Biodiv Sci ›› 2023, Vol. 31 ›› Issue (6): 22626. DOI: 10.17520/biods.2022626
• Original Papers: Animal Diversity • Previous Articles Next Articles
Wenting Wang1,2,*(), Rong Wang3, Cuiping Niu3, Yang Bai1, Xiaodong Yang1,4
Received:
2022-11-03
Accepted:
2023-01-27
Online:
2023-06-20
Published:
2023-06-16
Contact:
* E-mail: wangwenting@xtbg.ac.cn
Wenting Wang, Rong Wang, Cuiping Niu, Yang Bai, Xiaodong Yang. Soil multitrophic ecological network structure of agroforestry rubber plantation in Xishuangbanna[J]. Biodiv Sci, 2023, 31(6): 22626.
Fig. 1 Location of the study site and different rubber plantations. NBH, Nabanhe National Nature Reserve; XTBG, Xishuangbanna Tropical Botanical Garden; LL, Longlin Village in Mengla County.
Fig. 2 Multiple comparison of the soil organisms in dry season and rain season in different rubber plantations. MRP, Monoculture rubber plantation; RCS, Rubber with Camellia sinensis; RFM, Rubber with Flemingia macrophylla; TRF, Tropical rainforest.
Fig. 3 Non-metric multidimensional scaling (NMDS) ordination based on Bray-Curtis dissimilarity shows the variation of bacteria, fungi, nematode and arthropod communities in different rubber plantations. The different colors/shapes represent the grouping information to which the sample belongs. MRP, Monoculture rubber plantation; RCS, Rubber with Camellia sinensis; RFM, Rubber with Flemingia macrophylla; TRF, Tropical rainforest.
测定项目 Item | 季节 Season | 橡胶林 MRP | 橡胶 + 茶树 RCS | 橡胶 + 大叶千斤拔 RFM | 热带雨林 TRF |
---|---|---|---|---|---|
土壤总碳 Total carbon (TC, g/kg) | 干季 Dry | 15.75 ± 1.13b | 17.71 ± 1.38b | 19.47 ± 1.21ab | 22.44 ± 1.78a |
雨季 Rain | 16.29 ± 0.89b | 17.27 ± 1.09b | 18.67 ± 1.07b | 22.25 ± 1.35a | |
土壤总氮 Total nitrogen (TN, g/kg) | 干季 Dry | 1.73 ± 0.09b | 1.87 ± 0.13b | 2.04 ± 0.09ab | 2.34 ± 0.15a |
雨季 Rain | 1.78 ± 0.08b | 1.81 ± 0.10b | 1.98 ± 0.07b | 2.36 ± 0.14a | |
土壤总磷 Total phosphorus (TP, g/kg) | 干季 Dry | 0.35 ± 0.02a | 0.36 ± 0.03a | 0.41 ± 0.04a | 0.36 ± 0.02a |
雨季 Rain | 0.44 ± 0.05a | 0.36 ± 0.03a | 0.38 ± 0.02a | 0.39 ± 0.04a | |
β-1,4-葡萄糖苷酶 β-1,4-glucosidase (BG, μmol?g-1 dry soil?h-1) | 干季 Dry | 5.03 ± 1.39a | 2.66 ± 0.33a | 6.31 ± 2.41a | 3.95 ± 0.51a |
雨季 Rain | 3.90 ± 1.41ab | 3.38 ± 0.99b | 8.28 ± 2.31ab | 9.00 ± 2.51a | |
β-N-乙酰氨基葡萄糖酶 β-N-acetyl-glucosaminidase (NAG, μmol?g-1 dry soil?h-1) | 干季 Dry | 0.71 ± 0.21a | 0.93 ± 0.14a | 1.07 ± 0.35a | 0.74 ± 0.13a |
雨季 Rain | 0.87 ± 0.27a | 0.46 ± 0.13a | 1.08 ± 0.26a | 1.06 ± 0.28a | |
酸性磷酸酶 Acid phosphatase (AP, μmol?g-1 dry soil?h-1) | 干季 Dry | 6.97 ± 1.59a | 5.84 ± 1.08a | 8.73 ± 1.90a | 7.21 ± 1.02a |
雨季 Rain | 4.77 ± 1.06ab | 1.93 ± 0.46b | 5.87 ± 1.51a | 6.38 ± 1.51a | |
pH | 干季 Dry | 5.30 ± 0.13b | 5.27 ± 0.10b | 5.74 ± 0.08a | 5.26 ± 0.12b |
雨季 Rain | 5.09 ± 0.15ab | 4.95 ± 0.10b | 5.45 ± 0.06a | 5.21 ± 0.21ab | |
土壤含水量 Soil moisture (SM, %) | 干季 Dry | 29.18 ± 1.60a | 24.38 ± 1.64b | 26.86 ± 1.40ab | 19.34 ± 1.08c |
雨季 Rain | 35.37 ± 2.17a | 31.49 ± 2.20a | 34.03 ± 2.17a | 33.64 ± 1.75a | |
凋落物生物量 Litter mass (LM, kg/m2) | 干季 Dry | 2.42 ± 0.30a | 3.28 ± 0.60a | 2.25 ± 0.27a | 2.77 ± 0.25a |
雨季 Rain | 0.64 ± 0.13b | 0.89 ± 0.30ab | 0.75 ± 0.09b | 1.25 ± 0.09a | |
减少比率 Rate of decrease (%) | 6个月 6 months | 73.42 | 72.88 | 66.66 | 54.74 |
根系生物量 Root mass (RM, g/100g) | 干季 Dry | 0.15 ± 0.05b | 0.17 ± 0.06b | 0.13 ± 0.05b | 0.27 ± 0.06a |
雨季 Rain | 0.50 ± 0.19a | 0.36 ± 0.09a | 0.34 ± 0.12a | 0.47 ± 0.14a | |
增加比率 Rate of increase (%) | 6个月 6 months | 71.00 | 53.52 | 62.69 | 43.62 |
Table 1 Multiple comparison of the soil properties in the different rubber plantations (mean ± SE)
测定项目 Item | 季节 Season | 橡胶林 MRP | 橡胶 + 茶树 RCS | 橡胶 + 大叶千斤拔 RFM | 热带雨林 TRF |
---|---|---|---|---|---|
土壤总碳 Total carbon (TC, g/kg) | 干季 Dry | 15.75 ± 1.13b | 17.71 ± 1.38b | 19.47 ± 1.21ab | 22.44 ± 1.78a |
雨季 Rain | 16.29 ± 0.89b | 17.27 ± 1.09b | 18.67 ± 1.07b | 22.25 ± 1.35a | |
土壤总氮 Total nitrogen (TN, g/kg) | 干季 Dry | 1.73 ± 0.09b | 1.87 ± 0.13b | 2.04 ± 0.09ab | 2.34 ± 0.15a |
雨季 Rain | 1.78 ± 0.08b | 1.81 ± 0.10b | 1.98 ± 0.07b | 2.36 ± 0.14a | |
土壤总磷 Total phosphorus (TP, g/kg) | 干季 Dry | 0.35 ± 0.02a | 0.36 ± 0.03a | 0.41 ± 0.04a | 0.36 ± 0.02a |
雨季 Rain | 0.44 ± 0.05a | 0.36 ± 0.03a | 0.38 ± 0.02a | 0.39 ± 0.04a | |
β-1,4-葡萄糖苷酶 β-1,4-glucosidase (BG, μmol?g-1 dry soil?h-1) | 干季 Dry | 5.03 ± 1.39a | 2.66 ± 0.33a | 6.31 ± 2.41a | 3.95 ± 0.51a |
雨季 Rain | 3.90 ± 1.41ab | 3.38 ± 0.99b | 8.28 ± 2.31ab | 9.00 ± 2.51a | |
β-N-乙酰氨基葡萄糖酶 β-N-acetyl-glucosaminidase (NAG, μmol?g-1 dry soil?h-1) | 干季 Dry | 0.71 ± 0.21a | 0.93 ± 0.14a | 1.07 ± 0.35a | 0.74 ± 0.13a |
雨季 Rain | 0.87 ± 0.27a | 0.46 ± 0.13a | 1.08 ± 0.26a | 1.06 ± 0.28a | |
酸性磷酸酶 Acid phosphatase (AP, μmol?g-1 dry soil?h-1) | 干季 Dry | 6.97 ± 1.59a | 5.84 ± 1.08a | 8.73 ± 1.90a | 7.21 ± 1.02a |
雨季 Rain | 4.77 ± 1.06ab | 1.93 ± 0.46b | 5.87 ± 1.51a | 6.38 ± 1.51a | |
pH | 干季 Dry | 5.30 ± 0.13b | 5.27 ± 0.10b | 5.74 ± 0.08a | 5.26 ± 0.12b |
雨季 Rain | 5.09 ± 0.15ab | 4.95 ± 0.10b | 5.45 ± 0.06a | 5.21 ± 0.21ab | |
土壤含水量 Soil moisture (SM, %) | 干季 Dry | 29.18 ± 1.60a | 24.38 ± 1.64b | 26.86 ± 1.40ab | 19.34 ± 1.08c |
雨季 Rain | 35.37 ± 2.17a | 31.49 ± 2.20a | 34.03 ± 2.17a | 33.64 ± 1.75a | |
凋落物生物量 Litter mass (LM, kg/m2) | 干季 Dry | 2.42 ± 0.30a | 3.28 ± 0.60a | 2.25 ± 0.27a | 2.77 ± 0.25a |
雨季 Rain | 0.64 ± 0.13b | 0.89 ± 0.30ab | 0.75 ± 0.09b | 1.25 ± 0.09a | |
减少比率 Rate of decrease (%) | 6个月 6 months | 73.42 | 72.88 | 66.66 | 54.74 |
根系生物量 Root mass (RM, g/100g) | 干季 Dry | 0.15 ± 0.05b | 0.17 ± 0.06b | 0.13 ± 0.05b | 0.27 ± 0.06a |
雨季 Rain | 0.50 ± 0.19a | 0.36 ± 0.09a | 0.34 ± 0.12a | 0.47 ± 0.14a | |
增加比率 Rate of increase (%) | 6个月 6 months | 71.00 | 53.52 | 62.69 | 43.62 |
参数 Parameter | 干季 Dry season | 雨季 Rain season | ||||||
---|---|---|---|---|---|---|---|---|
橡胶林 | 橡胶 + 茶树 | 橡胶 + 大叶千斤拔 | 热带雨林 | 橡胶林 | 橡胶 + 茶树 | 橡胶 + 大叶千斤拔 | 热带雨林 | |
MRP | RCS | RFM | TRF | MRP | RCS | RFM | TRF | |
边数目 Number of edges | 531 | 860 | 530 | 879 | 557 | 642 | 727 | 707 |
正相关边数目 Number of positive edges | 445 | 713 | 461 | 767 | 437 | 538 | 575 | 530 |
负相关边数目 Number of negative edges | 86 | 147 | 69 | 112 | 120 | 104 | 152 | 177 |
正相关性比例 Proportion of positive edges | 0.84 | 0.83 | 0.87 | 0.87 | 0.78 | 0.84 | 0.79 | 0.75 |
平均路径长度 Average path length | 4.39 | 4.17 | 4.90 | 3.74 | 4.16 | 4.39 | 4.01 | 4.19 |
节点数目 Number of nodes | 270 | 334 | 293 | 316 | 270 | 295 | 291 | 299 |
Table 2 Network topology parameters of soil biological groups in different rubber plantations
参数 Parameter | 干季 Dry season | 雨季 Rain season | ||||||
---|---|---|---|---|---|---|---|---|
橡胶林 | 橡胶 + 茶树 | 橡胶 + 大叶千斤拔 | 热带雨林 | 橡胶林 | 橡胶 + 茶树 | 橡胶 + 大叶千斤拔 | 热带雨林 | |
MRP | RCS | RFM | TRF | MRP | RCS | RFM | TRF | |
边数目 Number of edges | 531 | 860 | 530 | 879 | 557 | 642 | 727 | 707 |
正相关边数目 Number of positive edges | 445 | 713 | 461 | 767 | 437 | 538 | 575 | 530 |
负相关边数目 Number of negative edges | 86 | 147 | 69 | 112 | 120 | 104 | 152 | 177 |
正相关性比例 Proportion of positive edges | 0.84 | 0.83 | 0.87 | 0.87 | 0.78 | 0.84 | 0.79 | 0.75 |
平均路径长度 Average path length | 4.39 | 4.17 | 4.90 | 3.74 | 4.16 | 4.39 | 4.01 | 4.19 |
节点数目 Number of nodes | 270 | 334 | 293 | 316 | 270 | 295 | 291 | 299 |
Fig. 4 Topological structure of the soil multitrophic ecological co-occurrence network in different rubber plantations. MRP, Monoculture rubber plantation; RCS, Rubber with Camellia sinensis; RFM, Rubber with Flemingia macrophylla; TRF, Tropical rainforest.
Fig. 5 Node modularity of the soil multitrophic ecological co-occurrence network in different rubber plantations. MRP, Monoculture rubber plantation; RCS, Rubber with Camellia sinensis; RFM, Rubber with Flemingia macrophylla; TRF, Tropical rainforest. Acau, Acaulosporaceae; Acid, Acidobacteriales; Apha, Aphanolaimus; Aphe, Aphelenchoides; Bolb, Bolbitiaceae; Bole, Boleodorus; Cand, Candida; Cera, Cerasicoccales; Conl, Conlarium; Cyto, Cytophagales; Desu, Desulfovibrionales; Eart, Earthworm; Elap, Elaphomyces; Entol, Entolomataceae; Entot, Entotheonellales; File, Filenchus; Flav, Flavobacteriales; Fuso, Fusobacteriales; Gemm, Gemmatimonadales; Glom, Glomeraceae; Grac, Gracilacus; Lyop, Lyophyllaceae; Melo, Meloidogyne; Mono, Mononchus; Muco, Mucor; Nitr, Nitrospirales; Phyc, Phycisphaerales; Plan, Planctomycetales; Rhiz, Rhizobiales; Rhod, Rhodospirillales; Rubr, Rubrobacterales; Sage, Sagenomella; Seba, Sebacinaceae; Sphi, Sphingobacteriales; Spir, Spirobacillales; Stec, Steccherinaceae; Step, Stephanosporaceae; Ther, Thermogemmatisporales; Tric, Trichoderma; Trid, Tridenchthonidae; Tyle, Tylenchorhynchus.
Fig. 6 Correlation analysis of ecological network topology parameters, plant attributes, soil organisms and soil properties. Words with the same color represent the same cluster. The English abbreviations and Chinese translations are shown in Table 1 and 2.
[1] | Allen K, Corre MD, Tjoa A, Veldkamp E (2015) Soil nitrogen-cycling responses to conversion of lowland forests to oil palm and rubber plantations in Sumatra, Indonesia. PLoS ONE, 10, e0133325. |
[2] |
Altieri AH, Silliman BR, Bertness MD (2007) Hierarchical organization via a facilitation cascade in intertidal cordgrass bed communities. The American Naturalist, 169, 195-206.
PMID |
[3] | Andresen E, Arroyo-Rodríguez V, Escobar F (2018) Tropical biodiversity:The importance of biotic interactions for its origin, maintenance, function, and conservation. In: Ecological Networks in the Tropics (eds Dáttilo W, Rico-Gray V), pp.1-13. Springer, Cham. |
[4] |
Barberán A, Bates ST, Casamayor EO, Fierer N (2012) Using network analysis to explore co-occurrence patterns in soil microbial communities. The ISME Journal, 6, 343-351.
DOI |
[5] |
Beng KC, Tomlinson KW, Shen XH, Surget-Groba Y, Hughes AC, Corlett RT, Slik JWF (2016) The utility of DNA metabarcoding for studying the response of arthropod diversity and composition to land-use change in the tropics. Scientific Reports, 6, 24965.
DOI PMID |
[6] |
Cai ZQ, Zhang YH, Yang C, Wang S (2018) Land-use type strongly shapes community composition, but not always diversity of soil microbes in tropical China. CATENA, 165, 369-380.
DOI URL |
[7] | Chen YF, Tang Z, Li H, Han XM, Li YF, Hu C (2014) Research progress on ecosystem complexity-stability relationships based on soil food web. Acta Ecologica Sinica, 34, 2173-2186. (in Chinese with English abstract) |
[陈云峰, 唐政, 李慧, 韩雪梅, 李钰飞, 胡诚 (2014) 基于土壤食物网的生态系统复杂性-稳定性关系研究进展. 生态学报, 34, 2173-2186.] | |
[8] | Corlett RT (2019) The Ecology of Tropical East Asia, 3rd edn. Oxford University Press, Oxford. |
[9] | Crowther TW, Thomas SM, Maynard DS, Baldrian P, Covey K, Frey SD, Bradford MA (2015) Biotic interactions mediate soil microbial feedbacks to climate change. Proceedings of the National Academy of Sciences, USA, 112, 7033-7038. |
[10] | de Deyn GB, van der Putten WH (2005) Linking aboveground and belowground diversity. Trends in Ecology & Evolution, 20, 625-633. |
[11] | de Vries FT, Thébault E, Liiri M, Birkhofer K, Tsiafouli MA, Bjørnlund L, Bracht Jørgensen H, Brady MV, Christensen S, de Ruiter PC, D’Hertefeldt T, Frouz J, Hedlund K, Hemerik L, Gera Hol WH, Hotes S, Mortimer SR, Setälä H, Sgardelis SP, Uteseny K, van der Putten WH, Wolters V, Bardgett RD (2013) Soil food web properties explain ecosystem services across European land use systems. Proceedings of the National Academy of Sciences, USA, 110, 14296-14301. |
[12] | Delgado-Baquerizo M, Reich PB, Trivedi C, Eldridge DJ, Abades S, Alfaro FD, Bastida F, Berhe AA, Cutler NA, Gallardo A, García-Velázquez L, Hart SC, Hayes PE, He JZ, Hseu ZY, Hu HW, Kirchmair M, Neuhauser S, Pérez CA, Reed SC, Santos F, Sullivan BW, Trivedi P, Wang JT, Weber-Grullon L, Williams MA, Singh BK (2020) Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nature Ecology & Evolution, 4, 210-220. |
[13] | Du J, Yang XD, Zhang H, Yu GB (2008) Quantitative distribution of earthworms and its relationships with environmental factors in tropical secondary forest and rubber plantation in Xishuangbanna. Chinese Journal of Ecology, 27, 1941-1947. (in Chinese with English abstract) |
[杜杰, 杨效东, 张花, 余广彬 (2008) 西双版纳热带次生林和橡胶林蚯蚓数量分布及其与环境因子的关系. 生态学杂志, 27, 1941-1947.] | |
[14] | Eisenhauer N, Dobies T, Cesarz S, Hobbie SE, Meyer RJ, Worm K, Reich PB (2013) Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition in a long-term grassland experiment. Proceedings of the National Academy of Sciences, USA, 110, 6889-6894. |
[15] |
Fu SL (2007) A review and perspective on soil biodiversity research. Biodiversity Science, 15, 109-115. (in Chinese with English abstract)
DOI |
[傅声雷 (2007) 土壤生物多样性的研究概况与发展趋势. 生物多样性, 15, 109-115.]
DOI |
|
[16] | Gossner MM, Lewinsohn TM, Kahl T, Grassein F, Boch S, Prati D, Birkhofer K, Renner SC, Sikorski J, Wubet T, Arndt H, Baumgartner V, Blaser S, Blüthgen N, Börschig C, Buscot F, Diekötter T, Jorge LR, Jung K, Keyel AC, Klein AM, Klemmer S, Krauss J, Lange M, Müller J, Overmann J, Pašalić E, Penone C, Perović DJ, Purschke O, Schall P, Socher SA, Sonnemann I, Tschapka M, Tscharntke T, Türke M, Venter PC, Weiner CN, Werner M, Wolters V, Wurst S, Westphal C, Fischer M, Weisser WW, Allan E (2016) Land-use intensification causes multitrophic homogenization of grassland communities. Nature, 540, 266-269. |
[17] |
Gross T, Rudolf L, Levin SA, Dieckmann U (2009) Generalized models reveal stabilizing factors in food webs. Science, 325, 747-750.
DOI PMID |
[18] | Heleno R, Garcia C, Jordano P, Traveset A, Gómez JM, Blüthgen N, Memmott J, Moora M, Cerdeira J, Rodríguez-Echeverría S, Freitas H, Olesen JM (2014) Ecological networks: Delving into the architecture of biodiversity. Biology Letters, 10, 20131000. |
[19] | Huang CM, Yang LL (1998) Influences of habitat changes in the tropical rainforest on the fauna and species diversity of Acridoidea in Xishuangbanna. Chinese Biodiversity, 6, 122-131. (in Chinese with English abstract) |
[黄春梅, 杨龙龙 (1998) 西双版纳热带雨林环境变化对蝗虫区系成分和物种多样性的影响. 生物多样性, 6, 122-131.] | |
[20] |
Kardol P, Martijn Bezemer T, van der Putten WH (2006) Temporal variation in plant-soil feedback controls succession. Ecology Letters, 9, 1080-1088.
DOI PMID |
[21] |
Kerfahi D, Tripathi BM, Dong K, Go R, Adams JM (2016) Rainforest conversion to rubber plantation may not result in lower soil diversity of bacteria, fungi, and nematodes. Microbial Ecology, 72, 359-371.
DOI PMID |
[22] |
Kou XC, Su TQ, Ma NN, Li Q, Wang P, Wu ZF, Liang WJ, Cheng WX (2018) Soil micro-food web interactions and rhizosphere priming effect. Plant and Soil, 432, 129-142.
DOI |
[23] | Lan GY, Li YW, Jatoi MT, Tan ZH, Wu ZX, Xie GS (2017a) Change in soil microbial community compositions and diversity following the conversion of tropical forest to rubber plantations in Xishuangbanna, Southwest China. Tropical Conservation Science, 10, 194008291773323. |
[24] |
Lan GY, Li YW, Wu ZX, Xie GS (2017b) Impact of tropical forest conversion on soil bacterial diversity in tropical region of China. European Journal of Soil Biology, 83, 91-97.
DOI URL |
[25] |
Lan GY, Wu ZX, Yang C, Sun R, Chen BQ, Zhang X (2020) Tropical rainforest conversion into rubber plantations results in changes in soil fungal composition, but underling mechanisms of community assembly remain unchanged. Geoderma, 375, 114505.
DOI URL |
[26] |
Li HM, Aide TM, Ma YX, Liu WJ, Cao M (2007) Demand for rubber is causing the loss of high diversity rain forest in SW China. Biodiversity and Conservation, 16, 1731-1745.
DOI URL |
[27] | Lin XB, Liu SJ, Xiao HF, Xia SW, Yang XD (2017) Effects of rubber plantation on structure and diversity of termite community. Chinese Journal of Ecology, 36, 2847-2854. (in Chinese with English abstract) |
[林小兵, 刘胜杰, 肖海峰, 夏尚文, 杨效东 (2017) 橡胶林种植对白蚁群落结构和多样性的影响. 生态学杂志, 36, 2847-2854.] | |
[28] |
Lin YX, Zhang YP, Zhou LG, Li J, Zhou RW, Guan HL, Zhang J, Sha LQ, Song QH (2022) Phenology-related water-use efficiency and its responses to site heterogeneity in rubber plantations in Southwest China. European Journal of Agronomy, 137, 126519.
DOI URL |
[29] |
Liu CA, Liang MY, Tang JW, Jin YQ, Guo ZB, Siddique KHM (2021) Challenges of the establishment of rubber-based agroforestry systems: Decreases in the diversity and abundance of ground arthropods. Journal of Environmental Management, 292, 112747.
DOI URL |
[30] |
Liu CA, Nie Y, Zhang YM, Tang JW, Siddique KHM (2018) Introduction of a leguminous shrub to a rubber plantation changed the soil carbon and nitrogen fractions and ameliorated soil environments. Scientific Reports, 8, 17324.
DOI |
[31] |
Liu CG, Jin YQ, Hu YN, Tang JW, Xiong QL, Xu MX, Bibi F, Beng KC (2019) Drivers of soil bacterial community structure and diversity in tropical agroforestry systems. Agriculture, Ecosystems & Environment, 278, 24-34.
DOI URL |
[32] |
Meng LZ, Martin K, Weigel A, Liu JX (2012) Impact of rubber plantation on carabid beetle communities and species distribution in a changing tropical landscape (southern Yunnan, China). Journal of Insect Conservation, 16, 423-432.
DOI URL |
[33] |
Mo YY, Peng F, Gao XF, Xiao P, Logares R, Jeppesen E, Ren KX, Xue YY, Yang JZ (2021) Low shifts in salinity determined assembly processes and network stability of microeukaryotic plankton communities in a subtropical urban reservoir. Microbiome, 9, 128.
DOI PMID |
[34] |
Monkai J, Goldberg SD, Hyde KD, Harrison RD, Mortimer PE, Xu JC (2018) Natural forests maintain a greater soil microbial diversity than that in rubber plantations in Southwest China. Agriculture, Ecosystems & Environment, 265, 190-197.
DOI URL |
[35] |
Monkai J, Hyde KD, Xu JC, Mortimer PE (2017) Diversity and ecology of soil fungal communities in rubber plantations. Fungal Biology Reviews, 31, 1-11.
DOI URL |
[36] |
Morriën E (2016) Understanding soil food web dynamics, how close do we get? Soil Biology and Biochemistry, 102, 10-13.
DOI URL |
[37] |
Morriën E, Hannula SE, Snoek LB, Helmsing NR, Zweers H, de Hollander M, Soto RL, Bouffaud ML, Buée M, Dimmers W, Duyts H, Geisen S, Girlanda M, Griffiths RI, Jørgensen HB, Jensen J, Plassart P, Redecker D, Schmelz RM, Schmidt O, Thomson BC, Tisserant E, Uroz S, Winding A, Bailey MJ, Bonkowski M, Faber JH, Martin F, Lemanceau P, de Boer W, van Veen JA, van der Putten WH (2017) Soil networks become more connected and take up more carbon as nature restoration progresses. Nature Communications, 8, 14349.
DOI PMID |
[38] |
Neher DA (2001) Role of nematodes in soil health and their use as indicators. Journal of Nematology, 33, 161-168.
PMID |
[39] |
Neutel AM, Thorne MAS (2014) Interaction strengths in balanced carbon cycles and the absence of a relation between ecosystem complexity and stability. Ecology Letters, 17, 651-661.
DOI URL |
[40] |
Paz-Ferreiro J, Gascó G, Gutiérrez B, Méndez A (2012) Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil. Biology and Fertility of Soils, 48, 511-517.
DOI URL |
[41] |
Porazinska DL, Bardgett RD, Blaauw MB, Hunt HW, Parsons AN, Seastedt TR, Wall DH (2003) Relationships at the aboveground-belowground interface: Plants, soil biota, and soil processes. Ecological Monographs, 73, 377-395.
DOI URL |
[42] |
Porazinska DL, Giblin-davis RM, Faller L, Farmerie W, Kanzaki N, Morris K, Powers TO, Tucker AE, Sung W, Thomas WK (2009) Evaluating high-throughput sequencing as a method for metagenomic analysis of nematode diversity. Molecular Ecology Resources, 9, 1439-1450.
DOI PMID |
[43] |
Rao X, Liu CA, Tang JW, Nie Y, Liang MY, Shen WJ, Siddique KHM (2021) Rubber-leguminous shrub systems stimulate soil N2O but reduce CO2 and CH4 emissions. Forest Ecology and Management, 480, 118665.
DOI URL |
[44] |
Rieske LK, Buss LJ (2001) Effects of gypsy moth suppression tactics on litter- and ground-dwelling arthropods in the central hardwood forests of the Cumberland Plateau. Forest Ecology and Management, 149, 181-195.
DOI URL |
[45] |
Rooney N, McCann K, Gellner G, Moore JC (2006) Structural asymmetry and the stability of diverse food webs. Nature, 442, 265-269.
DOI |
[46] |
Schneider D, Engelhaupt M, Allen K, Kurniawan S, Krashevska V, Heinemann M, Nacke H, Wijayanti M, Meryandini A, Corre MD, Scheu S, Daniel R (2015) Impact of lowland rainforest transformation on diversity and composition of soil prokaryotic communities in Sumatra (Indonesia). Frontiers in Microbiology, 6, 1339.
DOI PMID |
[47] | Shao ZZ, Wu PF (2019) Responses of epigeic microarthropods to alpine wetland degradation. Acta Ecologica Sinica, 39, 6990-7001. (in Chinese with English abstract) |
[邵珍珍, 吴鹏飞 (2019) 小型表栖节肢动物群落对高寒湿地退化的响应. 生态学报, 39, 6990-7001.] | |
[48] |
Soong JL, Nielsen UN (2016) The role of microarthropods in emerging models of soil organic matter. Soil Biology and Biochemistry, 102, 37-39.
DOI URL |
[49] | Sun X, Li Q, Yao HF, Liu MQ, Wu DH, Zhu D, Zhu YG (2021) Soil fauna and soil health. Acta Pedologica Sinica, 58, 1073-1083. (in Chinese with English abstract) |
[孙新, 李琪, 姚海凤, 刘满强, 吴东辉, 朱冬, 朱永官 (2021) 土壤动物与土壤健康. 土壤学报, 58, 1073-1083.] | |
[50] |
Tylianakis JM, Tscharntke T, Lewis OT (2007) Habitat modification alters the structure of tropical host-parasitoid food webs. Nature, 445, 202-205.
DOI |
[51] | van der Zee EM, Angelini C, Govers LL, Christianen MJA, Altieri AH, van der Reijden KJ, Silliman BR, van de Koppel J, van der Geest M, van Gils JA, van der Veer HW, Piersma T, de Ruiter PC, Olff H, van der Heide T (2016) How habitat-modifying organisms structure the food web of two coastal ecosystems. Proceedings of the Royal Society B: Biological Sciences, 283, 20152326. |
[52] |
Waldrop MP, Zak DR, Blackwood CB, Curtis CD, Tilman D (2006) Resource availability controls fungal diversity across a plant diversity gradient. Ecology Letters, 9, 1127-1135.
DOI PMID |
[53] |
Wall DH, Nielsen UN, Six J (2015) Soil biodiversity and human health. Nature, 528, 69-76.
DOI |
[54] | Wang WT, Sun ZH, Mishra S, Xia SW, Lin LX, Yang XD (2022) Body size determines multitrophic soil microbiota community assembly associated with soil and plant attributes in a tropical seasonal rainforest. Molecular Ecology, 2022, 1-10. |
[55] | Wen T, Xie PH, Yang SD, Niu GQ, Liu XY, Ding ZX, Xue C, Liu YX, Shen QR, Yuan J (2022) ggClusterNet: An R package for microbiome network analysis and modularity-based multiple network layouts. iMeta, 1, e32. |
[56] |
Wu JN, Liu WJ, Chen CF (2017) How do plants share water sources in a rubber-tea agroforestry system during the pronounced dry season? Agriculture, Ecosystems & Environment, 236, 69-77.
DOI URL |
[57] |
Xiao HF, Tian YH, Zhou HP, Ai XS, Yang XD, Schaefer DA (2014) Intensive rubber cultivation degrades soil nematode communities in Xishuangbanna, southwest China. Soil Biology and Biochemistry, 76, 161-169.
DOI URL |
[58] | Yin WY (2000) Soil Animals of China. Science Press, Beijing. (in Chinese) |
[尹文英 (2000) 中国土壤动物. 科学出版社, 北京.] | |
[59] |
Yuan MM, Guo XE, Wu LW, Zhang Y, Xiao NJ, Ning DL, Shi Z, Zhou XS, Wu LY, Yang YF, Tiedje JM, Zhou JZ (2021) Climate warming enhances microbial network complexity and stability. Nature Climate Change, 11, 343-348.
DOI |
[60] | Zhang WX, Shen ZF, Song B, Ma ZH, Shao YH, Fu SL (2022) Soil food web manipulation and ecological functions: Challenges and perspectives. Science & Technology Review, 40(3), 52-63. (in Chinese with English abstract) |
[张卫信, 申智锋, 宋博, 马子鹤, 邵元虎, 傅声雷 (2022) 土壤食物网调控及其生态功能研究的困境与思考. 科技导报, 40(3), 52-63.] | |
[61] | Zheng G, Yang XD, Li SQ (2009) Biodiversity of ground-dwelling spider in six forest types in Xishuangbanna, S.W. China. Acta Entomologica Sinica, 52, 875-884. (in Chinese with English abstract) |
[郑国, 杨效东, 李枢强 (2009) 西双版纳地区六种林型地表蜘蛛多样性比较研究. 昆虫学报, 52, 875-884.] | |
[62] |
Zou X, Zhu XA, Zhu P, Singh AK, Zakari S, Yang B, Chen CF, Liu WJ (2021) Soil quality assessment of different Hevea brasiliensis plantations in tropical China. Journal of Environmental Management, 285, 112147.
DOI URL |
[1] | Zhirong Feng, Youcheng Chen, Yanqiong Peng, Li Li, Bo Wang. Ecological network analysis: From metacommunity to metanetwork [J]. Biodiv Sci, 2023, 31(8): 23171-. |
[2] | Qiongyue Zhang, Zhuodi Deng, Xuebin Hu, Zhifeng Ding, Rongbo Xiao, Chen Xiu, Zhenghao Wu, Guang Wang, Donghui Han, Yuke Zhang, Jianchao Liang, Huijian Hu. The impact of urbanization on regional bird distribution and habitat connectivity in the Guangdong-Hong Kong-Macao Greater Bay Area [J]. Biodiv Sci, 2023, 31(3): 22161-. |
[3] | Hongbo Ding, Liyan Wang, Dongli Quan, Bin Yang, Mamai Yue, Pingyuan Wang, Yongjingwen Yang, Qiangbang Gong, Shishun Zhou, Li Wang, Jianwu Li, Yunhong Tan. Additions to the seed plant flora in Yunnan, China [J]. Biodiv Sci, 2023, 31(10): 23254-. |
[4] | Peng Xu, Xiaoying Rong, Chaohong Liu, Fang Du, Benfeng Yin, Ye Tao, Yuanming Zhang. Effects of extreme drought on community and ecological network of soil fungi in a temperate desert [J]. Biodiv Sci, 2022, 30(3): 21327-. |
[5] | Zhengliang Huang, Hanlun Liu, Chengjin Chu, Yuanzhi Li. Advances in intransitive competition between organisms [J]. Biodiv Sci, 2022, 30(2): 21282-. |
[6] | Haifeng Yao, Saichao Zhang, Huayuan Shangguan, Zhipeng Li, Xin Sun. Effects of urbanization on soil fauna community structure and diversity [J]. Biodiv Sci, 2022, 30(12): 22547-. |
[7] | Chengjun Song, Feng Sun. Effects of Zanthoxylum bungeanum agroforestry systems on soil microbial and nematode communities under drought [J]. Biodiv Sci, 2021, 29(10): 1348-1357. |
[8] | Yiyi Dong,Yanqiong Peng,Bo Wang. Seasonal dynamics of fig wasp community and interaction networks in Ficus benjamina [J]. Biodiv Sci, 2020, 28(4): 496-503. |
[9] | Changyan Zhou, Bin Wang, Yun Deng, Junjie Wu, Min Cao, Luxiang Lin. Canopy structure is an important factor driving local-scale woody plant functional beta diversity [J]. Biodiv Sci, 2020, 28(12): 1546-1557. |
[10] | Yuanzhi Li, Junli Xiao, Hanlun Liu, Youshi Wang, Chengjin Chu. Advances in higher-order interactions between organisms [J]. Biodiv Sci, 2020, 28(11): 1333-1344. |
[11] | Yang Yunhui, Bai Keyu, Jarvis Devra, Long Chunlin. Xishuangbanna cucumber landraces and associated traditional knowledge [J]. Biodiv Sci, 2019, 27(7): 743-748. |
[12] | Wang Fengzhen, Tang Yi. Determination of key species in the food web and their impact on the robustness [J]. Biodiv Sci, 2019, 27(10): 1132-1137. |
[13] | Sun Xiaoping,Li Shuang,Yu Jianping,Fang Yanjun,Zhang Yinlong,Cao Mingchang. Evaluation of ecosystem service value based on land use scenarios: A case study of Qianjiangyuan National Park pilot [J]. Biodiv Sci, 2019, 27(1): 51-63. |
[14] | Zhonghua Zhang, Huakun Zhou, Xinquan Zhao, Buqing Yao, Zhen Ma, Quanmin Dong, Zhenhua Zhang, Wenying Wang, Yuanwu Yang. Relationship between biodiversity and ecosystem functioning in alpine meadows of the Qinghai-Tibet Plateau [J]. Biodiv Sci, 2018, 26(2): 111-129. |
[15] | Jiliang Liu, Fengrui Li. Effects of oasis expansion regimes on ecosystem function and dominant functional groups of soil biota in arid regions [J]. Biodiv Sci, 2018, 26(10): 1116-1126. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn