deep biosphere—a paradox? Frontiers in Microbiology, 2, 248.
58 Lever MA, Heuer VB, Morono Y, Masui N, Schmidt F, Alperin MJ, Inagaki F, Hinrichs KU, Teske A (2010) Acetogenesis in deep subseafloor sediments of the Juan de Fuca Ridge Flank: a synthesis of geochemical, thermodynamic, and gene-based evidence.Geomicrobiology Journal, 27, 183-211.
59 Li T, Wang P, Wang PX (2008) Bacterial and archaeal diversity in surface sediment from the south slope of the South China Sea.Acta Microbiologica Sinica, 48, 323-329.
60 Lin HT, Cowen JP, Olson EJ, Amend JP, Lilley MD (2012) Inorganic chemistry, gas compositions and dissolved organic carbon in fluids from sedimented young basaltic crust on the Juan de Fuca Ridge flanks.Geochimica et Cosmochimica Acta, 85, 213-227.
61 Lipp JS, Morono Y, Inagaki F, Hinrichs KU (2008) Significant contribution of Archaea to extant biomass in marine subsurface sediments.Nature, 454, 991-994.
62 Lysnes K, Thorseth IH, Steinsbu BO, Øvreås L, Torsvik T, Pedersen RB (2004) Microbial community diversity in seafloor basalt from the Arctic spreading ridges.FEMS Microbiology Ecology, 50, 213-230.
63 Marty B (1995) Nitrogen content of the mantle inferred from N2-Ar correlation in oceanic basalts.Nature, 377, 326-329.
64 Mason OU, Di Meo-Savoie CA, van Nostrand JD, Zhou J, Fisk MR, Giovannoni SJ (2008) Prokaryotic diversity, distribution, and insights into their role in biogeochemical cycling in marine basalts.The ISME Journal, 3, 231-242.
65 Mason OU, Stingl U, Wilhelm LJ, Moeseneder MM, Meo-Savoie D, Carol A, Fisk MR, Giovannoni SJ (2007) The phylogeny of endolithic microbes associated with marine basalts.Environmental Microbiology, 9, 2539-2550.
66 McCollom TM (2000) Geochemical constraints on primary productivity in submarine hydrothermal vent plumes.Deep Sea Research Part I: Oceanographic Research Papers, 47, 85-101.
67 McCollom TM (2007) Geochemical constraints on sources of metabolic energy for chemolithoautotrophy in ultramafic- hosted deep-sea hydrothermal systems.Astrobiology, 7, 933-950.
68 Moeseneder MM, Smith KL, Ruhl HA, Jones DOB, Witte U, Prosser JI (2012) Temporal and depth-related differences in prokaryotic communities in abyssal sediments associated with particulate organic carbon flux.Deep Sea Research Part I: Oceanographic Research Papers, 70, 26-35.
69 Morris RM, Rappe MS, Urbach E, Connon SA, Giovannoni SJ (2004) Prevalence of the Chloroflexi-related SAR202 bacterioplankton cluster throughout the mesopelagic zone and deep ocean.Applied and Environmental Microbiology, 70, 2836-2842.
70 Nauhaus K, Boetius A, Krüger M, Widdel F (2002) In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area.Environmental Microbiology, 4, 296-305.
71 Nauhaus K, Treude T, Boetius A, Krüger M (2004) Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-I communities.Environmental Microbiology, 7, 98-106.
72 Nercessian O, Fouquet Y, Pierre C, Prieur D, Jeanthon C (2005) Diversity of Bacteria and Archaea associated with a carbonate-rich metalliferous sediment sample from the Rainbow vent field on the Mid-Atlantic Ridge.Environmental Microbiology, 7, 698-714.
73 Nercessian O, Reysenbach AL, Prieur D, Jeanthon C (2003) Archaeal diversity associated with in situ samplers deployed on hydrothermal vents on the East Pacific Rise (13 N).Environmental Microbiology, 5, 492-502.
74 Newberry CJ, Webster G, Cragg BA, Parkes RJ, Weightman AJ, Fry JC (2004) Diversity of prokaryotes and meth- anogenesis in deep subsurface sediments from the Nankai Trough, Ocean Drilling Program Leg 190.Environmental Microbiology, 6, 274-287.
75 Nunoura T, Takaki Y, Kakuta J, Nishi S, Sugahara J, Hiromi K, Chee GJ, Hattori M, Kanai A, Atomi Hm Takai K, Takami H (2011) Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group.Nucleic Acids Research, 39, 3204-3223.
76 Orcutt BN, Sylvan JB, Knab NJ, Edwards KJ (2011) Microbial ecology of the dark ocean above, at, and below the seafloor.Microbiology and Molecular Biology Reviews, 75, 361-422.
77 Ouverney CC, Fuhrman JA (2000) Marine planktonic Archaea take up amino acids.Applied and Environmental Micro- biology, 66, 4829-4833.
78 Pagé A, Tivey MK, Stakes DS, Reysenbach AL (2008) Temporal and spatial archaeal colonization of hydrothermal vent deposits.Environmental Microbiology, 10, 874-884.
79 Parkes RJ, Cragg BA, Bale SJ, Getlifff JM, Goodman K, Rochelle PA, Fry JC, Weightman AJ, Harvey SM (1994) Deep bacterial biosphere in Pacific Ocean sediments.Nature, 371, 410-413.
80 Parkes RJ, Cragg BA, Wellsbury P (2000) Recent studies on bacterial populations and processes in subseafloor sediments: a review.Hydrogeology Journal, 8, 11-28.
81 Parkes RJ, Webster G, Cragg BA, Weightman AJ, Newberry CJ, Ferdelman TG, Kallmeyer J, Jørgensen BB, Aiello IW, Fry JC (2005) Deep sub-seafloor prokaryotes stimulated at interfaces over geological time.Nature, 436, 390-394.
82 Pearson A, McNichol AP, Benitez-Nelson BC, Hayer JM, Eglinton TI (2001) Origins of lipid biomarkers in Santa Monica Basin surface sediment: a case study using compound-specific Δ14C analysis.Geochimica et Cosmo- chimica Acta, 65, 3123-3137.
83 Pham VD, Konstantinidis KT, Palden T, DeLong EF (2008) Phylogenetic analyses of ribosomal DNA-containing bacterioplankton genome fragments from a 4000 m vertical profile in the North Pacific Subtropical Gyre.Environmental Microbiology, 10, 2313-2330.
84 Pollack HN, Hurter SJ, Johnson JR (1993) Heat flow from the Earth’s interior: analysis of the global data set.Reviews of Geophysics, 31, 267-280.
85 Polymenakou PN, Bertilsson S, Tselepides A, Stephanou EG (2005) Bacterial community composition in different sediments from the Eastern Mediterranean Sea: a comparison of four 16S ribosomal DNA clone libraries.Microbial Ecology, 50, 447-462.
86 Polymenakou PN, Lampadariou N, Mandalakis M, Tselepides A (2009) Phylogenetic diversity of sediment bacteria from the southern Cretan margin, Eastern Mediterranean Sea.Systematic and Applied Microbiology, 32, 17-26.
87 Reeburgh WS (1983) Rates of biogeochemical processes in anoxic sediments.Annual Review of Earth and Planetary Sciences, 11, 269.
88 Reed DW, Fujita Y, Delwiche ME, Blackwelder DB, Sheridan PP, Uchida T, Colwell FS (2002) Microbial communities from methane hydrate-bearing deep marine sediments in a forearc basin.Applied and Environmental Microbiology, 68, 3759-3770.
89 Reysenbach AL, Longnecker K, Kirshtein J (2000) Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent.Applied and Environmental Microbiology, 66, 3798-3806.
90 Rogers DR, Santelli CM, Edwards KJ (2003) Geomicrobiology of deep-sea deposits: estimating community diversity from low-temperature seafloor rocks and minerals.Geobiology, 1, 109-117.
91 Røy H, Kallmeyer J, Adhikari RR, Pockalny R, Jørgensen BB, D’Hondt S (2012) Aerobic microbial respiration in 86-million-year-old deep-sea red clay.Science, 336, 922-925.
92 Santelli CM, Orcutt BN, Banning E, Bach W, Moyer CL, Sogin ML, Staudigel H, Edwards KJ (2008) Abundance and diversity of microbial life in ocean crust.Nature, 453, 653-656.
93 Schrenk MO, Huber JA, Edwards KJ (2010) Microbial provinces in the subseafloor.Annual Review of Marine Science, 2, 279-304.
94 Scientists E (2011) South Pacific Gyre subseafloor life. IODP Expedition 323 Preliminary Report 329. doi:10.2204/iodp. pr.329.2011.
95 Sievert SM, Hügler M, Taylor CD, Wirsen CO (2008) Sulfur oxidation at deep-sea hydrothermal vents. In: Microbial Sulfur Metabolism (eds Dahl C, Friedrich CG), pp. 238-258. Springer-Verlag, Berlin Heidelberg.
96 Sørensen KB, Lauer A, Teske A (2004) Archaeal phylotypes in a metal-rich and low-activity deep subsurface sediment of the Peru Basin, ODP Leg 201, Site 1231.Geobiology, 2, 151-161.
97 Sørensen KB, Teske A (2006) Stratified communities of active archaea in deep marine subsurface sediments.Applied and Environmental Microbiology, 72, 4596-4603.
98 Sunamura M, Higashi Y, Miyako C, Ishibashi JI, Maruyama A (2004) Two bacteria phylotypes are predominant in the Suiyo Seamount hydrothermal plume.Applied and Environ- mental Microbiology, 70, 1190-1198.
99 Takai K, Horikoshi K (1999) Genetic diversity of archaea in deep-sea hydrothermal vent environments.Genetics, 152, 1285-1297.
100 Tebo BM, Johnson HA, McCarthy JK, Templeton AS (2005) Geomicrobiology of manganese (II) oxidation.Trends in Microbiology, 13(9), 421-428.
101 Templeton AS, Staudigel H, Tebo BM (2005) Diverse Mn (II)-oxidizing bacteria isolated from submarine basalts at Loihi Seamount.Geomicrobiology Journal, 22, 127-139.
102 Teske A, Hinrichs KU, Edgcomb V, de Vara Gomez A, Kysela D, Sylva SP, Sogin ML, Jannasch HW (2002) Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities.Applied and Environmental Microbiology, 68, 1994-2007.
103 Teske AP (2006) Microbial communities of deep marine subsurface sediments: molecular and cultivation surveys.Geomicrobiology Journal, 23, 357-368.
104 Thorseth IH, Pedersen RB, Christie DM (2003) Microbial alteration of 0-30-Ma seafloor and sub-seafloor basaltic glasses from the Australian Antarctic Discordance.Earth and Planetary Science Letters, 215, 237-247.
105 Treude T, Boetius A, Knittel K, Wallmann K, Jøergensen BB (2003) Anaerobic oxidation of methane above gas hydrates at Hydrate Ridge, NE Pacific Ocean.Marine Ecology Progress Series, 264, 1-14.
106 Vetriani C, Jannasch HW, MacGregor BJ, Stahl DA, Re- ysenbach AL (1999) Population structure and phylogenetic characterization of marine benthic archaea in deep-sea sediments.Applied and Environmental Microbiology, 65, 4375-4384.
107 Walsh DA, Zaikova E, Howes CG, Song YC, Wright JJ, Tringe SG, Tortell PD, Hallam SJ (2009) Metagenome of a versatile chemolithoautotroph from expanding oceanic dead zones.Science, 326, 578-582.
108 Wang FP, Lu SL, Orcutt BN, Xie W, Chen Y, Xiao X, Edwards KJ (2013) Discovering the roles of subsurface microorganisms: progress and future of deep biosphere investigation.Chinese Science Bulletin, 58, 1-12.
109 Wang FP, Zhou HY, Meng J, Peng XT, Jiang LJ, Sun P, Zhang CL, van Nostrand JDV, Deng Y, Wu LY, Zhou JZ, Xiao X (2009) GeoChip-based analysis of metabolic diversity of microbial communities at the Juan de Fuca Ridge hydrothermal vent. Proceedings of the National Academy of Sciences, USA, 106, 4840-4845.
110 Webster G, John Parkes R, Cragg BA, Newberry CJ, Weight- man AJ, Fry JC (2006) Prokaryotic community composition and biogeochemical processes in deep subseafloor sediments from the Peru Margin.FEMS Microbiology Ecology, 58, 65-85.
111 Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proceedings of the National Academy of Sciences, USA, 95, 6578-6583.
112 Xie W, Wang F, Guo L, Chen Z, Sievert SM, Meng J, Huang G, Li Y, Yan Q, Wu S, Wang X, Chen S, He G, Xiao X, Xu A (2010) Comparative metagenomics of microbial commu- nities inhabiting deep-sea hydrothermal vent chimneys with contrasting chemistries.The ISME Journal, 5, 414-426.
113 Zaballos M, López AL, Ovreas L, Bartual SG, D’Auria G, Alba JC, Legault B, Pushker R, Daae FL, Valera FR (2006) Comparison of prokaryotic diversity at offshore oceanic locations reveals a different microbiota in the Mediterranean Sea.FEMS Microbiology Ecology, 56, 389-405.
114 Zeng X, Birrien JL, Fouquet Y, Cherkashov G, Jebbar M, Querellou J, Oger P, Bonavita MAC, Xiao X, Prieur D (2009) Pyrococcus CH1, an obligate piezophilic hyperthermophile: extending the upper pressure-temperature limits for life.The ISME Journal, 3, 873-876.
115 Zhang Y, Henriet JP, Bursens J, Boon N (2010) Stimulation of in vitro anaerobic oxidation of methane rate in a continuous high-pressure bioreactor.Bioresource Technology, 101, 3132-3138.
116 Zhang Y, Maignien L, Zhao XX, Wang FP, Boon N (2011) Enrichment of a microbial community performing anaerobic oxidation of methane in a continuous high-pressure bioreactor.BMC Microbiology, 11, 137.
117 ZoBell CE, Anderson DQ (1936) Vertical distribution of bacteria in marine sediments.AAPG Bulletin, 20, 258-269.
[1] 李熠 唐志尧 闫昱晶 王科 蔡磊 贺金生 古松 姚一建. (2020) 物种分布模型在大型真菌红色名录评估及保护中的应用: 以冬虫夏草为例(大型真菌红色名录专辑). 生物多样性, 28(1): 0-0.
[2] 杨锐, 彭钦一, 曹越, 钟乐, 侯姝彧, 赵智聪, 黄澄. (2019) 中国生物多样性保护的变革性转变及路径. 生物多样性, 27(9): 1032-1040.
[3] 李顺, 邹亮, 宫一男, 杨海涛, 王天明, 冯利民, 葛剑平. (2019) 激光雷达技术在动物生态学领域的研究进展. 生物多样性, 27(9): 1021-1031.
[4] 李永民, 吴孝兵. (2019) 安徽省两栖爬行动物名录修订. 生物多样性, 27(9): 1002-1011.
[5] 崔利, 郭峰, 张佳蕾, 杨莎, 王建国, 孟静静, 耿耘, 李新国, 万书波. (2019) 摩西斗管囊霉改善连作花生根际土壤的微环境. 植物生态学报, 43(8): 718-728.
[6] 张渊媛. (2019) 生物多样性相关传统知识的国际保护及中国应对策略. 生物多样性, 27(7): 708-715.
[7] 曹宁, 薛达元. (2019) 论壮族传统文化对生物多样性的保护: 以广西靖西市为例. 生物多样性, 27(7): 728-734.
[8] 杨云卉, 白可喻, Devra Jarvis, 龙春林. (2019) 西双版纳黄瓜农家品种及其传统知识. 生物多样性, 27(7): 743-748.
[9] 孙蓓蓓, 俞存根, 刘惠, 颜文超, 张文俊, 戴冬旭. (2019) 南麂列岛东侧海域春秋季虾蟹类生物多样性. 生物多样性, 27(7): 787-795.
[10] 丁陆彬, 马楠, 王国萍, 何思源, 闵庆文. (2019) 生物多样性相关传统知识研究热点与前沿的可视化分析. 生物多样性, 27(7): 716-727.
[11] 孔嘉鑫, 张昭臣, 张健. (2019) 基于多源遥感数据的植物物种分类与识别: 研究进展与展望. 生物多样性, 27(7): 796-812.
[12] 桂旭君, 练琚愉, 张入匀, 李艳朋, 沈浩, 倪云龙, 叶万辉. (2019) 鼎湖山南亚热带常绿阔叶林群落垂直结构及其物种多样性特征. 生物多样性, 27(6): 619-629.
[13] 张晓玲, 李亦超, 王芸芸, 蔡宏宇, 曾辉, 王志恒. (2019) 未来气候变化对不同国家茶适宜分布区的影响. 生物多样性, 27(6): 595-606.
[14] 李品, 木勒德尔•吐尔汗拜, 田地, 冯兆忠. (2019) 全球森林土壤微生物生物量碳氮磷化学计量的季节动态. 植物生态学报, 43(6): 532-542.
[15] 刘艳, 杨钰爽. (2019) 生物多样性保护优先区对重庆苔藓植物多样性保护的重要性. 生物多样性, 27(6): 677-682.
Full text