生物多样性 ›› 2017, Vol. 25 ›› Issue (6): 683-688.doi: 10.17520/biods.2017122

• 保护论坛 • 上一篇    

自然杂交与生物多样性保护

商辉, 严岳鸿*()   

  1. 上海辰山植物园, 中国科学院上海辰山植物科学研究中心, 上海 201602
  • 收稿日期:2017-04-16 接受日期:2017-06-10 出版日期:2017-06-20
  • 通讯作者: 严岳鸿 E-mail:yan.yh@126.com
  • 基金项目:
    国家自然科学基金(31370234)和上海市绿化和市容管理局科技攻关项目(G152419和G162401)

Natural hybridization and biodiversity conservation

Hui Shang, Yuehong Yan*()   

  1. Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences; Shanghai Chenshan Botanical Garden, Shanghai 201602
  • Received:2017-04-16 Accepted:2017-06-10 Online:2017-06-20
  • Contact: Yan Yuehong E-mail:yan.yh@126.com

物种之间的杂交事件在自然界中时常发生, 虽然大部分自然杂交会成为进化的盲端而被淘汰, 但仍有一部分自然杂交在物种形成过程中起到很重要的作用。随着对自然杂交认识的深入, 人们对其是否具有保护价值存在着较大的争议。本文从遗传多样性、物种多样性和生态系统多样性三个方面综述了自然杂交在物种进化和生态系统中的作用, 认为并不是所有杂交都存在着物种逆转的危险, 一些杂交事件可以增加生物多样性, 提高物种的环境适应性。同时, 我们结合近年来自然杂交的研究案例, 提出自然杂交的保护原则: 对父母本没有威胁, 同时有助于提高生物多样性和环境适应性的自然杂交应该予以保护。希望该建议为国家制定物种保护法律法规和编制红色名录提供参考。

关键词: 自然杂交, 生物多样性, 保护生物学, 红色名录

Hybridization occurs commonly in nature. Due to decreasing fitness, a large number of hybridized offspring might be eliminated in natural conditions, but many hybridization/introgression events can be important drivers of speciation. With advances in modern molecular genotyping methods, the mechanisms of hybridization and their impacts on speciation are becoming better understood. However, for taxa with hybridized origins, the question of whether the germplasm needs to be conserved presents many viewpoints. Here, we comprehensively review the conservation value of hybrids over three aspects (including genetic diversity, species diversity, and ecosystem diversity) to pronounce the significant roles in evolution and ecology. A large number of cases indicate that not all hybridization will lead to genetic assimilation by hybridization swamping. It can also boost genetic diversity and increase fitness and adaptability. Based on recent research on natural hybridization, we propose a principle for conservation of hybridized originated taxa if the existing hybridized taxon does not threaten the parental species, and its unique germplasm can contribute to genetic and adaptive capacity. In such a situation, the conservation of hybridized taxa should be taken into consideration. We hope this proposal could supplement a reference to reinforce conservation policy and species red listing.

Key words: natural hybridization, biodiversity, conservation biology, species red list

图1

自然杂交种的保护原则"

[1] Abbott R, Albach D, Ansell S, Arntzen JW, Baird SJ, Bierne N, Boughman J, Brelsford A, Buerkle CA, Buggs R (2013) Hybridization and speciation. Journal of Evolutionary Biology, 26, 229-246.
[2] Allendorf FW, Leary RF, Spruell P, Wenburg JK (2001) The problems with hybrids: setting conservation guidelines. Trends in Ecology & Evolution, 16, 613-622.
[3] Anderson E, Stebbins G Jr (1954) Hybridization as an evolutionary stimulus. Evolution, 378-388.
[4] Arnold ML (1992) Natural hybridization as an evolutionary process. Annual Review of Ecology and Systematics, 23, 237-261.
[5] Bohling JH (2016) Strategies to address the conservation threats posed by hybridization and genetic introgression. Biological Conservation, 203, 321-327.
[6] Coyne JA, Orr HA (2004) Speciation. Sinauer Associates Inc., Sunderland, MA.
[7] Ebihara A, Nakato N, Amoroso VB, Hidayat A, Kuo LY (2016) Monachosorum arakii Tagawa (Dennstaedtiaceae) is a relict “international” hybrid: a reassessment of the Monachosorum species. Systematic Botany, 41, 586-595.
[8] Fitzpatrick BM, Shaffer HB (2007) Hybrid vigor between native and introduced salamanders raises new challenges for conservation. Proceedings of the National Academy of Sciences, USA, 104, 15793-15798.
[9] Gow JL, Peichel CL, Taylor EB (2006) Contrasting hybridization rates between sympatric three-spined sticklebacks highlight the fragility of reproductive barriers between evolutionarily young species. Molecular Ecology, 15, 739-752.
[10] Grant PR, Grant BR (2014) Evolutionary biology: speciation undone. Nature, 507, 178-179.
[11] Gross B, Rieseberg L (2005) The ecological genetics of homoploid hybrid speciation. Journal of Heredity, 96, 241-252.
[12] Hayashi M, Kato J, Ohashi H, Mii M (2009) Unreduced 3x gamete formation of allotriploid hybrid derived from the cross of Primula denticulata (4x) × P. rosea (2x) as a causal factor for producing pentaploid hybrids in the backcross with pollen of tetraploid P. denticulata. Euphytica, 169, 123.
[13] Hill KD (1993) The endangered species act: what do we mean by species. Boston College Environmental Affairs Law Review, 20, 239.
[14] Hori K, Tono A, Fujimoto K, Kato J, Ebihara A, Watano Y, Murakami N (2014) Reticulate evolution in the apogamous Dryopteris varia complex (Dryopteridaceae, subg. Erythrovariae, sect. Variae) and its related sexual species in Japan. Journal of Plant Research, 127, 661-684.
[15] IUCN (2013) The IUCN Red List of Threatened Species. IUCN, Gland, Switzerland.
[16] IUCN (2014) Guidelines for Using the IUCN Red List Categories and Criteria, Version 11. IUCN, Gland, Switzerland.
[17] Jackiw RN, Mandil G, Hager HA (2015) A framework to guide the conservation of species hybrids based on ethical and ecological considerations. Conservation Biology, 29, 1040-1051.
[18] Kasari L, Saar L, de Bello F, Takkis K, Helm A (2016) Hybrid ecosystems can contribute to local biodiversity conservation. Biodiversity and Conservation, 25, 3023-3041.
[19] Kleindorfer S, O’Connor JA, Dudaniec RY, Myers SA, Robertson J, Sulloway FJ (2014) Species collapse via hybridization in Darwin’s tree finches. The American Naturalist, 183, 325-341.
[20] Mallet J (2007) Hybrid speciation. Nature, 446, 279.
[21] May R (1976) Theoretical Ecology. Saunders, Philadelphia.
[22] Nolte AW, Tautz D (2010) Understanding the onset of hybrid speciation. Trends in Genetics, 26, 54-58.
[23] Piett S, Hager HA, Gerrard C (2015) Characteristics for evaluating the conservation value of species hybrids. Biodiversity and Conservation, 24, 1931-1955.
[24] Richards ZT, Hobbs JPA (2015) Hybridisation on coral reefs and the conservation of evolutionary novelty. Current Zoology, 61, 132-145.
[25] Rieseberg LH (1991) Homoploid reticulate evolution in Helianthus (Asteraceae): evidence from ribosomal genes. American Journal of Botany, 1218-1237.
[26] Rolán-Alvarez E (2007) Sympatric speciation as a by-product of ecological adaptation in the Galician Littorina saxatilis hybrid zone. Journal of Molluscan Studies, 73, 1-10.
[27] Rothfels CJ, Johnson AK, Hovenkamp PH, Swofford DL, Roskam HC, Fraser-Jenkins CR, Windham MD, Pryer KM (2015) Natural hybridization between genera that diverged from each other approximately 60 million years ago. The American Naturalist, 185, 433-442.
[28] Seehausen O (2004) Hybridization and adaptive radiation. Trends in Ecology & Evolution, 19, 198-207.
[29] Seehausen O (2006) Conservation: losing biodiversity by reverse speciation. Current Biology, 16, R334-R337.
[30] Shang H, Wang Y, Zhu XF, Zhao GH, Wang FH, Lu JM, Yan YH (2016) Likely allopatric origins of Adiantum× meishanianum (Pteridaceae) through multiple hybridizations. Journal of Systematics and Evolution, 54, 528-534.
[31] Soltis DE, Visger CJ, Soltis PS (2014) The polyploidy revolution then and now: Stebbins revisited. American Journal of Botany, 101, 1057-1078.
[32] Stelkens RB, Brockhurst MA, Hurst GD, Greig D (2014) Hybridization facilitates evolutionary rescue. Evolutionary Applications, 7, 1209-1217.
[33] Taylor E, Boughman J, Groenenboom M, Sniatynski M, Schluter D, Gow J (2006) Speciation in reverse: morphological and genetic evidence of the collapse of a three- spined stickleback (Gasterosteus aculeatus) species pair. Molecular Ecology, 15, 343-355.
[34] Tsutsumi C, Hirayama Y, Kato M, Yatabe-Kakugawa Y, Zhang S (2012) Molecular evidence on the origin of Osmunda × mildei (Osmundaceae). American Fern Journal, 102, 55-68.
[35] Vilà M, Weber E, Antonio CM (2000) Conservation implications of invasion by plant hybridization. Biological Invasions, 2, 207-217.
[36] Wang XR, Szmidt AE, Savolainen O (2001) Genetic composition and diploid hybrid speciation of a high mountain pine, Pinus densata, native to the Tibetan Plateau. Genetics, 159, 337-346.
[37] Wang Y, Shang H, Gu YF, Wei HJ, Zhao GH, Dai XL, Yan YH (2015a) A new cryptic hybrid species of Adiantum L. (Pteridaceae) identified by nuclear and chloroplast DNA sequences. Chinese Science Bulletin, 60, 922-932.
[38] Wang Y, Shang H, Zhou XL, Zhao GH, Dai XL, Yan YH (2015b) Adiantum× ailaoshanense (Pteridaceae), a new natural hybrid from Yunnan, China. Phytotaxa, 236, 266-272.
[39] Whitham TG, Martinsen GD, Keim P, Floate KD, Dungey HS, Potts BM (1999) Plant hybrid zones affect biodiversity: tools for a genetic-based understanding of community structure. Ecology, 80, 416-428.
[40] Wu W (2009) Natural Hybridization, Phylogeography and Speciation Patterns of Altingiaceae. PhD dissertaion, Sun Yat-sen University, Guangzhou.(in Chinese with English abstract)
[吴伟 (2009) 阿丁枫科的自然杂交、亲缘地理学与物种形成模式. 中山大学博士学位论文, 广州.]
[41] Wu W, Zhou R, Huang Y, Boufford DE, Shi S (2010) Molecular evidence for natural intergeneric hybridization between Liquidambar and Altingia. Journal of Plant Research, 123, 231-239.
[42] Wyk AM, Dalton DL, Hoban S, Bruford MW, Russo IRM, Birss C, Grobler P, Vuuren BJ, Kotzé A (2017) Quantitative evaluation of hybridization and the impact on biodiversity conservation. Ecology and Evolution, 7, 320-330.
[43] Yakimowski SB, Rieseberg LH (2014) The role of homoploid hybridization in evolution: a century of studies synthesizing genetics and ecology. American Journal of Botany, 101, 1247-1258.
[44] Zhang JL (2007) Natural Hybridization Origin of Rhododendron agastum (Ericaceae) in Yunnan, China. PhD dissertaion, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming. (in Chinese with English abstract)
[张敬丽 (2007) 杜鹃花属迷人杜鹃的自然杂交起源研究. 中国科学院昆明植物研究所博士学位论文, 昆明.]
[45] Zhou QJ, Cai YC, Ng WL, Wu W, Dai SP, Wang F, Zhou RC (2017) Molecular evidence for natural hybridization between two Melastoma species endemic to Hainan and their widespread congeners. Biodiversity Science, 25, 638-646. (in Chinese with English abstract)
[周秋杰, 蔡亚城, 黄伟伦, 吴伟, 代色平, 王峰, 周仁超 (2017) 野牡丹属两个海南特有种与同属广布种自然杂交的分子证据. 生物多样性, 25, 638-646.]
[1] 邢圆, 吴小平, 欧阳珊, 张君倩, 徐靖, 银森录, 谢志才. 赣江水系大型底栖动物多样性与受胁因子初探[J]. 生物多样性, 2019, 27(6): 648-657.
[2] 刘艳, 杨钰爽. 生物多样性保护优先区对重庆苔藓植物多样性保护的重要性[J]. 生物多样性, 2019, 27(6): 677-682.
[3] 桂旭君, 练琚愉, 张入匀, 李艳朋, 沈浩, 倪云龙, 叶万辉. 鼎湖山南亚热带常绿阔叶林群落垂直结构及其物种多样性特征[J]. 生物多样性, 2019, 27(6): 619-629.
[4] 张晓玲, 李亦超, 王芸芸, 蔡宏宇, 曾辉, 王志恒. 未来气候变化对不同国家茶适宜分布区的影响[J]. 生物多样性, 2019, 27(6): 595-606.
[5] 李晗溪, 黄雪娜, 李世国, 战爱斌. 基于环境DNA-宏条形码技术的水生生态系统入侵生物的早期监测与预警[J]. 生物多样性, 2019, 27(5): 491-504.
[6] 邵昕宁, 宋大昭, 黄巧雯, 李晟, 姚蒙. 基于粪便DNA及宏条形码技术的食肉动物快速调查及食性分析[J]. 生物多样性, 2019, 27(5): 543-556.
[7] 朱柏菁, 薛敬荣, 夏蓉, 靳苗苗, 吴攸, 田善义, 陈小云, 刘满强, 胡锋. 不同土壤线虫功能团对水稻生长及地上部植食者的影响[J]. 生物多样性, 2019, 27(4): 409-418.
[8] 马燕婕, 何浩鹏, 沈文静, 刘标, 薛堃. 转基因玉米对田间节肢动物群落多样性的影响[J]. 生物多样性, 2019, 27(4): 419-432.
[9] 赵阳,温源远. 《生物多样性公约》企业与生物多样性全球平台的发展情况及对中国的政策建议[J]. 生物多样性, 2019, 27(3): 339-346.
[10] 钱海源,余建平,申小莉,丁平,李晟. 钱江源国家公园体制试点区鸟类多样性与区系组成[J]. 生物多样性, 2019, 27(1): 76-80.
[11] 代云川,薛亚东,张云毅,李迪强. 国家公园生态系统完整性评价研究进展[J]. 生物多样性, 2019, 27(1): 104-113.
[12] 刘安榕, 杨腾, 徐炜, 上官子健, 王金洲, 刘慧颖, 时玉, 褚海燕, 贺金生. 青藏高原高寒草地地下生物多样性: 进展、问题与展望[J]. 生物多样性, 2018, 26(9): 972-987.
[13] 李爱农, 尹高飞, 张正健, 谭剑波, 南希, 马克平, 郭庆华. 基于站点的生物多样性星空地一体化遥感监测[J]. 生物多样性, 2018, 26(8): 819-827.
[14] 王乐, 时晨, 田金炎, 宋晓楠, 贾明明, 李小娟, 刘晓萌, 钟若飞, 殷大萌, 杨杉杉, 郭先仙. 基于多源遥感的红树林监测[J]. 生物多样性, 2018, 26(8): 838-849.
[15] 刘雪华, 武鹏峰, 何祥博, 赵翔宇. 红外相机技术在物种监测中的应用及数据挖掘[J]. 生物多样性, 2018, 26(8): 850-861.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed