生物多样性 ›› 2018, Vol. 26 ›› Issue (8): 819-827.doi: 10.17520/biods.2018052

• • 上一篇    下一篇

基于站点的生物多样性星空地一体化遥感监测

李爱农1, *(), 尹高飞1, 张正健1, 2, 谭剑波1, 2, 南希1, 马克平3, 郭庆华3   

  1. 1 中国科学院成都山地灾害与环境研究所, 数字山地与遥感应用研究中心, 成都 610041
    2 中国科学院大学, 北京 100049
    3 中国科学院植物研究所植被与环境变化国家重点实验室, 北京 100093
  • 收稿日期:2018-02-11 接受日期:2018-06-24 出版日期:2018-08-20
  • 通讯作者: 李爱农 E-mail:ainongli@imde.ac.cn
  • 作者简介:# 共同第一作者
  • 基金项目:
    国家自然科学基金(41631180, 41571373)和中国科学院委托研究与专项咨询服务课题(KFJ-EW-STS-020-02)

Space-air-field integrated biodiversity monitoring based on experimental station

Ainong Li1, *(), Gaofei Yin1, Zhengjian Zhang1, 2, Jianbo Tan1, 2, Xi Nan1, Keping Ma3, Qinghua Guo3   

  1. 1 Research Center for Digital Mountain and Remote Sensing Application, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041
    2 University of Chinese Academy of Sciences, Beijing 100049
    3 State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093
  • Received:2018-02-11 Accepted:2018-06-24 Online:2018-08-20
  • Contact: Li Ainong E-mail:ainongli@imde.ac.cn
  • About author:# Co-first authors

科学制定生物多样性保护和恢复政策, 需要空间上连续、时间上高频的物种和生境分布以及物种迁移信息支持, 遥感是目前能满足该要求的有效技术手段。近年来, 遥感平台和载荷技术高速发展, 综合多平台、多尺度、多模式遥感技术, 开展基于站点的星空地一体化遥感观测试验, 可以对地表进行时空多维度、立体连续观测, 为生物多样性遥感监测提供了新的契机。本文总结了使用遥感技术监测生物多样性的主要方法, 回顾了典型的星空地一体化遥感观测试验。综述以往研究发现, 一方面, 现有遥感试验还缺少对生物多样性直接监测指标的观测, 另一方面, 生物多样性遥感监测方法也缺少星空地多维立体观测平台的支撑, 亟需加强两者的融合, 开展基于站点的生物多样性星空地一体化遥感监测研究。以设于我国四川王朗大熊猫国家级自然保护区内的王朗山地生态遥感综合观测试验站为例, 展示了星空地一体化遥感综合观测试验平台在生物多样性监测中的应用潜力。星空地一体化遥感观测可以提供物种和生境的综合定量信息, 与生态模型有机结合, 可以刻画生物多样性的时空格局与动态过程, 有助于挖掘过程机理, 提高生物多样性监测的信息化水平。

关键词: 生物多样性, 星空地一体化观测, 遥感观测, 王朗

Developing effective policies for biodiversity conservation and restoration policies requires spatially and temporally explicit data on distribution of species and habitats. Remote sensing provides an effective technical tool to meet this requirement. In recent years, the rapid development of integrated multi-platform, multi-scale, multi-mode remote sensing technology the implementation of integrated remote sensing observations across space-air-field provides novel opportunities for biodiversity monitoring. In this paper, we review the main methods of remote sensing that aids biodiversity monitoring and assess existing remote sensing observation experiments. We found that current methods of biodiversity monitoring using remotely-sensed data lacked the support of space-air-field integrated observations and the existing space-air-field integrated observations did not include biodiversity parameters. The Wanglang integrated observation and experiment station for mountain ecological remote sensing illustrates the potential to integrate experimental station-based and space-air-field integrated observations for biodiversity monitoring. Our review highlights that integrating direct observations with remote sensing can provide spatio-temporally explicit information on species and habitats and improve the informed monitoring of biodiversity.

Key words: biodiversity, space-air-field integrated observation, remote sensing, Wanglang

表1

生物多样性遥感监测的主要方法"

方法
Method
传感器
Sensor
空间分辨率
Spatial resolution
光谱分辨
Spectral resolution
监测内容
Monitoring contents
参考文献
Reference
直接法 Direct approaches
天基遥感
Space-based
IKONOS
Quickbird
WorldView-2
吉林一号 Jilin-1
1-4 m
0.6-2.4 m
0.5 m, 2 m
0.72-2.88 m
4波段 4 bands
4波段 4 bands
8波段 8 bands
4波段 4 bands
冠层、物种信息
Canopy and
species information
Bejarano et al, 2010
Wulder et al, 2008
Petrou et al, 2014
ADS40
AHS-160
CASI
Lidar
0.2 m
2.4 m
1 m
4波段 4 bands
63波段 63 bands
288波段 288 bands
Forzieri et al, 2013
Delalieux et al, 2012
Belluco et al, 2006
Guo et al, 2016
地基遥感
Ground-based
红外相机 Infrared camera
视频监控 Video monitoring
声景监控 Soundscape
可见光、红外
Visible, infrared
可见光、红外
Visible and infrared
物种活动场景
The behavior of species
Xiao et al, 2014
Burton et al, 2015
Towsey et al, 2014
间接法 Indirect approaches
景观指数法
Landscape index
TM/ETM +
HJ
MODIS
EO-1 Hyperion
ASTER
Sentinel-2 MSI
SPOT
CBERS-04
30-120 m
30-100 m
250-1 km
30 m
15 m, 30 m, 90 m
10 m, 20 m, 60 m
1.5 m, 6 m, 1 km
5-80 m
7-9波段 7-9 bands
4波段 4 bands
36波段 36 bands
220波段 220 bands
14波段 14 bands
13波段 13 bands
4-6波段 4-6 bands
12波段 12 bands
土地分类
Land cover classification
Zhong et al, 2014
Wang et al, 2012
Fang et al, 2011
遥感指数法
Satellite index
多样性指数
Biodiversity index
Pu et al, 2010
Reiche et al, 2012
光谱变异性指数法
Spectral
heterogeneity index
光谱异质性指数
Spectral heterogeneity index
Herrmann et al, 2011
Guyon et al, 2011
模型模拟法
Model simulation
TRMM/TMI
FY-3C/VIRR
5-72 km
1 km
5波段 5 bands
10波段 10 bands
物种分布
Species distribution
Zainuddin et al, 2006

图1

基于站点的星空地一体化王朗山地生态遥感综合观测试验站生物多样性监测概念设计"

[1] Bejarano S, Mumby PJ, Sotheran I (2010) Predicting structural complexity of reefs and fish abundance using acoustic remote sensing (RoxAnn). Marine Biology, 158, 489-504.
[2] Belluco E, Camuffo M, Ferrari S, Modenese L, Silvestri S, Marani A, Marani M (2006) Mapping salt-marsh vegetation by multispectral and hyper-spectral remote sensing. Remote Sensing of Environment, 105, 54-67.
[3] Burton A, Neilson E, Moreira D, Ladle A, Steenweg R, Fisher J, Bayne E, Boutin S, Stephens P (2015) Wildlife camera trapping: A review and recommendations for linking surveys to ecological processes. Journal of Applied Ecology, 52, 675-685.
[4] Bush A, Sollmann R, Wilting A, Bohmann K, Cole B, Balzter H, Martius C, Zlinszky A (2017) Connecting earth observation to high-throughput biodiversity data. Nature Ecology & Evolution, 1, 176.
[5] Cardinale J, Duffy J, Gonzalez A, Hooper D, Perrings C, Venail P, Narwani A, Mace G, Tilman D, Wardle D (2012) Biodiversity loss and its impact on humanity. Nature, 486, 59-67.
[6] Carlson K, Asner G, Hughes R, Ostertag RM (2007) Hyperspectral remote sensing of canopy biodiversity in Hawaiian lowland rainforests. Ecosystems, 10, 536-549.
[7] Ceballos G, Ehrlich P, Barnosky A, García A, Pringle R, Palmer T (2015) Accelerated modern human-induced species losses: Entering the sixth mass extinction. Science Advances, 1, e1400253.
[8] Cheng GD, Li X (2015) Integrated research methods in watershed science. Science China: Earth Sciences, 58, 1159-1168. (in Chinese with English abstract)
[程国栋, 李新 (2015) 流域科学及其集成研究方法. 中国科学: 地球科学, 58, 1159-1168.]
[9] Cohen WB, Maiersperger TK, Turner DP, Ritts WD, Pflugmacher D, Kennedy RE, Kirschbaum A, Running SW, Costa M, Gower ST (2006) MODIS land cover and LAI collection 4 product quality across nine sites in the western hemisphere. IEEE Transactions in Geosciences and Remote Sensing, 44, 1843-1857.
[10] Delalieux S, Somers B, Haest B, Spanhove T, Borre V, Mucher C (2012) Heathland conservation status mapping through integration hyperspectral mixture analysis and decision tree classifiers. Remote Sensing of Environment, 126, 222-231.
[11] Fang H, Liang S, Hoogenboom G (2011) Integration of MODIS LAI and vegetation index products CSM-CERES-Maize model for corn yield estimation. International Journal of Remote Sensing, 32, 1039-1065.
[12] Foody GM, Cutler M (2006) Mapping the species richness and composition of tropical forests from remotely sensed data with neural networks. Ecological Modelling, 195, 37-42.
[13] Forman R, Godron M (1986) Landscape Ecology. John Wiley & Sons, New York.
[14] Forzieri G, Tanteri L, Moser G, Catani F (2013) Mapping natural and urban environments using airborne multi-sensor ADS40-MIVIS-LiDAR synergies. International Journal of Applied Earth Observation and Geoinformation, 23, 313-323.
[15] Gillespie T (2005) Predicting woody-plant species richness in tropical dry forests: A case study from South Florida, USA. Ecological Applications, 15, 27-37.
[16] Gould WA, Walker MD (1997) Landscape-scale patterns in plant species richness along an arctic river. Canadian Journal of Botany, 75, 1748-1765.
[17] Guo QH, Liu J, Li YM, Zhai QP, Wang YC, Wu FF, Hu TY, Wan HW, Liu HM, Shen WM (2016) A near-surface remote sensing platform for biodiversity monitoring: Perspectives and prospects. Biodiversity Science, 24, 1249-1266. (in Chinese with English abstract)
[郭庆华, 刘瑾, 李玉美, 翟秋萍, 王永财, 吴芳芳, 胡天宇, 万华伟, 刘慧明, 申文明 (2016) 生物多样性近地面遥感监测: 应用现状与前景展望. 生物多样性, 24, 1249-1266.]
[18] Guyon D, Guillot M, Vitasse Y, Cardot H, Hagolle O, Dezon S, Wigneron J (2011) Monitoring elevation variations in leaf phenology of deciduous broadleaf forests from SPOT/VEGETATION time-series. Remote Sensing of Environment, 115, 615-627.
[19] Herrmann I, Pimstein A, Karnieli A (2011) LAI assessment of wheat and potato crops by VENlS and Sentinel-2 bands. Remote Sensing of Environment, 115, 2141-2151.
[20] Hooper D, Chapin I, Ewel J, Hector A, Inchausti P, Lavorel S, Lawton J, Lodge D, Loreau M, Naeem S (2005) Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecological Monographs, 75, 3-35.
[21] Hu HD, Li XY, Du YF, Zheng HF, Du BX, He XY (2012) Research advances in biodiversity remote sensing monitoring. Chinese Journal of Ecology, 31, 1591-1596. (in Chinese with English abstract)
[胡海德, 李小玉, 杜宇飞, 郑海峰, 都本绪, 何兴元 (2012) 生物多样性遥感监测方法研究进展. 生态学杂志, 31, 1591-1596.]
[22] Hu TY, Wang NN, Zhao XQ, Mi XC, Guo QH, Ma KP (2018) Advances in biodiversity observation network. Journal of Remote Sensing, 22, 708-711. (in Chinese with English abstract)
[胡天宇, 王宁宁, 赵晓倩, 米湘成, 郭庆华, 马克平 (2018) 生物多样性监测网络建设进展. 遥感学报, 22, 708-711.]
[23] Jiang ZG, Ma KP (2009) Status, challenges and strategy in Conservation Biology. Biodiversity Science, 17, 107-116. (in Chinese with English abstract)
[蒋志刚, 马克平 (2009) 保护生物学的现状、挑战和对策. 生物多样性, 17, 107-116.]
[24] Jin R, Li X, Ma MG (2017) Key methods and experiment verification for the validation of quantitative remote sensing products. Advances in Earth Science, 32, 630-642. (in Chinese with English abstract)
[晋锐, 李新, 马明国 (2017) 陆地定量遥感产品的真实性检验关键技术与试验验证. 地球科学进展, 32, 630-642.]
[25] Keith DA, Rodríguez J, Rodríguez-Clark KM, Nicholson E, Aapala K, Alonso Al, Asmussen M, Bachman S, Basset A, Barrow EG (2013) Scientific foundations for an IUCN Red List of Ecosystems. PLoS ONE, 8, e62111.
[26] Li BV, Pimm S, Li S, Zhao L, Luo C (2017) Free-ranging livestock threaten the long-term survival of giant pandas. Biological Conservation, 216, 18-25.
[27] Li X, Cheng G, Liu S (2013) Heihe watershed allied telemetry experimental research (HiWATER): Scientific objectives and experimental design. Bulletin of the American Meteorological Society, 94, 1145-1160.
[28] Li X, Li X, Li Z (2009) Watershed allied telemetry experimental research. Journal of Geophysical Research: Atmospheres, 114.
[29] Ma KP (2016) Hot topics for biodiversity science. Biodiversity Science, 24, 1-2. (in Chinese)
[马克平 (2016) 生物多样性科学的热点问题. 生物多样性, 24, 1-2.]
[30] Ma KP, Qian YQ (1998) biodiversity conservation and its research progress. Chinese Journal of Applied and Environmental Biology, 4, 95-99. (in Chinese with English abstract)
[马克平, 钱迎倩 (1998) 生物多样性保护及其研究进展. 应用与环境生物学报, 4, 95-99.]
[31] Myers N, Mittermeier RA, Mittermeier CG, Fonseca D, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853-858.
[32] Nagendra H (2001) Using remote sensing to assess biodiversity. International Journal of Remote Sensing, 22, 2377-2400.
[33] Oindo BO, Skidmore A (2002) Interannual variability of NDVI and species richness in Kenya. International Journal of Remote Sensing, 23, 285-298.
[34] Palmer MW, Earls PG, Hoagland BW, White PS, Wohlgemuth T (2002) Quantitative tools for perfecting species lists. Environmetrics, 13, 121-137.
[35] Petrou ZI, Kosmidou V, Manakos I, Stathaki T, Adamo M, Tarantino C (2014) A rule-based classification methodology to handle uncertainty in habitat mapping employing evidential reasoning and fuzzy logic. Pattern Recognition Letters, 48, 24-33.
[36] Petrou ZI, Manakos I, Stathaki T (2015) Remote sensing for biodiversity monitoring: A review of methods for biodiversity indicator extraction and assessment of progress towards international targets. Biodiversity and Conservation, 24, 2333-2363.
[37] Phillips SJ, Dudík M (2008) Modeling of species distributions with MaxEnt: New extensions and a comprehensive evaluation. Ecography, 31, 161-175.
[38] Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN, Raven PH, Roberts CM, Sexton J (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science, 344, 1246752.
[39] Pu R, Bell S, Levy KH, Meyer C (2010) Mapping detailed seagrass habitats using satellite imagery. IEEE Geoscience and Remote Sensing Symposium, Honolulu, USA, pp. 1-4.
[40] Reiche M, Funk R, Zhang Z, Hoffmann C, Reiche J, Wehrhan M (2012) Application of satellite remote sensing for mapping wind erosion risk and dust emission-deposition in Inner Mongolia grassland, China. Grassland Science, 58, 8-19.
[41] Rocchini D (2007) Effects of spatial and spectral resolution in estimating ecosystem α-diversity by satellite imagery. Remote Sensing of Environment, 111, 423-434.
[42] Rocchini D, Chiarucci A (2004) Testing the spectral variation hypothesis by using satellite multispectral images. Acta Oecologica, 26, 117-120.
[43] Saatchi S, Buermann W, Mori S, Smith TB (2008) Modeling distribution of Amazonian tree species and diversity using remote sensing measurements. Remote Sensing of Environment, 112, 2000-2017.
[44] Sellers P, Hall F, Margolis H (1995) The boreal ecosystem-atmosphere study (BOREAS): An overview and early results from the 1994 field year. Bulletin of the American Meteorological Society, 76, 1549-1577.
[45] Sellers PJ, Hall FG, Kelly (1997) BOREAS in 1997: Experiment overview, scientific results, and future directions. Journal of Geophysical Research: Atmospheres, 102, 28731-28769.
[46] Soberon J, Nakamura M (2009) Niches and distributional areas: Concepts, methods, and assumptions. Proceedings of the National Academy of Sciences, USA, 106, 19644-19650.
[47] Tan J, Li A, Lei G, Bian J, Chen G, Ma K (2017) Preliminary assessment of ecosystem risk based on IUCN criteria in a hierarchy of spatial domains: A case study in Southwestern China. Biological Conservation, 215, 152-161.
[48] Tan JB, Li AN, Lei GB, Chen GK, Ma KP (2017) Research advances and challenges in the IUCN Red List of Ecosystems. Biodiversity Science, 25, 453-463. (in Chinese with English abstract)
[谭剑波李爱农, 雷光斌, 陈国科, 马克平 (2017) IUCN生态系统红色名录研究进展. 生物多样性, 25, 453-463.]
[49] Towsey M, Wimmer J, Williamson I, Roe P (2014) The use of acoustic indices to determine avian species richness in audio-recordings of the environment. Ecological Informatics, 21, 110-119.
[50] Turner DP, Ritts WD, Cohen WB, Maeirsperger TK, Gower ST, Kirschbaum A, Running SW, Zhao M, Wofsy SC, Dunn AL, Law BE, Campbell JC, Oechel WC, Kwon HJ, Meyers TP, Small EE, Kurc SA, Gamon JA (2005) Site-level evaluation of satellite-based global terrestrial gross primary production and net primary production monitoring. Global Change Biology, 11, 666-684.
[51] Turner W, Spector S, Gardiner N, Fladeland M, Sterling E, Steininger M (2003) Remote sensing for biodiversity science and conservation. Trends in Ecology & Evolution, 18, 306-314.
[52] Wang KY (2004) Processes of Subalpine Forest Ecosystems in the West of Sichuan. Sichuan Science and Technology Press, Chengdu.
[王开运 (2004) 川西亚高山森林群落生态系统过程. 四川科学技术出版社, 成都.]
[53] Wang X, Wang Q, Wu C (2012) A method coupled with remote sensing data to evaluate non-point source pollution in the Xin’anjiang catchment of China. Science of the Total Environment, 430, 132-143.
[54] Wei YC, Wu BF, Zhang XW, Du X (2008) Advances in remote sensing research for biodiversity monitoring. Advances in Earth Science, 23, 924-931. (in Chinese with English abstract)
[魏彦昌, 吴炳方, 张喜旺, 杜鑫 (2008) 生物多样性遥感研究进展. 地球科学进展, 23, 924-931.]
[55] Wulder MA, White JC, Coops NC, Butson CR (2008) Multi-temporal analysis of high spatial resolution imagery for disturbance monitoring. Remote Sensing of Environment, 112, 2729-2740.
[56] Wythers KR, Reich PB, Turner DP (2003) Predicting leaf area index from scaling principles: Corroboration and consequences. Tree Physiology, 23, 1171-1179.
[57] Xiao ZS, Li XH, Jiang GS (2014) Applications of camera trapping to wildlife surveys in China. Biodiversity Science, 22, 683-684. (in Chinese with English abstract)
[肖治术, 李欣海, 姜广顺 (2014) 红外相机技术在我国野生动物监测研究中的应用. 生物多样性, 22, 683-684.]
[58] Yin GF, Li AN, Verger A (2017) Spatiotemporally representative and cost-efficient sampling design for validation activities in Wanglang Experimental Site. Remote Sensing, 9, 1217.
[59] Zainuddin M, Kiyofuji H, Saitoh K, Saitoh SI (2006) Using multi-sensor satellite remote sensing and catch data to detect ocean hot spots for albacore (Thunnus alalunga) in the northwestern North Pacific. Deep-Sea Research II, 53, 419-431.
[60] Zhang LB, Cui SP, Huang YJ, Chen DQ, Qiao HJ, Li CW, Jiang ZG (2014) Infrared camera traps in wildlife research and monitoring in China: Issues and insights. Biodiversity Science, 22, 696-703. (in Chinese with English abstract)
[张履冰, 崔绍朋, 黄元骏, 陈代强, 乔慧捷, 李春旺, 蒋志刚 (2014) 红外相机技术在我国野生动物监测中的应用: 问题与限制. 生物多样性, 22, 696-703.]
[61] Zhang Y, Liu QH, Tan LF, Huang HG, Ni WJ, Yin TG, Qin WH, Sun GQ (2017) A 3-D joint simulation platform for multiband remote sensing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10, 4763-4778.
[62] Zhong L, Gong P, Biging GS (2014) Efficient corn and soybean mapping with temporal extendability: A multi-year experiment using Landsat imagery. Remote Sensing of Environment, 140, 1-13.
[63] Zhu C, Fang Y, Zhou KX, Mu SJ, Jiang JL (2015) IUCN red list of ecosystems: A new tool for biodiversity conservation. Acta Ecologica Sinica, 35, 2826-2836. (in Chinese with English abstract)
[朱超, 方颖, 周可新, 穆少杰, 蒋金亮 (2015) 生态系统红色名录: 一种新的生物多样性保护工具. 生态学报, 35, 2826-2836.]
[1] 邢圆, 吴小平, 欧阳珊, 张君倩, 徐靖, 银森录, 谢志才. 赣江水系大型底栖动物多样性与受胁因子初探[J]. 生物多样性, 2019, 27(6): 648-657.
[2] 刘艳, 杨钰爽. 生物多样性保护优先区对重庆苔藓植物多样性保护的重要性[J]. 生物多样性, 2019, 27(6): 677-682.
[3] 桂旭君, 练琚愉, 张入匀, 李艳朋, 沈浩, 倪云龙, 叶万辉. 鼎湖山南亚热带常绿阔叶林群落垂直结构及其物种多样性特征[J]. 生物多样性, 2019, 27(6): 619-629.
[4] 张晓玲, 李亦超, 王芸芸, 蔡宏宇, 曾辉, 王志恒. 未来气候变化对不同国家茶适宜分布区的影响[J]. 生物多样性, 2019, 27(6): 595-606.
[5] 邵昕宁, 宋大昭, 黄巧雯, 李晟, 姚蒙. 基于粪便DNA及宏条形码技术的食肉动物快速调查及食性分析[J]. 生物多样性, 2019, 27(5): 543-556.
[6] 李晗溪, 黄雪娜, 李世国, 战爱斌. 基于环境DNA-宏条形码技术的水生生态系统入侵生物的早期监测与预警[J]. 生物多样性, 2019, 27(5): 491-504.
[7] 朱柏菁, 薛敬荣, 夏蓉, 靳苗苗, 吴攸, 田善义, 陈小云, 刘满强, 胡锋. 不同土壤线虫功能团对水稻生长及地上部植食者的影响[J]. 生物多样性, 2019, 27(4): 409-418.
[8] 马燕婕, 何浩鹏, 沈文静, 刘标, 薛堃. 转基因玉米对田间节肢动物群落多样性的影响[J]. 生物多样性, 2019, 27(4): 419-432.
[9] 赵阳,温源远. 《生物多样性公约》企业与生物多样性全球平台的发展情况及对中国的政策建议[J]. 生物多样性, 2019, 27(3): 339-346.
[10] 钱海源,余建平,申小莉,丁平,李晟. 钱江源国家公园体制试点区鸟类多样性与区系组成[J]. 生物多样性, 2019, 27(1): 76-80.
[11] 代云川,薛亚东,张云毅,李迪强. 国家公园生态系统完整性评价研究进展[J]. 生物多样性, 2019, 27(1): 104-113.
[12] 刘安榕, 杨腾, 徐炜, 上官子健, 王金洲, 刘慧颖, 时玉, 褚海燕, 贺金生. 青藏高原高寒草地地下生物多样性: 进展、问题与展望[J]. 生物多样性, 2018, 26(9): 972-987.
[13] 王乐, 时晨, 田金炎, 宋晓楠, 贾明明, 李小娟, 刘晓萌, 钟若飞, 殷大萌, 杨杉杉, 郭先仙. 基于多源遥感的红树林监测[J]. 生物多样性, 2018, 26(8): 838-849.
[14] 刘雪华, 武鹏峰, 何祥博, 赵翔宇. 红外相机技术在物种监测中的应用及数据挖掘[J]. 生物多样性, 2018, 26(8): 850-861.
[15] 刘方正, 杜金鸿, 周越, 黄志旁, 李延鹏, 王伟, 肖文. 无人机和地面相结合的自然保护地生物多样性监测技术与实践[J]. 生物多样性, 2018, 26(8): 905-917.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed