生物多样性 ›› 2016, Vol. 24 ›› Issue (8): 907-915.doi: 10.17520/biods.2016100

• • 上一篇    下一篇

长期施肥对水稻生长和抗虫性的影响: 解析土壤生物的贡献

蒋林惠1, 罗琌1, 肖正高1, 李大明2, 陈小云1, 刘满强1, *(), 胡锋1   

  1. 1 南京农业大学资源与环境科学学院土壤生态实验室, 南京 210095
    2 江西省红壤研究所, 南昌 331717
  • 收稿日期:2016-04-08 接受日期:2016-05-19 出版日期:2016-08-20
  • 通讯作者: 刘满强 E-mail:liumq@njau.edu.cn
  • 基金项目:
    国家自然科学基金(31170487)、中央高校基本科研业务费项目(KYTZ201404)和江苏省高校优势学科建设工程项目(PAPD)

Effects of soil biota influenced by long-term organic and chemical fertilizers on rice growth and resistance to insects

Linhui Jiang1, Ling Luo1, Zhenggao Xiao1, Daming Li2, Xiaoyun Chen1, Manqiang Liu1, *(), Feng Hu1   

  1. 1 Soil Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095
    2 Jiangxi Institute of Red Soil, Nanchang 331717
  • Received:2016-04-08 Accepted:2016-05-19 Online:2016-08-20
  • Contact: Liu Manqiang E-mail:liumq@njau.edu.cn

合理施肥对保障土壤质量和粮食安全具有重要作用。有机肥促进土壤生物群落的发展已被认为是其优于化肥的重要方面, 然而有机肥影响下的土壤生物群落对作物生长的贡献却了解甚少。了解土壤生物因素对作物抗虫性的贡献不仅可以揭示施肥影响土壤功能的生物调控机制, 而且有助于制定土壤-作物的综合管理措施。本研究采集长期施用有机肥和化肥的水稻土, 通过制备灭活与否的土壤悬液, 在砂培条件下探究土壤生物群落对水稻生长及其抗虫性的影响。结果显示, 土壤生物群落和施肥措施均极显著地影响了土壤养分含量(P < 0.01)。土壤生物的存在降低了土壤铵态氮含量、水稻生物量、茎叶全氮含量以及褐飞虱(Nilaparvata lugens)生物量; 增加了土壤硝态氮含量、水稻的根冠比及水稻根系全氮、可溶性糖以及酚类含量(P < 0.05); 同时, 有机肥处理的土壤生物群落还能够促进水稻茎叶可溶性糖和酚类的合成。接入褐飞虱后, 土壤生物群落的存在显著降低了水稻整体的全氮含量, 促进了酚类的合成(P < 0.05)。研究结果表明, 土壤生物群落, 尤其是有机肥处理的土壤生物群落, 主要通过改变水稻养分向地下部的分配格局、增加根冠比、促进防御性代谢物质(如酚类)的合成来提高水稻地上部对害虫的 抗性。

关键词: 土壤生物群落, 施肥, 地上部和地下部, 植食作用, 养分再分配, 抗虫性

Fertilization plays an important role in soil quality, food supply and security. Although promoting soil biological development is considered as one of the most critical components that organic fertilizers exert on soil compared with chemical fertilization, less attention has been paid to the fertilization-derived influence on crop growth and insect-resistance via soil biota. Understanding the role of soil biota in crop growth and resistance to insects would not only help explain the biological mechanisms of the fertilization effects on soil functions, but also help identify integrative management techniques for soils and crops. Soil suspension was extracted from long-term organically fertilized soils and chemically fertilized soils. Then, the soil suspension was sterilized or non-sterilized to investigate the soil biota’s effects on rice growth and insect-resistance through a soil-free cultured method. Results showed that soil biota and fertilization significantly affected soil nutrient status (P < 0.01). Soil biota decreased soil ammonium content, rice biomass, shoot nitrogen content and the biomass of Nilaparvata lugens, but increased soil nitrate content, rice root-shoot ratio and the contents of root nitrogen, soluble sugar and phenolics (P < 0.05). Meanwhile, soil biota from organically fertilized soils promoted the synthesis of shoot soluble sugar and shoot phenolics. With the addition of Nilaparvata lugens, soil biota significantly reduced rice nitrogen uptake and promoted phenolic synthesis (P < 0.05). Collectively, soil biota, especially from organically fertilized soils, promoted rice resistance traits by altering the nutrient allocation of rice between aboveground and belowground, and by increasing the root-shoot ratio and the synthesis of phenols.

Key words: soil biota, fertilization, aboveground-belowground, herbivory, nutrient allocation, insect-resistance

表1

初始土壤及灭活后土壤的理化性质(平均值±标准差, n = 4)"

对照 Non-sterilized 灭活 Sterilized
化肥 Chemical fertilizer 有机肥 Organic fertilizer 化肥 Chemical fertilizer 有机肥 Organic fertilizer
铵态氮 NH4+-N (mg/kg) 4.34 ± 0.73 2.19 ± 0.53 18.36 ± 0.63 27.35 ± 0.38
硝态氮 NO3--N (mg/kg) 75.97 ± 9.73 147.13 ± 3.53 73.12 ± 3.65 143.23 ± 2.65
可溶性有机碳 DOC (mg/kg) 43.86 ± 11.90 34.27 ± 5.56 712.86 ± 4.71 1,074.73 ± 21.17
速效磷 AP (mg/kg) 135.34 ± 1.26 101.01 ± 0.68 21.88 ± 0.00 10.02 ± 0.39
速效钾 AK (mg/kg) 21.03 ± 0.00 34.96 ± 1.51 38.68 ± 1.38 67.00 ± 2.57
pH (H2O) 6.01 ± 0.21 6.25 ± 0.26 5.77 ± 0.22 5.93 ± 0.23

表2

土壤生物因素(对照和灭活)、施肥因素(化肥和有机肥)及地上部害虫因素(接入和不接入褐飞虱)对土壤铵态氮、硝态氮、可溶性有机碳、pH、茎叶重、根系重和根冠比影响的方差分析结果"

自由度 铵态氮 硝态氮 可溶性有机碳 pH 茎叶重 根系重 根冠比
df NH4+-N NO3--N DOC (H2O) Shoot mass Root mass R/S ratio
灭活 Sterilization (S) 1 427.12** 62.10** 108.76** 60.98** 151.95** 47.66** 28.22**
施肥 Fertilization (F) 1 11.48** 16.70** 22.65** 27.48** 9.28** 0.10NS 1.24NS
飞虱 Planthopper (P) 1 2.08NS 7.89** 0.05NS 0.07NS 210.59** 10.66** 101.71**
灭活×施肥 Sterilization × Fertilization (S × F) 1 7.16* 0.28NS 11.46** 0.94NS 9.44** 3.77NS 8.18**
灭活×飞虱 Sterilization × Planthopper (S × P) 1 0.25NS 3.60NS 0.17NS 6.05* 20.62** 2.39NS 0.30NS
施肥×飞虱 Fertilization × Planthopper (F × P) 1 1.13NS 2.51NS 0.60NS 0.17NS 1.89NS 5.06* 1.51NS
灭活×施肥×飞虱
Sterilization × Fertilization × Planthopper (S × F × P)
1 0.19NS 1.66NS 1.52NS 1.41NS 1.99NS 2.53NS 2.74NS
Error 24

图1

土壤生物因素(对照和灭活)、施肥因素(化肥和有机肥)及地上部害虫因素(接入和不接入褐飞虱)对土壤铵态氮、硝态氮、可溶性有机碳和pH的影响。不同小写字母表示各处理间差异显著, P < 0.05。"

图2

土壤生物因素(对照和灭活)、施肥因素(化肥和有机肥)及地上部害虫因素(接入和不接入褐飞虱)对植株茎叶重、根系重和根冠比的影响。不同小写字母表示各处理间差异显著, P < 0.05。"

表3

土壤生物因素(对照和灭活)、施肥因素(化肥和有机肥)及地上部害虫因素(接入和不接入褐飞虱)对植株茎叶和根系全氮、可溶性糖及总酚影响的方差分析结果"

自由度
df
茎叶氮
Shoot N
根系氮
Root N
茎叶糖
Shoot sugar
根系糖
Root sugar
茎叶酚
Shoot phenolic
根系酚
Root phenolic
灭活 Sterilization (S) 1 151.95** 35.50** 9.56** 39.27** 20.41** 15.22**
施肥 Fertilization (F) 1 9.28** 27.93** 31.76** 0.39NS 7.71* 10.49**
飞虱 Planthopper (P) 1 210.59** 72.93** 83.24** 2.73NS 1.59NS 0.57NS
灭活×施肥 Sterilization × Fertilization (S × F) 1 9.44** 50.35** 0.02NS 0.023NS 0.62NS 10.82**
灭活×飞虱 Sterilization × Planthopper (S × P) 1 20.62** 2.00NS 11.45** 0.42NS 5.31* 0.53NS
施肥×飞虱 Fertilization × Planthopper (F × P) 1 1.89NS 5.42* 3.18NS 2.65NS 0.30NS 2.06NS
灭活×施肥×飞虱
Sterilization × Fertilization × Planthopper (S × F × P)
1 1.99NS 6.18* 0.06NS 12.86** 4.68* 0.73NS
Error 24

图3

土壤生物因素(对照和灭活)、施肥因素(化肥和有机肥)及地上部害虫因素(接入和不接入褐飞虱)对植株茎叶全氮、根系全氮、茎叶可溶性糖、根系可溶性糖、茎叶总酚和根系总酚的影响。不同小写字母表示各处理间差异显著, P < 0.05。"

图4

土壤生物因素(对照和灭活)及施肥因素(化肥和有机肥)对褐飞虱生物量的影响。不同小写字母表示各处理间差异显著, P < 0.05。"

图5

植株代谢产物和土壤理化性质在土壤生物因素、施肥因素和地上部害虫因素影响下的主成分分析。□代表植株代谢产物和土壤理化性质指标, ●代表不同的处理。"

[1] Ainsworth EA, Gillespie KM (2007) Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nature Protocols, 2, 875-877.
[2] Altieri MA, Nicholls CI (2003) Soil fertility management and insect pests: harmonizing soil and plant health in agroecosystems. Soil and Tillage Research, 72, 203-211.
[3] Badri DV, Zolla G, Bakker MG, Manter DK, Vivanco JM (2013) Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior. New Phytologist, 198, 264-273.
[4] Bakker MG, Manter DK, Sheflin AM, Weir TL, Vivanco JM (2012) Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant and Soil, 360, 1-13.
[5] Bardgett RD, Wardle DA (2003) Herbivore-mediated linkages between aboveground and belowground communities. Ecology, 84, 2258-2268.
[6] Bardgett RD, van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature, 515, 505-511.
[7] Bardgett RD, Wardle D (2010) Biotic interactions in soil as drivers of ecosystem properties. In: Aboveground- Belowground Linkages, Biotic Interactions, Ecosystem Processes, and Global Change (eds Bardgett RD, Wardle D), pp.15-61. Oxford University Press, New York.
[8] Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends in Plant Science, 17, 478-486.
[9] Bissett A, Brown MV, Siciliano SD, Thrall PH (2013) Microbial community responses to anthropogenically induced environmental change: towards a systems approach. Ecology Letters, 16, 128-139.
[10] Cohen MB, Alam SN, Medina EB, Bernal CC (1997) Brown planthopper, Nilaparvata lugens, resistance in rice cultivar IR64: mechanism and role in successful N. lugens management in Central Luzon, Philippines. Entomologia Experimentalis et Applicata, 85, 221-229.
[11] D’Alessandro M, Erb M, Ton J, Brandenburg A, Karlen D, Zopfi J, Turlings TC (2014) Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions. Plant Cell & Environment, 37, 813-826.
[12] Dubois M, Gilles KA, Hamilton JK, Rebers P, Smith F (1956) Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350-356.
[13] Erb M (2012) The role of roots in plant defence. In: Plant Defence: Biological Control (eds Mérillon JM, Ramawat KG), pp. 291-309. Springer Netherlands Press, Berlin.
[14] Fu SL (2007) A review and perspective on soil biodiversity research. Biodiversity Science, 15, 109-115. (in Chinese with English abstract)
[傅声雷 (2007) 土壤生物多样性的研究概况与发展趋势. 生物多样性, 15, 109-115.]
[15] Gu YF, Zhang XP, Tu SH, Sun XF (2008) Effect of long-term fertilization on nitrification and nitrobacteria community in a purple paddy soil under rice-wheat rotations. Acta Ecologica Sinica, 28, 2123-2130. (in Chinese with English abstract)
[辜运富, 张小平, 涂仕华, 孙锡发 (2008) 长期定位施肥对紫色水稻土硝化作用及硝化细菌群落结构的影响. 生态学报, 28, 2123-2130.]
[16] Jiang T, Zhao JL, Cheng JJ, Xu S, Su W, Bao SW, Liu F (2011) Effects of rice varieties and nitrogen fertilizer application rates on the occurrence of the brown planthopper, Nilaparvata lugens under field conditions. Chinese Journal of Applied Entomology, 48, 1359-1368. (in Chinese with English abstract)
[江涛, 赵俊玲, 程建军, 徐帅, 苏文, 包善微, 刘芳 (2011) 水稻品种与氮肥施用水平对田间褐飞虱发生的影响. 应用昆虫学报, 48, 1359-1368.]
[17] Jiang ZG, Qin HN, Liu YN, Ji LQ, Ma KP (2015) Protecting biodiversity and promoting sustainable development: in memory of the releasing of Catalogue of Life China 2015 and China Biodiversity Red List on the International Day for Biological Diversity 2015. Biodiversity Science, 23, 433-434. (in Chinese)
[蒋志刚, 覃海宁, 刘忆南, 纪力强, 马克平 (2015) 保护生物多样性, 促进可持续发展——纪念《中国生物物种名录》和《中国生物多样性红色名录》发布. 生物多样性, 23, 433-434.]
[18] Kenmore PE (1980) Ecology and Outbreaks of a Tropical Insects Pest of the Green Revolution, the Rice Brown Planthopper, Nilaparvata lugens (Stal). PhD dissertation, University of California, Berkeley.
[19] Lazcano C, Gómez-Brandón M, Revilla P, Domínguez J (2013) Short-term effects of organic and inorganic fertilizers on soil microbial community structure and function. Biology and Fertility of Soils, 49, 723-733.
[20] Liu M, Bjørnlund L, Rønn R, Christensen S, Ekelund F (2012) Disturbance promotes non-indigenous bacterial invasion in soil microcosms: analysis of the roles of resource availability and community structure. PLoS ONE, 7, e45306.
[21] Liu MQ, Huang JH, Chen XY, Wang F, Ge C, Su Y, Shao B, Tang Y, Li HX, Hu F (2009) Aboveground herbivory by the brown planthopper (Nilaparvata lugens) affects soil nematode communities under different rice varieties. Biodiversity Science, 17, 431-439. (in Chinese with English abstract)
[刘满强, 黄菁华, 陈小云, 王峰, 葛成, 苏昱, 邵波, 汤英, 李辉信, 胡锋 (2009) 地上部植食者褐飞虱对不同水稻品种土壤线虫群落的影响. 生物多样性, 17, 431-439.]
[22] Lu RK (2000) Analysis Method of Soil Agricultural Chemistry. China Agricultural Science and Technology Press, Beijing.
(in Chinese) [鲁如坤 (2000) 土壤农业化学分析方法. 中国农业科技出版社, 北京.]
[23] Martinuz A, Schouten A, Menjivar RD, Sikora RA (2012) Effectiveness of systemic resistance toward Aphis gossypii (Hom., Aphididae) as induced by combined applications of the endophytes Fusarium oxysporum Fo162 and Rhizobium etli G12. Biological Control, 62, 206-212.
[24] Megali L, Schlau B, Rasmann S (2015) Soil microbial inoculation increases corn yield and insect attack. Agronomy for Sustainable Development, 35, 1511-1519.
[25] Phelan PL, Mason JF, Stinner BR (1995) Soil-fertility management and host preference by European corn borer, Ostrinia nubilalis (Hübner), on Zea mays L.: a comparison of organic and conventional chemical farming. Agriculture, Ecosystems & Environment, 56, 1-8.
[26] Philippot L, Spor A, Hénault C, Bru D, Bizouard F, Jones CM, Maron PA (2013) Loss in microbial diversity affects nitrogen cycling in soil. The ISME Journal, 7, 1609-1619.
[27] Pineda A, Zheng SJ, van Loon JJA, Dicke M (2012) Rhizobacteria modify plant-aphid interactions: a case of induced systemic susceptibility. Plant Biology, 14, 83-90.
[28] Roger A, Getaz M, Rasmann S, Sanders IR (2013) Identity and combinations of arbuscular mycorrhizal fungal isolates influence plant resistance and insect preference. Ecological Entomology, 38, 330-338.
[29] Senthil-Nathan S, Choi MY, Paik CH, Seo HY, Kalaivani K (2009) Toxicity and physiological effects of neem pesticides applied to rice on the Nilaparvata lugens, the brown planthopper. Ecotoxicology and Environmental Safety, 72, 1707-1713.
[30] Shavit R, Ofek-Lalzar M, Burdman S, Morin S (2013) Inoculation of tomato plants with rhizobacteria enhances the performance of the phloem-feeding insect Bemisia tabaci. Frontiers in Plant Science, 4, 1-12.
[31] Shi LL, Fu SL (2014) Review of soil biodiversity research: history, current status and future challenges. Chinese Science Bulletin, 59, 493-509. (in Chinese)
[时雷雷, 傅声雷 (2014) 土壤生物多样性研究: 历史, 现状与挑战. 科学通报, 59, 493-509.]
[32] Soler R, van der Putten WH, Harvey JA, Vet LE, Dicke M, Bezemer TM (2012) Root herbivore effects on aboveground multitrophic interactions: patterns, processes and mechanisms. Journal of Chemical Ecology, 38, 755-767.
[33] Su T, Xu HX, Han HL, Yang YJ, Wang GY, Zheng XS, Lü ZX (2014) Soil microbe quantities and enzyme activities in rhizosphere of different rice varieties fed by brown planthoppers. Chinese Journal of Rice Science, 28, 322-326. (in Chinese with English abstract)
[苏婷, 徐红星, 韩海亮, 杨亚军, 王桂跃, 郑许松, 吕仲贤 (2014) 褐飞虱胁迫对不同抗性水稻品种根际土壤酶活性和微生物含量的影响. 中国水稻科学, 28, 322-326.]
[34] Tang Y, Liu MQ, Wang F, Chen FJ, Shao B, Su Y, Ge C, Huang JH, Li HX, Hu F (2010) Herbivory by the brown planthopper (Nilaparvata lugens) affects rice seeding growth and belowground soil labile erganic carbon and nitrogen fractions. Acta Ecologica Sinica, 30, 2890-2898. (in Chinese with English abstract)
[汤英, 刘满强, 王峰, 陈法军, 邵波, 苏昱, 葛成, 黄菁华, 李辉信, 胡锋 (2010) 褐飞虱对水稻苗期生长及地下部土壤活性碳氮的影响. 生态学报, 30, 2890-2898.]
[35] Wang J, Zhu B, Zhang J, Müller C, Cai Z (2015) Mechanisms of soil N dynamics following long-term application of organic fertilizers to subtropical rain-fed purple soil in China. Soil Biology and Biochemistry, 91, 222-231.
[36] Zha Y, Wu XP, Zhang HM, Cai DX, Zhu P, Gao HJ (2015) Effects of long-term organic and inorganic fertilization on enhancing soil organic carbon and basic soil productivity in black soil. Scientia Agricultura Sinica, 48, 4649-4659. (in Chinese with English abstract)
[查燕, 武雪萍, 张会民, 蔡典雄, 朱平, 高洪军 (2015) 长期有机无机配施黑土土壤有机碳对农田基础地力提升的影响. 中国农业科学, 48, 4649-4659.]
[37] Zhu Q, Riley WJ, Tang J, Koven CD (2016) Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several tropical forests. Biogeosciences, 13, 341-363.
[1] 余文生, 郭耀霖, 江佳佳, 孙可可, 鞠瑞亭. (2019) 土著昆虫素毒蛾在本地植物芦苇与入侵植物互花米草上的生活史. 生物多样性, 27(4): 433-438.
[2] 杨清培, 欧阳明, 杨光耀, 宋庆妮, 郭春兰, 方向民, 陈昕, 黄兰, 陈伏生. (2016) 竹子生态化学计量学研究: 从生物学基础到竹林培育学应用. 植物生态学报, 40(3): 264-278.
[3] 孔彬彬, 卫欣华, 杜家丽, 李英年, 朱志红. (2016) 刈割和施肥对高寒草甸物种多样性和功能多样性时间动态及其关系的影响. 植物生态学报, 40(3): 187-199.
[4] 潘石玉, 孔彬彬, 姚天华, 卫欣华, 李英年, 朱志红. (2015) 刈割和施肥对高寒草甸功能多样性与地上净初级生产力关系的影响. 植物生态学报, 39(9): 867-877.
[5] 马丁, 鞠瑞亭, 李博. (2015) 土著昆虫素毒蛾对入侵植物互花米草地理种群的选择性. 生物多样性, 23(1): 101-108.
[6] 高本强, 袁自强, 王斌先, 高慧, 张荣. (2014) 施肥和刈割对亚高山草甸物种多样性与生产力及其关系的影响. 植物生态学报, 38(5): 417-424.
[7] 朱强根, 金爱武, 王意锟, 邱永华, 李雪涛, 张四海. (2013) 不同营林模式下毛竹枝叶的生物量分配: 异速生长分析. 植物生态学报, 37(9): 811-819.
[8] 李燕, 朱志红. (2013) 高寒草甸对刈割、施肥和浇水发生响应的最优植物性状集和功能型. 植物生态学报, 37(5): 384-396.
[9] 王海东, 张璐璐, 朱志红. (2013) 刈割、施肥对高寒草甸物种多样性与生态系统功能关系的影响及群落稳定性机制. 植物生态学报, 37(4): 279-295.
[10] 刘洋, 张健, 陈亚梅, 陈磊, 刘强. (2013) 氮磷添加对巨桉幼苗生物量分配和C:N:P化学计量特征的影响. 植物生态学报, 37(10): 933-941.
[11] 博文静, 郭立月, 李静, 韦继光, 李彩虹, 李勇, 蒋高明. (2012) 不同耕作与施肥方式对有机玉米田杂草群落和作物产量的影响. 植物学报, 47(6): 637-644.
[12] 张璐璐, 周晓松, 李英年, 袁芙蓉, 樊瑞俭, 朱志红. (2011) 刈割、施肥和浇水对矮嵩草补偿生长的影响. 植物生态学报, 35(6): 641-652.
[13] 王慧, 高中杰, 张丹, 程浩, 喻德跃. (2011) 应用关联分析鉴定大豆对斜纹夜蛾的抗性基因. 植物学报, 46(5): 514-524.
[14] 辜运富, 张小平, 涂仕华, Kristina Lindstr?m. (2011) 长期定位施肥对石灰性紫色水稻土古菌群落结构的影响. 生物多样性, 19(3): 369-376.
[15] 刘满强, 黄菁华, 陈小云, 王峰, 葛成, 苏昱, 邵波, 汤英, 李辉信, 胡锋. (2009) 地上部植食者褐飞虱对不同水稻品种土壤线虫群落的影响. 生物多样性, 17(5): 431-439.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed