生物多样性 ›› 2013, Vol. 21 ›› Issue (4): 411-420.doi: 10.3724/SP.J.1003.2013.10033

所属专题: 微生物多样性专辑

• • 上一篇    下一篇

土壤生态系统微生物多样性-稳定性关系的思考

贺纪正1, *(), 李晶1, 2, 郑袁明1   

  1. 1 城市与区域生态国家重点实验室, 中国科学院生态环境研究中心, 北京 100085
    2 中国科学院大学, 北京 100049
  • 收稿日期:2013-02-02 接受日期:2013-04-16 出版日期:2013-06-26
  • 通讯作者: 贺纪正 E-mail:jzhe@rcees.ac.cn
  • 基金项目:
    科技部全球变化重大研究计划(2013CB956300);国家自然科学基金(21025004)

Thoughts on the microbial diversity-stability relationship in soil ecosystems

Jizheng He1, *(), Jing Li1, 2, Yuanming Zheng1   

  1. 1 State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085
    2 University of Chinese Academy of Sciences, Beijing 100049
  • Received:2013-02-02 Accepted:2013-04-16 Online:2013-06-26
  • Contact: He Jizheng E-mail:jzhe@rcees.ac.cn

自20世纪50年代以来, 生物多样性与生态系统稳定性的关系一直是生态学中重点讨论的理论问题之一。在当今人类活动对自然生态系统产生重大影响的情况下, 全面理解生态系统多样性与稳定性的关系, 有助于我们更好地应对环境变化和生物多样性丧失等生态问题。在陆地生态系统中, 关注重点多集中在地上植物生态系统; 而对地下生态系统, 尤其是对微生物多样性与系统稳定性关系的研究尚重视不够。事实上, 土壤微生物作为生命元素循环的驱动者, 主导和参与地下生态系统中一系列重要生态过程, 对土壤能否正常有序地执行各项生态功能至关重要。对土壤微生物多样性的研究, 能使我们明确土壤中微生物对各种环境条件(包括自然和人为因素)变化的响应机制, 更好地维持土壤生态系统的稳定性及其生态服务功能。本文在介绍土壤微生物多样性概念、研究方法、地下生态系统稳定性的基础上, 重点讨论了土壤微生物多样性对土壤生态系统稳定性的影响, 对多样性-稳定性关系在土壤微生物生态学中的应用进行了较为深入和全面的思考。作者提出, 土壤微生物系统是一个动态变化的自组织系统, 通过遗传来维持其组成和结构的相对稳定性, 通过变异而适应外界干扰, 共同构成土壤微生物系统的抵抗力(resistance)和恢复力(resilience), 维护土壤生态系统的稳定性。今后土壤微生物多样性-稳定性关系的研究, 需要注重地上与地下生态系统的结合与统一, 借鉴宏观生态学理论来构建微生物生态学的理论框架, 建立微生物多样性-稳定性关系的机理模型, 从定性描述向定量表征方向发展。

关键词: 多样性-稳定性, 土壤微生物, 多重功能性, 功能冗余, 遗传与变异, 机理模型

The diversity-stability relationship has been a controversial topic in ecology since the 1950s. Natural ecosystems are significantly influenced by human activity, so it is necessary to explore the diversity-stability relationship in relation to environmental disturbance and loss of biodiversity. Studies on this have focused more on above-ground terrestrial ecosystem, and consequently below-ground ecosystem has tended to be neglected, especially with regard to soil microbial diversity and stability. However, soil microbial diversity is crucial to the maintenance of ecosystem functioning as soil microorganisms influence many ecosystem processes and drive biogeochemical cycles. One important aim of soil microbial diversity research is to clarify the responses of soil microorganisms to various environmental fluctuations, so as to predict ecosystem stability and ecological service function. In this paper, we briefly introduce the concepts and research approaches for examining soil microbial diversity and below-ground ecosystem stability. Furthermore, we probe into the soil microbial diversity-stability relationship. We propose that the soil microbial system is a dynamic self-organized system. It maintains its relative stability as a result of soil microbes genetically adapting to environmental disturbances through mutation. In this way, the soil microbial system becomes resistant and resilient to environmental change and consequently sustains the stability of soil ecosystems. Future emphasis in the study of the relationships between soil microbial diversity and stability should put in the coupling processes of the below-ground ecosystem and the above-ground ecosystem. It is essential to construct a theoretical framework for soil microbial ecology by learning from theories of macroscopic ecology. We need to develop some mechanistic models to quantitatively describe and predict the relationship between soil microbial diversity and ecosystem stability.

Key words: diversity-stability, soil microorganisms, multifunctionality, functional redundancy, heredity and mutation, mechanistic model

图1

土壤微生物多样性研究方法的基本框架和技术途径示意图(贺纪正和张丽梅, 2011)"

表1

抵抗力和恢复力计算公式"

图2

土壤微生物系统适应环境干扰的概念模型。经历外界干扰后, 初始稳定的微生物群落(initial community)为适应变化的环境而做出相应改变, 其中高抵抗力高恢复力类群(以▲表示)经历外界干扰的刺激数量增多, 以维持该微生物群落正常执行各项功能; 高抵抗力低恢复力类群(以△表示)抗干扰的能力强因此数量保持不变, 属于相对稳定的类群; 低抵抗力高恢复力类群(以○表示)抗干扰的能力较弱而数量下降; 低抵抗力低恢复力类群(以●表示)更加不适应变化的环境而数量骤减。经历一段时间后, 胁迫下的微生物群落(stressed community)逐渐适应(adaption)了外界干扰而形成了一个新的稳定的微生物群落(new community), 在该群落中▲数量最多成为了优势种, 它替代了部分因不适应外界干扰而数量下降或者消失的类群执行正常的功能而维持整个微生物群落的稳定(functional redundancy); △维持原有的稳定状态; ○虽然经历了短暂的数量下降过程但是因其恢复力较强因此又恢复至初始群落的状态; ●则由于极度不适应外界干扰而被淘汰被新的突变型类群所替代。当外界干扰消除后, 新的稳定的微生物群落有可能再次回到初始群落的状态。"

52 van Ruijven J, Berendse F (2010) Diversity enhances community recovery, but not resistance, after drought. Journal of Ecology, 98, 81-86.
53 Ventura M, Perozzi G (2011) Introduction to the special issue “Probiotic bacteria and human gut microbiota”.Genes and Nutrition, 6, 203-204.
54 Wang GH (王国宏) (2002) Further thoughts on diversity and stability in ecosystems.Biodiversity Science(生物多样性), 10, 126-134. (in Chinese with English abstract)
55 Wertz S, Degrange V, Prosser JI, Poly F, Commeaux C, Guillaumaud N, Roux XL (2007) Decline of soil microbial diversity does not influence the resistance and resilience of key soil microbial functional groups following a model disturbance.Environmental Microbiology, 9, 2211-2219.
56 Wittebolle L, Marzorati M, Clement L, Balloi A, Daffonchio D, Heylen K, De Vos P, Verstraete W, Boon N (2009) Initial community evenness favours functionality under selective stress.Nature, 458, 623-626.
57 Wohl DL, Arora S, Gladstone JR (2004) Functional redundancy supports biodiversity and ecosystem function in a closed and sonstant environment.Ecology, 85, 1534-1540.
58 Worm B, Barbier EB, Beaumont N, Duffy JE, Floke C, Halpern BS, Jackson JBC, Lotze HK, Micheli F, Palumbi SR, Sala E, Selkoe KA, Stachowicz JJ, Watson R (2006) Impacts of biodiversity loss on ocean ecosystem services.Science, 314, 787-790.
59 Wu JF (吴建峰), Lin XG (林先贵) (2003) Effects of soil microbes on plant growth.Soils(土壤), 1, 18-21. (in Chinese with English abstract)
60 Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis.Proceedings of the National Academy of Sciences,USA, 96, 1463-1468.
1 Allison G (2004) The influence of species diversity and stress intensity on community resistance and resilience.Ecological Monographs, 74, 117-134.
2 Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proceedings of the National Academy of Sciences,USA, 105, 11512-11519.
3 Berga M, Székely AJ, Langenheder S (2012) Effects of disturbance intensity and frequency on bacterial community composition and function.PLoS ONE, 7, e36959.
4 Caporaso JG, Paszkiewicz K, Field D, Knight R, Gilbert JA (2011) The Western English Channel contains a persistent microbial seedbank.International Society for Microbial Ecology, 6, 1089-1093.
5 Chaer G, Fernandes M, Myrold D, Bottomley P (2009) Comparative resistance and resilience of soil microbial communities and enzyme activities in adjacent native forest and agricultural soils.Microbial Ecology, 58, 414-424.
6 Chen RR (陈瑞蕊), Lin XG (林先贵), Shi YQ (施亚琴) (2003) Research advances of orchid mycorrhizae.Chinese Journal of Applied Environmental Biology(应用与环境生物学报), 9, 97-101. (in Chinese with English abstract)
7 Chen SB (陈圣宾), Ouyang ZY (欧阳志云), Xu WH (徐卫华), Xiao Y (肖燚) (2010) A review of beta diversity studies.Biodiversity Science(生物多样性), 18, 323-335. (in Chinese with English abstract)
8 Copley J (2000) Ecology goes underground.Nature, 406, 452-454.
9 Creamer RE, Brennan F, Fenton O, Healy MG, Lalor STJ, Lanigan GJ, Regan JT, Griffiths BS (2010) Implications of the proposed Soil Framework Directive on agricultural systems in Atlantic Europe—a review.Soil Use and Management, 26, 198-211.
10 Cohan FM (2002) What are bacterial species? Annual Review of Microbiology, 56, 457-487.
11 Comte J, del Giorgio PA (2010) Linking the patterns of change in composition and function in bacterioplankton successions along environmental gradients.Ecology, 91, 1466-1476.
12 Didier LB, Hannes P, Lars JT (2012) Resistance and resilience of microbial communities temporal and spatial insurance against perturbations.Environmental Microbiology, 14, 2283-2292.
13 Downing AL, Leibold MA (2010) Species richness facilitates ecosystem resilience in aquatic food webs.Freshwater Biology, 55, 2123-2137.
14 Elton CS (1958) The Ecology of Invasions by Animals and Plants, pp. 143-153. Chapman Hall, London.
15 Flöder S, Jaschinski S, Wells G, Burns CW (2010) Dominance and compensatory growth in phyto-plankton communities under salinity stress.Journal of Experimental Marine Biology and Ecology, 395, 223-231.
16 Gardiner GE, Casey PG, Casey G, Lynch PB, Lawlor PG, Hill C, Fitzgerald GF, Stanton C, Ross RP (2004) Relative ability of orally administered Lactobacillus murinus to predominate and persist in the porcine gastrointestinal tract.Applied and Environmental Microbiology, 70, 1895-1906.
17 Gamfeldt L, Hillebrand H, Jonsson PR (2008) Multiple functions increase the importance of biodiversity for overall ecosystem functioning.Ecology, 89, 1223-1231.
18 Gilbert JA, Field D, Swift P, Thomas S, Cummings D, Temperton B, Weynberg K, Huse S, Hughes M, Joint I, Somerfield PJ, Mühling M (2010) The taxonomic and functional diversity of microbes at a temperate coastal site: a ‘multi-omic’ study of seasonal and diel temporal variation.PLoS ONE, 5, e15545.
19 Griffiths BS, Bonkowski M, Roy J, Ritz K (2001) Functional stability, substrate utilisation and biological indicators of soils following environmental impacts.Applied Soil Ecology, 16, 49-61.
20 Griffiths BS, Philippot L (2012) Insights into the resistance and resilience of the soil microbial community.FEMS Microbiology Review, doi:10.1111/j.1574-6976.2012. 00343. X
21 Griffiths BS, Ritz K, Bardgett RD, Cook R, Christensen S, Ekelund F, Sørensen SJ, Baath E, Bloem J, De Ruiter PC, Dolfing J, Nicolardot B (2000) Ecosystem response of pasture soil communities to fumigation induced microbial diversity reductions: an examination of the biodiversity- ecosystem function relationship.Oikos, 90, 279-294.
22 He JZ (贺纪正), Cao P (曹鹏), Zheng YM (郑袁明) (2013) Metabolic scaling theory and its application in microbial ecology.Acta Ecologica Sinica(生态学报), 33, 2645-2655. (in Chinese with English abstract)
23 He JZ (贺纪正), Ge Y (葛源) (2008) Recent advances in soil microbial biogeography.Acta Ecologica Sinica(生态学报), 28, 5571-5582. (in Chinese with English abstract)
24 He JZ, Ge Y, Xu ZH, Chen CR (2009) Linking soil bacterial diversity to ecosystem multifunctionality using backward- elimination boosted trees analysis.Journal of Soils and Sediments, 9, 547-554.
25 He JZ (贺纪正), Yuan CL (袁超磊), Shen JP (沈菊培), Zhang LM (张丽梅) (2012) Methods for and progress in research on soil metagenomics.Acta Pedologica Sinica(土壤学报), 49, 155-164. (in Chinese with English abstract)
26 He JZ (贺纪正), Zhang LM (张丽梅) (2011) Progress in research approaches of soil microbial ecology. In: Progress in Agricultural Microbiology Research and Industrialization (农业微生物研究与产业化进展) (eds Li J (李俊), Shen DL (沈德龙), Lin XG (林先贵)), pp. 94-108. Science Press, Beijing. (in Chinese)
27 Hector A, Bagchi R (2007) Biodiversity and ecosystem multifunctionality.Nature, 448, 188-190.
28 Huang JH (黄建辉), Han XG (韩兴国) (1995) Biodiversity and ecosystem stability.Chinese Biodiversity(生物多样性), 3, 31-37. (in Chinese with English abstract)
29 Kaufman LH (1982) Stream aufwuchs accumulation disturbance frequency and stress resistance and resilience.Oecologia, 52, 57-63.
30 Knight R, Jansson J, Field D, Fierer N, Desai N, Fuhrman JA, Hugenholtz P, van der Lelie D, Meyer F, Stevens R, Bailey MJ, Gordon JI, Kowalchuk GA, Gilbert JA (2012) Unlocking the potential of metagenomics through replicated experimental design.Nature Biotechnology, 30, 513-520.
31 Legendre P, Borcard D, Peres-Neto PR (2005) Analyzing beta diversity: partitioning the spatial variation of community composition data.Ecological Monographs, 75, 435-450.
32 Lennon JT, Martiny JBH (2008) Rapid evolution buffers ecosystem impacts of viruses in a microbial food web.Ecology Letters, 11, 1178-1188.
33 Li B (李博) (2000) Ecology (生态学), pp. 340-347. Higher Education Press, Beijing. (in Chinese)
34 Lin XG (林先贵), Hu JL (胡君利) (2008) Scientific connotation and ecological service function of soil microbial diversity.Acta Pedologica Sinica(土壤学报), 45, 892-900. (in Chinese with English abstract)
35 Litchman E (2010) Invisible invaders: non-pathogenic invasive microbes in aquatic and terrestrial ecosystems.Ecology Letters, 13, 1560-1572.
36 MacArthur R (1955) Fluctuations of animal populations, and a measure of community stability.Ecology, 36, 533-536.
37 Martiny JB, Bohannan BJ, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S, Ovreås L, Reysenbach AL, Smith VH, Staley JT (2006) Microbial biogeography: putting microorganisms on the map.Nature Review Microbiology, 4, 102-112.
38 McCann KS (2000) The diversity-stability debate.Nature, 405, 228-233.
39 Metchnikoff II (1908) The Nature of Man: Studies in Optimistic Philosophy. GP Putman’s Sons, New York.
40 Mercé B, Anna JS, Silke L (2012) Effects of disturbance intensity and frequency on bacterial comminuty composition and function.PLoS ONE, 7, e36959.
41 Oneill RV (1976) Ecosystem persistence and heterotrophic regulation.Ecology, 57, 1244-1253.
42 Orwin KH, Wardle DA (2004) New indices for quantifying the resistance and resilience of soil biota to exogenous disturbances.Soil Biology and Biochemistry, 36, 1907-1912.
43 Pimm SL (1984) The complexity and stability of ecosystems.Nature, 307, 321-326.
44 Prosser JI (1989) Autotrophic nitrification in bacteria.Advances in Microbial Physiology, 30, 125-181.
45 Shade A, Peter H, Allison SD, Baho D, Berga M, Buergmann H, Huber DH, Langenheder S, Lennon JT, Martiny JB, Matulich K, Schmidt TM, Handelsman J (2012) Fundamentals of microbial community resistance and resilience.Frontiers in Microbiology, 3, 417.
46 Shea K, Chesson P (2002) Community ecology theory as a frame-work for biological invasions.Trends in Ecology and Evolution, 17, 170-176.
47 Sousa WP (1980) The responses of a community to disturbance: the importance of successional age and species life history strategies.Oecologia, 45, 72-81.
48 Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM, Kassabgy M, Huang S, Mann AJ, Waldmann J, Weber M, Klindworth A, Otto A, Lange J, Bernhardt J, Reinsch C, Hecker M, Peplies J, Bockelmann FD, Callies U, Gerdts G, Wichels A, Wiltshire KH, Glöckner FO, Schweder T, Amann R (2012) Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom.Science, 336, 608-611.
49 Tilman D (1996) Biodiversity: population versus ecosystem stability.Ecology, 77, 350-363.
50 Tilman D, Reich PB, Knops JMH (2006) Biodiversity and ecosystem stability in a decade-long grassland experiment.Nature, 441, 629-632.
51 van Elsas JD, Chiurazzi M, Mallon CA, Krištufek EV, Salles JF (2012) Microbial diversity determines the invasion of soil by a bacterial pathogen.Proceedings of the National Academy of Sciences, USA, 109, 1159-1164.
61 Zhang B, Deng H, Wang HL, Yin R, Hallett PD, Griffiths BS, Daniell TJ (2010) Does microbial habitat or community structure drive the functional stability of microbes to stresses following re-vegetation of a severely degraded soil? Soil Biology and Biochemistry, 42, 850-859.
[1] 李阳, 徐小惠, 孙伟, 申颜, 任婷婷, 黄建辉, 王常慧. (2019) 不同形态和水平的氮添加对内蒙古草甸草原土壤净氮矿化潜力的影响. 植物生态学报, 43(2): 174-184.
[2] 雷学明, 沈芳芳, 雷学臣, 刘文飞, 段洪浪, 樊后保, 吴建平. (2018) 模拟氮沉降和灌草去除对杉木人工林地土壤微生物群落结构的影响. 生物多样性, 26(9): 962-971.
[3] 刘安榕, 杨腾, 徐炜, 上官子健, 王金洲, 刘慧颖, 时玉, 褚海燕, 贺金生. (2018) 青藏高原高寒草地地下生物多样性: 进展、问题与展望. 生物多样性, 26(9): 972-987.
[4] 叶子飘, 段世华, 安婷, 康华靖. (2018) 最大电子传递速率的确定及其对电子流分配的影响. 植物生态学报, 42(4): 498-507.
[5] 王祥, 朱亚琼, 郑伟, 关正翾, 盛建东. (2018) 昭苏山地草甸4种典型土地利用方式下的土壤呼吸特征. 植物生态学报, 42(3): 382-396.
[6] 毕艳孟, 孙振钧. (2018) 蚯蚓调控土壤微生态缓解连作障碍的作用机制. 生物多样性, 26(10): 1103-1115.
[7] 吴秀芝, 阎欣, 王波, 刘任涛, 安慧. (2018) 荒漠草地沙漠化对土壤-微生物-胞外酶化学计量特征的影响. 植物生态学报, 42(10): 1022-1032.
[8] 石国玺, 王文颖, 蒋胜竞, 成岗, 姚步青, 冯虎元, 周华坤. (2018) 黄帚橐吾种群扩张对土壤理化特性与微生物功能多样性的影响. 植物生态学报, 42(1): 126-132.
[9] 肖春旺, 杨帆, 柳隽瑶, 周勇, 苏佳琦, 梁韵, 裴智琴. (2017) 陆地生态系统地下碳输入与输出过程研究进展. 植物学报, 52(5): 652-668.
[10] 邓邦良, 刘倩, 刘喜帅, 郑利亚, 江亮波, 郭晓敏, 刘苑秋, 张令. (2017) UV-B辐射增强和氮沉降对入侵植物乌桕生长的影响. 植物生态学报, 41(4): 471-479.
[11] 王雪梅, 闫帮国, 赵广, 史亮涛, 刘刚才, 方海东. (2017) 云南元谋不同海拔土壤微生物对车桑子碳、氮、磷化学计量特征及土壤特性的影响. 植物生态学报, 41(3): 311-324.
[12] 付伟, 王宁, 庞芳, 黄玉龙, 吴俊, 祁珊珊, 戴志聪, 杜道林. (2017) 土壤微生物与植物入侵: 研究现状与展望. 生物多样性, 25(12): 1295-1302.
[13] 周正虎, 王传宽. (2016) 微生物对分解底物碳氮磷化学计量的响应和调节机制. 植物生态学报, 40(6): 620-630.
[14] 周正虎, 王传宽. (2016) 生态系统演替过程中土壤与微生物碳氮磷化学计量关系的变化. 植物生态学报, 40(12): 1257-1266.
[15] 闫静, 张晓亚, 陈雪, 王月, 张风娟, 万方浩. (2016) 三叶鬼针草与不同本地植物竞争对土壤 微生物和土壤养分的影响. 生物多样性, 24(12): 1381-1389.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed