生物多样性 ›› 2017, Vol. 25 ›› Issue (6): 654-674.doi: 10.17520/biods.2017050
田代科1, 2, *(), 李春1, 3, 肖艳1, 2, 付乃峰1, 2, 童毅1, 2, 吴瑞娟1, 2
Daike Tian1, 2, *(), Chun Li1, 3, Yan Xiao1, 2, Naifeng Fu1, 2, Yi Tong1, 2, Ruijuan Wu1, 2
自然杂交在植物界中十分普遍, 一直是物种形成和进化研究的热点。秋海棠属(Begonia)为世界最大植物属之一, 其种类繁多, 但关于自然杂交的相关报道很少。系统调查秋海棠属的自然杂交不仅有利于理解该属植物的多样性, 也是弄清其资源和解决物种分类问题不可缺少的环节。本文通过对国产秋海棠属植物自然杂交现象的系统调查和分析, 发现总计29种(占国产已知200种秋海棠的约15%)参与了杂交, 产生了31个自然“杂种”约50个居群。其中, 掌叶秋海棠(B. hemsleyana)和粗喙秋海棠(B. longifolia)参与杂交程度最高, 分别与另外的8种和7种秋海棠发生了杂交; 而裂叶秋海棠(B. palmata)发生杂交的居群最多, 达16处。自然杂交以云南(尤其是南部)发生频率最高, 一共有20种参与, 产生了31处杂交居群; 台湾和广西次之。杂交多为单向发生, 个体以F1代个体为主, 尚未脱离亲本独立成种。野外传粉生物学初步观察发现: 秋海棠的主要访花昆虫为食蚜蝇类, 其次是蜜蜂科, 但各自传粉特点及效率尚待进一步研究。杂种及疑似亲本的鉴定可通过形态学、分子生物学和人工重复杂交等综合方法实现。杂种的基因组大小(C值)等于或接近两亲本的平均值, 误差通常小于10%, 有助于辅助鉴定杂种及亲本。我们总结后认为杂交发生及杂种形成必须满足5个条件: (1)重叠或邻近分布; (2)花期相遇; (3)有效传粉媒介; (4)杂交亲和; (5)适宜种子萌发幼苗生长的小生境及气候条件。据此, 我们预测了国产秋海棠属未来可能发生的约40个新杂交组合的可能亲本及地点。到目前为止, 尽管所有已知的秋海棠杂种尚未形成真正的新物种, 但是, 为了满足科学研究及实践交流的需要, 建议按照新分类群发表的严格要求, 将“杂种”逐一开展调查研究并整理发表, 并将其作为物种进化过程中的一个特殊分类单元对待。鉴于秋海棠属的杂种个体稀少且并未对亲本构成威胁, 反而在一定程度上增加了类群的多样性, 并为优良观赏品种的直接选育创造了机会, 因此, 国产秋海棠属种类丰富及杂种区应为就地保护的优先考虑范围之一。同时, 鉴于秋海棠属杂交亲和性高, 迁地保护栽培时应增大花期重叠种类的种植间距, 避免发生自然杂交。
[1] | Abbott RJ, Lowe AJ (2004) Origins, establishment and evolution of new polyploid species: Senecio cambrensis and S. eboracensis in the British Isles. Biological Journal of the Linnean Society, 82, 467-474. |
[2] | Agren J, Schemske DW (1991) Pollination by deceit in a Neotropical monoecious herb, Begonia involucrate. Biotropica, 23, 235-241. |
[3] | Arnold ML (1992) Natural hybridization as an evolutionary process. Annual Review of Ecology and Systematics, 23, 237-261. |
[4] | Arnold ML (1997) Natural Hybridization and Evolution. Oxford University Press, New York. |
[5] | Arnold ML, Bouck AC, Cornman RS (2003) Verne Grant and Louisiana Irises: is there anything new under the sun? New Phytologist, 161, 143-149. |
[6] | Baack EJ, Whitney KD, Rieseberg LH (2005) Hybridization and genome size evolution: timing and magnitude of nuclear DNA content increases in Helianthus homoploid hybrid species. New Phytologist, 167, 623-630. |
[7] | Bairdungerer MC, Baird S, Pan J, Rieseberg LH (1998) Rapid hybrid speciation in wild sunflowers. Proceedings of the National Academy of Sciences, USA, 95, 11757-11762. |
[8] | Burt-Utley K (1985) A revision of Central American species of Begonia section Gireoudia (Begoniaceae). Tulane Studies in Zoology and Botany, 25, 1-131. |
[9] | Curtu AL, Gailing O, Finkeldey R (2007) Evidence for hybridization and introgression within a species-rich oak (Quercus spp.) community. BMC Evolutionary Biology, 7, 218-232. |
[10] | Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proceedings of the National Academy of Sciences, USA, 97, 7043-7050. |
[11] | Ellstrand NC, Whitkus RW, Rieseberg LH (1996) Distribution of spontaneous plant hybrids. Proceedings of the National Academy of Sciences, USA, 93, 5090-5093. |
[12] | Frodin DG (2004) History and concepts of big plant genera. Taxon, 53, 753-776. |
[13] | Gaskin JF (2016) The role of hybridization in facilitating tree invasion. AoB Plants, 9, doi:10.1093/aobpla/plw079. |
[14] | Hong DY (2016) Biodiversity pursuits need a scientific and operative species concept. Biodiversity Science, 24, 979-999. (in Chinese with English abstract) |
[洪德元 (2016)生物多样性事业需要科学、可操作的物种概念. 生物多样性, 24, 979-999.] | |
[15] | Hoover WS, Karegeannes C, Wiriadinata H, Hunter JM (2004) Notes on the geography of South-east Asian Begonia and species diversity in montane forests. Telopea, 10, 749-764. |
[16] | Lee CS, Lee K, Yeau SH, Chung KS (2015) Two new and one unrecorded natural hybrids between Asplenium ruprechtii and related taxa (Aspleniaceae). Korean Journal of Plant Taxonomy, 45, 362-368. |
[17] | Léveillé-Bourret E, Bailleul S, Cayouette J, Joly S (2014) Testing hybridization hypotheses with morphometry: the case of eastern American arctic species of Potentilla sect. Niveae (Rosaceae). Systematic Botany, 39, 193-204. |
[18] | Li C, Tian DK, Li XP, Fu NF (2015) Morphological and molecular identification of natural hybridization between Begonia hemsleyana and B. macrotoma. Scientia Horticulturae, 192, 357-360. |
[19] | Li HZ, Ma H, Guan KY, Peng CI (2005) Begonia rubinea (sect. Platycentrum, Begoniaceae), a new species from Guizhou, China. Botanical Bulletin of Acadmia Sinica, 46, 377-383. |
[20] | Li JX, Guan KY, Kong FC, Godo TN (2013) Property of sexual hybridization plants of Begonia in Yunnan. Guihaia, 33, 727-733. (in Chinese with English abstract) |
[李景秀, 管开云, 孔繁才, 神戸敏成 (2013) 云南秋海棠属植物有性杂交特性. 广西植物, 33, 727-733.] | |
[21] | Liu JQ (2016) “The integrative species concept” and “species on the speciation way”. Biodiversity Science, 24, 1004-1008.(in Chinese with English abstract) |
[刘建全 (2016) “整合物种概念”和“分化路上的物种”. 生物多样性, 24, 1004-1008.] | |
[22] | Mallet J (2007) Hybrid speciation. Nature, 446, 279-283. |
[23] | Marques I, Feliner GN, Martins-Loucao MA, Aguilar JF (2012) Genome size and base composition variation in natural and experimental Narcissus (Amaryllidaceae) hybrids. Annals of Botany, 109, 257-264. |
[24] | Morris R (2017) Species Begonias of the Eastern Himalayas. KBCC Press, Gaoshu, China. |
[25] | Nolte AW, Tautz D (2010) Understanding the onset of hybrid speciation. Trends in Genetics, 26, 54-58. |
[26] | Parepa M, Fischer M, Krebs C, Bossdorf O (2014) Hybridization increases invasive knotweed success. Evolutionary Applications, 7, 413-420. |
[27] | Peng CI, Chen YK (1991) Hybridity and parentage of Begonia buimontana Yamamoto (Begoniaceae) from Taiwan. Annals of the Missouri Botanical Garden, 78, 995-1001. |
[28] | Peng CI, Ku SM (2009) Begonia ×chungii (Begoniaceae), a new natural hybrid in Taiwan. Botanical Studies, 50, 241-250. |
[29] | Peng CI, Liu Y, Ku SM, Kono Y, Chung KF (2010) Begonia ×breviscapa (Begoniaceae), a new intersectional natural hybrid from Guangxi, China. Botanical Studies, 51, 107-117. |
[30] | Peng CI, Sue CY (2000) Begonia ×taipeiensis (Begoniaceae), a new natural hybrid in Taiwan. Botanical Bulletin of Academia Sinica, 41, 151-158. |
[31] | Phutthai1 T, Hughes M (2016) A new species and a new record in Begonia sect. Platycentrum (Begoniaceae) from Thailand. Gardens’ Bulletin Singapore, 68, 99-107. |
[32] | Prancl J, Kaplan ZK, Travnicek P, Jarolimova V (2014) Genome size as a key to evolutionary complex aquatic plants: polyploidy and hybridization in Callitriche (Plantaginaceae). PLoS ONE, 9, e105997. |
[33] | Rhymer JM, Simberloff D (1996) Extinction by hybridization and introgression. Annual Review of Ecology and Systematics, 27, 83-109. |
[34] | Rieseberg LH (1997) Hybrid origins of plant species. Annual Review of Ecology and Systematics, 28, 359-389. |
[35] | Rieseberg LH, Carney SE (1998) Plant hybridization. New Phytologist, 140, 599-624. |
[36] | Rieseberg LH, Raymond O, Rosenthal DM, Lai Z, Livingstone K, Nakazato T, Durphy JL, Schwarzbach AE, Donovan LA, Lexer C (2003) Major ecological transitions in wild sunflowers facilitated by hybridization. Science, 301, 1211-216. |
[37] | Sands, MJS (2001) Begoniaceae. In: The Plants of Mt. Kinabalu (eds, Beaman JJ, Anderson C, Beaman RS), pp. 147-163. Natural History Publications (Borneo), Royal Botanic Gardens: Kew, UK. |
[38] | Sang J, Kiew R, Geri C (2013) Revision of Begonia (Begoniaceae) from the Melinau Limestone in Gunung Mulu National Park and Gunung Buda National Park, Sarawak, Borneo, including thirteen new species. Phytotaxa, 99, 1-34. |
[39] | Schemske DW, Agren J, Corff JL (1996) Deceit pollination in the Monoecious, Neotropical Herb Begonia oaxacana Begoniaceae). In: Floral Biology: Studies on Floral Evolution in Animal-Pollinated Plants (eds, Lloyd DG, Barrett S), pp. 292-318. Chapman & Hall, New York. |
[40] | Schierenbeck KA, Ellstrand NC (2009) Hybridization and the evolution of invasiveness in plants and other organisms. Biological Invasions, 11, 1093-1105. |
[41] | Seker M, Tuzcu O, Ollitrault P (2003) Comparison of nuclear DNA content of citrus rootstock populations by flow cytometry analysis. Plant Breeding, 122, 169-172. |
[42] | Soltis DE, Soltis PS, Pires JC, Kovarik A, Tate JA, Mavrodiev E (2004) Recent and recurrent polyploidy in Tragopogon (Asteraceae): cytogenetic, genomic and genetic comparisons. Biological Journal of the Linnean Society, 82, 485-501. |
[43] | Stebbins GL (1957) The role of hybridization in evolution. Proceedings of the American Philosophical Society, 103, 231-251. |
[44] | Stukenbrock EH (2016) The role of hybridization in the evolution and emergence of new fungal plant pathogens. Phytopathology, 106, 104-112. |
[45] | Tebbitt MC (2013a) Three new natural hybrids of Andean tuberous begonias. The Begonian, 80, 29-32. |
[46] | Tebbitt MC (2013b) A rare new natural hybrid of Andean tuberous begonia. The Begonian, 80, 176-177. |
[47] | Teo LL, Kiew R (1999) First record of a natural begonia hybrid in Malaysia. Gardens’ Bulletin of Singapore, 51, 103-118. |
[48] | Thomas D, Hughes M, Phutthai T, Rajbhandary S, Rubite R, Ardi WH, Richardson JE (2011) A non-coding plastid DNA phylogeny of Asian Begonia (Begoniaceae): evidence for morphological homoplasy and sectional polyphyly. Molecular Phylogenetics and Evolution, 60, 428-444. |
[49] | Wang N, Borrell JS, Bodles WJ, Kuttapitiya A, Nichols RA, Buggs RJA (2014) Molecular footprints of the Holocene retreat of dwarf birch in Britain. Molecular Ecology, 23, 2771-2782. |
[50] | Wang ZF, Peng SL (2003) Plant hybridization and its harmful genetic consequences. Biodiversity Science, 11, 333-339. (in Chinese with English abstract) |
[王峥峰, 彭少麟 (2003) 杂交产生的遗传危害——以植物为例. 生物多样性, 11, 333-339.] | |
[51] | Wyatt GE, Sazima M (2011) Pollination and reproductive biology of thirteen species of Beogonia in the Serra Do Mar State Park, São Paulo, Brazil. Journal of Pollination Ecology, 6, 95-107. |
[52] | Yan LJ, Gao LM, Li DZ (2013) Molecular evidence for natural hybridization between Rhododendron spiciferum and R. spinuliferum (Ericaceae). Journal of Systematics and Evolution, 51, 426-434. |
[53] | Zalapa JE, Brunet J, Guries RP (2010) The extent of hybridization and its impact on the genetic diversity and population structure of an invasive tree, Ulmus pumila (Ulmaceae). Evolutionary Applications, 3, 157-168. |
[54] | Zhang DX (2016) Why is it so difficult to reach a consensus in species concept? Biodiversity Science, 24, 1009-2013. (in Chinese with English abstract) |
[张德兴 (2016) 为什么在物种概念上难以达成共识? 生物多样性, 24, 1009-1013.] | |
[55] | Zhao B, Fu NF, Xiang YC, Tian DK (2017) Effects of light intensity and planting substrates on the growth of Begonia ningmingensis ‘Ningming Silver’, a new begonia cultivar. Guihaia, 37, doi:10.11931/guihaia.gxzw201610033. (in Chinese with English abstract) |
[赵斌, 付乃峰, 向言词, 田代科 (2017) 光照强度及栽培基质对秋海棠新品种‘宁明银’生长的影响. 广西植物, 37, doi:10.11931/guihaia. gxzw201610033.] |
[1] | 黄建峰, 徐睿, 彭艳琼. 榕树种间杂交研究进展[J]. 生物多样性, 2019, 27(4): 457-467. |
[2] | 向文倩, 任明迅. 木棉黄花个体的适应意义[J]. 生物多样性, 2019, 27(4): 373-379. |
[3] | 土艳丽,王力平,王喜龙,王林林,段元文. 利用昆虫携带的花粉初探西藏入侵植物印加孔雀草在当地传粉网络中的地位[J]. 生物多样性, 2019, 27(3): 306-313. |
[4] | 庄平. 杜鹃花属植物的可育性研究进展[J]. 生物多样性, 2019, 27(3): 327-338. |
[5] | 刘秀嶶, Douglas Chesters, 武春生, 周青松, 朱朝东. 环境变化对中国野生蜜蜂多样性的影响[J]. 生物多样性, 2018, 26(7): 760-765. |
[6] | 包宇, 乔娅楠, 闫兴富, 王灵艳, 曲文静, 唐占辉. 浅裂剪秋萝和丝瓣剪秋萝传粉特性的初步研究[J]. 植物学报, 2018, 53(5): 634-642. |
[7] | 童泽宇, 徐环李, 黄双全. 探讨监测传粉者的方法[J]. 生物多样性, 2018, 26(5): 433-444. |
[8] | 田昊, 廖万金. 克隆生长对被子植物传粉过程的影响[J]. 生物多样性, 2018, 26(5): 468-475. |
[9] | 杨培, 彭艳琼, 赵荣华, 杨大荣. 大蜜蜂的生物学特性、面临威胁与保护策略[J]. 生物多样性, 2018, 26(5): 476-485. |
[10] | 黄家兴, 安建东. 中国熊蜂多样性、人工利用与保护策略[J]. 生物多样性, 2018, 26(5): 486-497. |
[11] | 吉乃提汗·马木提, 成小军, 谭敦炎. 荒漠短命植物异喙菊的小花异形性及繁殖特性[J]. 生物多样性, 2018, 26(5): 498-509. |
[12] | 贾翔宇, 白彬, 张洁清, 黄艺. IPBES评估报告对全球生物多样性保护的影响——以美国传粉者保护政策为例[J]. 生物多样性, 2018, 26(5): 527-534. |
[13] | 黄建峰, 徐睿, 彭艳琼. 榕-传粉榕小蜂非一对一共生关系的研究进展[J]. 生物多样性, 2018, 26(3): 295-303. |
[14] | 朱亚如, 龚燕兵. 风媒传粉的研究方法探讨[J]. 生物多样性, 2017, 25(8): 864-873. |
[15] | 王玉国. 自然杂交与物种形成[J]. 生物多样性, 2017, 25(6): 565-576. |