Biodiv Sci ›› 2023, Vol. 31 ›› Issue (2): 22259. DOI: 10.17520/biods.2022259
• Original Papers: Plant Diversity • Previous Articles Next Articles
Renxiu Yao1,2, Yan Chen1,2, Xiaoqin Lü2,3, Jianghu Wang2,3, Fujun Yang1, Xiaoyue Wang1,3,*()
Received:
2022-05-11
Accepted:
2022-09-22
Online:
2023-02-20
Published:
2022-11-11
Contact:
*Xiaoyue Wang, E-mail: wang.xiaoyue1989@163.com
Renxiu Yao, Yan Chen, Xiaoqin Lü, Jianghu Wang, Fujun Yang, Xiaoyue Wang. Altitude-related environmental factors shape the phenotypic characteristics and chemical profile of Rhododendron[J]. Biodiv Sci, 2023, 31(2): 22259.
Fig. 1 The inflorescence of Rhododendron virgatum (A), R. decorum (B), and R. rubiginosum (C) and measurement of floral characteristics of Rhododendron (D, R. decorum as example). a, Corolla length; b, Corolla width; c, Tube opening diameter; d, Floral tube length; e, Tube diameter; f, Pistil length; g, The longest stamen length; h, The shortest stamen length.
居群 Population | 海拔 Elevation (m) | 相对光照强度 Relative light intensity (%) | 温度 Temperature (℃) | 相对湿度 Relative humidity (%) | |
---|---|---|---|---|---|
苍山 Cangshan Mountain | 海拔A Altitude A | 2,199.20 ± 7.96c | 0.52 ± 0.07a | 16.08 ± 0.28b | 57.17 ± 2.82b |
海拔B Altitude B | 2,511.20 ± 10.18b | 0.40 ± 0.07a | 18.92 ± 0.20a | 60.50 ± 1.93b | |
海拔C Altitude C | 2,809.00 ± 6.94a | 0.18 ± 0.04b | 12.88 ± 0.34c | 74.42 ± 2.47a | |
Wald χ2 | 2,593.848 | 14.105 | 234.227 | 28.222 | |
P | < 0.001 | 0.001 | < 0.001 | < 0.001 | |
老君山 Laojun Mountain | 海拔A Altitude A | 3,398.20 ± 9.66c | 0.34 ± 0.04a | 12.39 ± 0.84a | 66.67 ± 2.17a |
海拔B Altitude B | 3,606.20 ± 8.80b | 0.25 ± 0.05a | 13.64 ± 1.33a | 70.33 ± 5.65a | |
海拔C Altitude C | 3,796.00 ± 10.40a | 0.28 ± 0.03a | 7.73 ± 1.17b | 72.11 ± 4.19a | |
Wald χ2 | 851.739 | 3.296 | 11.876 | 0.768 | |
P | < 0.001 | 0.192 | 0.003 | 0.681 |
Table 1 Comparison of environmental factors (relative light intensity, temperature and relative humidity) among different altitude populations (generalized linear model, GLM). Different letters indicate significant differences in environmental factors among different altitudes. Bolded numbers indicate maximum values.
居群 Population | 海拔 Elevation (m) | 相对光照强度 Relative light intensity (%) | 温度 Temperature (℃) | 相对湿度 Relative humidity (%) | |
---|---|---|---|---|---|
苍山 Cangshan Mountain | 海拔A Altitude A | 2,199.20 ± 7.96c | 0.52 ± 0.07a | 16.08 ± 0.28b | 57.17 ± 2.82b |
海拔B Altitude B | 2,511.20 ± 10.18b | 0.40 ± 0.07a | 18.92 ± 0.20a | 60.50 ± 1.93b | |
海拔C Altitude C | 2,809.00 ± 6.94a | 0.18 ± 0.04b | 12.88 ± 0.34c | 74.42 ± 2.47a | |
Wald χ2 | 2,593.848 | 14.105 | 234.227 | 28.222 | |
P | < 0.001 | 0.001 | < 0.001 | < 0.001 | |
老君山 Laojun Mountain | 海拔A Altitude A | 3,398.20 ± 9.66c | 0.34 ± 0.04a | 12.39 ± 0.84a | 66.67 ± 2.17a |
海拔B Altitude B | 3,606.20 ± 8.80b | 0.25 ± 0.05a | 13.64 ± 1.33a | 70.33 ± 5.65a | |
海拔C Altitude C | 3,796.00 ± 10.40a | 0.28 ± 0.03a | 7.73 ± 1.17b | 72.11 ± 4.19a | |
Wald χ2 | 851.739 | 3.296 | 11.876 | 0.768 | |
P | < 0.001 | 0.192 | 0.003 | 0.681 |
Table 2 Comparison of vegetable and reproduction organs of Rhododendron vigatum, R. decorum, R. rubiginosum at different altitudes(generalized linear model, GLM)(mean±SE). Different letters indicate significant differences in phenotypic characteristics among different altitudes of Rhododendron plants. Bolded numbers indicate the maximum values.
Fig. 2 Comparison of nectar volume (Ai) and nectar concentration (Aii) and nectar sugar content (B) of three species of Rhododendron at different altitudes (mean ± SE). Different letters indicate significant differences between different altitudes (P < 0.05).
Fig. 3 Comparison of flavonoid, steroid, terpenoid, phenylpropanoid and alkaloid contents among Rhododendron at different altitudes (mean ± SE). Different letters indicate significant differences among different organs (P < 0.05).
Table 3 The Pearson correlation analysis among Rhododendron vegetative and reproductive organs traits, the secondary materials components, altitudes and environmental factors (temperature, relative humidity and relative light intensity). In the table, the lower left value of the gray split line indicates correlation (r), and the upper right value of the gray split line indicates significance (P). If the P < 0.05, the P value will be bold, and the corresponding r value will be bold and marked as blue, light blue indicates P < 0.05, blue indicates P < 0.01, and dark blue indicates P < 0.001.
Fig. 4 Principal component analysis (PCA) of ten phenotypic characteristics and five secondary material components (flavonoid, steroid, terpenoid, phenylpropanoid and alkaloid) of Rhododendron at different altitudes
[1] |
Adhikari P, Joshi K, Singh M, Pandey A (2020) Influence of altitude on secondary metabolites, antioxidants, and antimicrobial activities of Himalayan yew (Taxus wallichiana). Plant Biosystems, 156, 187-195.
DOI URL |
[2] |
Amato B, Petit S (2017) A review of the methods for storing floral nectars in the field. Plant Biology, 19, 497-503.
DOI PMID |
[3] |
Baker HG, Baker I, Hodges SA (1998) Sugar composition of nectars and fruits consumed by birds and bats in the tropics and subtropics. Biotropica, 30, 559-586.
DOI URL |
[4] |
Bakhtiari M, Formenti L, Caggìa V, Glauser G, Rasmann S (2019) Variable effects on growth and defense traits for plant ecotypic differentiation and phenotypic plasticity along elevation gradients. Ecology and Evolution, 9, 3740-3755.
DOI |
[5] |
Borghi M, de Souza LP, Yoshida T, Fernie AR (2019) Flowers and climate change: A metabolic perspective. New Phytologist, 224, 1425-1441.
DOI PMID |
[6] | Botto JF (2015) Plasticity to simulated shade is associated with altitude in structured populations of Arabidopsis thaliana. Plant, Cell & Environment, 38, 1321-1332. |
[7] |
Brunet J, Holmquist K (2009) The influence of distinct pollinators on female and male reproductive success in the Rocky Mountain columbine. Molecular Ecology, 18, 3745-3758.
DOI PMID |
[8] | Chamberlain D, Hyam R, Argent G, Fairweather G, Walter KS (1996) The Genus Rhododendron: Its Classification and Synonymy. Royal Botanic Garden Edinburgh, Edinburgh. |
[9] | Dong XC (2006) Study on Flavonoids Metabolism and Its Defensive Mechanism in Buckwheat under UV Stress. PhD dissertation, Shangdong Agricultural University, Taian, Shangdong. (in Chinese with English abstract) |
[董新纯 (2006) UV胁迫下苦荞类黄酮代谢及其防御机制研究. 博士学位论文, 山东农业大学, 山东泰安.] | |
[10] |
Fabbro T, Körner C (2004) Altitudinal differences in flower traits and reproductive allocation. Flora, 199, 70-81.
DOI URL |
[11] | Fang RZ, Min TL (1995) The floristic study on the genus Rhododendron. Acta Botanica Yunnanica, 17, 359-379. (in Chinese with English abstract) |
[方瑞征, 闵天禄 (1995) 杜鹃属植物区系的研究. 云南植物研究, 17, 359-379.] | |
[12] |
Feng LD, Lin H, Kang MH, Ren YM, Yu X, Xu ZP, Wang S, Li T, Yang WJ, Hu QJ (2022) A chromosome-level genome assembly of an alpine plant Crucihimalaya lasiocarpa provides insights into high-altitude adaptation. DNA Research, 29, dsac004.
DOI URL |
[13] |
Gong YB, Huang SQ (2007) On methodology of foraging behavior of pollinating insects. Biodiversity Science, 15, 576-583. (in Chinese with English abstract)
DOI |
[龚燕兵, 黄双全 (2007) 传粉昆虫行为的研究方法探讨. 生物多样性, 15, 576-583.]
DOI |
|
[14] |
Goodwin RM, Cox HM, Taylor MA, Evans L, McBrydie H (2011) Number of honey bee visits required to fully pollinate white clover (Trifolium repens) seed crops in Canterbury, New Zealand. New Zealand Journal of Crop and Horticultural Science, 39, 7-19.
DOI URL |
[15] | Guo N, Gao JH, He YJ, Guo YJ (2016) Compositae plants differed in leaf cuticular waxes between high and low altitudes. Chemistry & Biodiversity, 13, 710-718. |
[16] | He YP, Fei SM, Liu JQ, Chen XM, Wang P, Jiang JM, He F (2005) A preliminary review of studies of alpine plant breeding system. Journal of Sichuan Forestry Science and Technology, 26(4), 43-49. (in Chinese with English abstract) |
[何亚平, 费世民, 刘建全, 陈秀明, 王鹏, 蒋俊明, 何飞 (2005) 高山植物繁育系统研究进展初探. 四川林业科技, 26(4), 43-49.] | |
[17] | Hu DM (2021) Study on Breeding System and Pollination Accuracy of Tirpitzia Sinensis Hemsl. PhD dissertation, Guizhou Normal University, Guiyang. (in Chinese with English abstract) |
[胡德美 (2021) 青篱柴繁育系统与传粉精确性研究. 博士学位论文, 贵州师范大学, 贵阳.] | |
[18] | Huang ZH (2015) Pollination System and Floral Evolution of Genus Rhododendron (Ericaceae). PhD dissertation, Wuhan University, Wuhan. (in Chinese with English abstract) |
[黄至欢 (2015) 杜鹃花属的传粉系统及花的演化. 博士学位论文, 武汉大学, 武汉.] | |
[19] | Huang ZH, Song YP, Huang SQ (2017) Evidence for passerine bird pollination in Rhododendron species. AoB Plants, 9, plx062. |
[20] | Kappelle M, Kennis PAF, de Vries RAJ (1995) Changes in diversity along a successional gradient in a Costa Rican upper montane Quercus forest. Biodiversity & Conservation, 4, 10-34. |
[21] |
Kergunteuil A, Descombes P, Glauser G, Pellissier L, Rasmann S (2018) Plant physical and chemical defence variation along elevation gradients: A functional trait-based approach. Oecologia, 187, 561-571.
DOI PMID |
[22] |
Körner C, Neumayer M, Menendez-Riedl SP, Smeets-Scheel A (1989) Functional morphology of mountain plants. Flora, 182, 353-383.
DOI URL |
[23] | Li CC, Qian CY, Quan WX, Tang FH, Ou J (2018) Allelopathic potential evaluation of different soil decomposition layers in wild Rhododendron irroratum forest. Acta Ecologica Sinica, 38, 4909-4916. (in Chinese with English abstract) |
[李朝婵, 钱沉鱼, 全文选, 唐凤华, 欧静 (2018) 野生露珠杜鹃林不同分解层的土壤化感潜力. 生态学报, 38, 4909-4916.] | |
[24] |
Li CC, Quan WX, Qian CY, Wu YY (2019) Distribution of chemical compounds in different soil layers of Rhododendron forest. Allelopathy Journal, 48, 191-202.
DOI URL |
[25] |
Li HD, Ren ZX, Wu ZK, Xu K, Wang H (2015) Variation in floral traits of distylous Primula poissonii (Primulaceae) along geographic gradients. Biodiversity Science, 23, 747-758. (in Chinese with English abstract)
DOI URL |
[李海东, 任宗昕, 吴之坤, 许琨, 王红 (2015) 二型花柱植物海仙花报春花部性状随地理梯度的变异. 生物多样性, 23, 747-758.]
DOI |
|
[26] | Li HP, Huang DZ, Yang MS, Qi SG (2001) Advance in the study on mechanism of tree resistance to insect. Hebei Journal of Forestry and Orchard Research, 16(1), 91-96. (in Chinese with English abstract) |
[李会平, 黄大庄, 杨敏生, 齐绍光 (2001) 林木抗虫机制研究进展. 河北林果研究, 16(1), 91-96.] | |
[27] | Liu ZJ (2000) Drought-induced in vivo synthesis of camptothecin in Camptotheca acuminata seedlings. Physiologia Plantarum, 110, 483-488. |
[28] | Martínez del Rio C, Schondube JE, McWhorter TJ, Herrera LG (2001) Intake responses in nectar feeding birds: Digestive and metabolic causes, osmoregulatory consequences, and coevolutionary effects. American Zoologist, 41, 902-915. |
[29] |
Mullin M, Klutsch JG, Cale JA, Hussain A, Zhao S, Whitehouse C, Erbilgin N (2021) Primary and secondary metabolite profiles of lodgepole pine trees change with elevation, but not with latitude. Journal of Chemical Ecology, 47, 280-293.
DOI PMID |
[30] |
Nicolson SW (2002) Pollination by passerine birds: Why are the nectars so dilute? Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 131, 645-652.
DOI URL |
[31] |
Nikkeshi A, Kurimoto D, Ushimaru A (2015) Low flower-size variation in bilaterally symmetrical flowers: Support for the pollination precision hypothesis. American Journal of Botany, 102, 2032-2040.
DOI PMID |
[32] |
Ornelas JF, Mariano Ordano, Angélica Hernández JC, López L, Mendoza, Perroni Y (2002) Nectar oasis produced by Agave marmorata Roezl. (Agavaceae) lead to spatial and temporal segregation among nectarivores in the Tehuacán Valley, México. Journal of Arid Environments, 52, 37-51.
DOI URL |
[33] |
Pacheco DA, Dudley LS, Cabezas J, Cavieres LA, Arroyo MTK (2016) Plastic responses contribute to explaining altitudinal and temporal variation in potential flower longevity in high Andean Rhodolirion montanum. PLoS ONE, 11, e0166350.
DOI URL |
[34] | Palmer-Young EC, Farrell IW, Adler LS, Milano NJ, Egan PA, Junker RR, Irwin RE, Stevenson PC (2019) Chemistry of floral rewards: Intra- and interspecific variability of nectar and pollen secondary metabolites across taxa. Ecological Monographs, 89, e01335. |
[35] |
Petanidou T, Kallimanis AS, Lazarina M, Tscheulin T, Devalez J, Stefanaki A, Hanlidou E, Vujić A, Kaloveloni A, Sgardelis SP (2018) Climate drives plant-pollinator interactions even along small-scale climate gradients: The case of the Aegean. Plant Biology, 20, 176-183.
DOI URL |
[36] | Pi HQ, Quan QM, Gao H, Li YX, Shen WW, Yang ZS, Yang GP (2016) Pollination biology of Caragana sinica (Buchoz) Rehd. Acta Ecologica Sinica, 36, 1652-1662. (in Chinese with English abstract) |
[皮华强, 权秋梅, 高辉, 黎云祥, 沈文文, 杨子松, 杨贵平 (2016) 锦鸡儿(Caragana sinica (Buchoz) Rehd.)传粉生物学研究. 生态学报, 36, 1652-1662.] | |
[37] | Pietrini F, Iannelli MA, Massacci A (2002) Anthocyanin accumulation in the illuminated surface of maize leaves enhances protection from photo-inhibitory risks at low temperature, without further limitation to photosynthesis. Plant, Cell & Environment, 25, 1251-1259. |
[38] | Quan Q (2018) Influence of stigma colors on reproductive success of Epimedium pubescens. International Journal of Agriculture and Biology, 20, 1691-1694. |
[39] |
Singh A, Roy S (2017) High altitude population of Arabidopsis thaliana is more plastic and adaptive under common garden than controlled condition. BMC Ecology, 17, 39.
DOI URL |
[40] | Soethe N, Wilcke W, Homeier J, Lehmann J, Engels C (2008) Plant growth along the altitudinal gradient—Role of plant nutritional status, fine root activity, and soil properties. Gradients in a Tropical Mountain Ecosystem of Ecuador, 198, 259-266. |
[41] |
Song YP, Huang ZH, Huang SQ (2019) Pollen aggregation by viscin threads in Rhododendron varies with pollinator. New Phytologist, 221, 1150-1159.
DOI URL |
[42] |
Souto-Vilarós D, Vuleta A, Jovanović SM, Budečević S, Wang H, Sapir Y, Imbert E (2018) Are pollinators the agents of selection on flower colour and size in irises? Oikos, 127, 834-846.
DOI URL |
[43] |
Su QT, Du ZX, Zhou B, Liao YH, Wang CC, Xiao YA (2022) Potential distribution of Impatiens davidii and its pollinator in China. Chinese Journal of Plant Ecology, 46, 785-796. (in Chinese with English abstract)
DOI URL |
[苏启陶, 杜志喧, 周兵, 廖永辉, 王呈呈, 肖宜安 (2022) 牯岭凤仙花及其传粉昆虫在中国的潜在分布区域分析. 植物生态学报, 46, 785-796.]
DOI |
|
[44] | Su YX, Zhang X, Wang WL, Zhao YY, Wang YH, Shen SK (2017) Phenotypic diversity of Rhododendron rubiginosum populations at different altitudes. Acta Botanica Boreali-Occidentalia Sinica, 37, 356-362. (in Chinese with English abstract) |
[苏应雄, 张雪, 王文礼, 赵云勇, 王跃华, 申仕康 (2017) 红棕杜鹃不同海拔种群的表型多样性研究. 西北植物学报, 37, 356-362.] | |
[45] |
Sun SG, Huang ZH, Chen ZB, Huang SQ (2017) Nectar properties and the role of sunbirds as pollinators of the golden-flowered tea (Camellia petelotii). American Journal of Botany, 104, 468-476.
DOI URL |
[46] |
Wang XY, Tang J, Wu T, Wu D, Huang SQ (2019) Bumblebee rejection of toxic pollen facilitates pollen transfer. Current Biology, 29, 1401-1406.
DOI URL |
[47] | Wang Y, Dai XJ, Yan XF (2004) Effects of light intensity on secondary metabolite camptothecin production in leaves of Camptotheca acuminata seedlings. Acta Ecologica Sinica, 24, 1118-1122. |
[48] | Xia XM, Yang MQ, Li CL, Huang SX, Jin WT, Shen TT, Wang F, Li XH, Yoichi W, Zhang LH, Zheng YR, Wang XQ (2021) Spatiotemporal evolution of the global species diversity of Rhododendron. Molecular Biology and Evolution, 39, 1537-1719. |
[49] | Yan XF, Wang Y, Li YM (2007) Plant secondary metabolism and its response to environment. Acta Ecologica Sinica, 27, 2554-2562. (in Chinese with English abstract) |
[阎秀峰, 王洋, 李一蒙 (2007) 植物次生代谢及其与环境的关系. 生态学报, 27, 2554-2562.] | |
[50] | Yang YJ, Wang YF, Qi RL, Yang Y (2018) Discrepancy caused by various altitudes in both floral traits and reproductive allocation of Saussurea tangutica. Guihaia, 38, 159-168. (in Chinese with English abstract) |
[杨亚军, 王一峰, 祁如林, 杨洋 (2018) 唐古特雪莲花部特征及生殖分配的海拔差异. 广西植物, 38, 159-168.] | |
[51] |
Zhao ZG, Huang SQ (2013) Differentiation of floral traits associated with pollinator preference in a generalist- pollinated herb, Trollius ranunculoides (Ranunculaceae). International Journal of Plant Sciences, 174, 637-646.
DOI URL |
[52] | Zhuang P (2012) Discuss on the Rhododendron geographical distribution types and their cause of formation in China. Guihaia, 32, 150-156. (in Chinese with English abstract) |
[庄平 (2012) 中国杜鹃花属植物地理分布型及其成因的探讨. 广西植物, 32, 150-156.] |
[1] | Xuemeng Li, Jibao Jiang, Zenglu Zhang, Xiaojing Liu, Yali Wang, Yizhao Wu, Yinsheng Li, Jiangping Qiu, Qi Zhao. Earthworm biodiversity and its influencing factors in Baotianman National Nature Reserve [J]. Biodiv Sci, 2024, 32(4): 23352-. |
[2] | Liu Xiaolin, Wu Yougui, Zhang Minhua, Chen Xiaorong, Zhu Zhicheng, Chen Dingyun, Dong Shu, Li Buhang, Ding Bingyang, Liu Yu. Community composition and structure of a 25-ha forest dynamics plot of subtropical forest in Baishanzu, Zhejiang Province [J]. Biodiv Sci, 2024, 32(2): 23294-. |
[3] | Ruihe Gao, Shiming Fan, Jianghai Dong, Rongjiao Li, Zhiwei Zhang. Characteristics and vertical distribution of insect functional groups along an altitude gradient in Guandi Mountains [J]. Biodiv Sci, 2023, 31(10): 23152-. |
[4] | Bing Yan, Qing Lu, Song Xia, Junsheng Li. An overview of advances in soil microbial diversity of urban environment [J]. Biodiv Sci, 2022, 30(8): 22186-. |
[5] | Jiejie Cheng, Meijun Li, Taohua Yuan, Hong Huang, Guili Yang, Xinxiang Bai. A dataset on wild Rhododendron and geographical distribution information in China [J]. Biodiv Sci, 2021, 29(9): 1175-1180. |
[6] | Lang Yi, Yakun Dong, Baige Miao, Yanqiong Peng. Diversity of butterfly communities in Gaoligong region of Yunnan [J]. Biodiv Sci, 2021, 29(7): 950-959. |
[7] | Bo Chen, Lan Jiang, Ziyang Xie, Yangdi Li, Jiaxuan Li, Mengjia Li, Chensi Wei, Cong Xing, Jinfu Liu, Zhongsheng He. Taxonomic and phylogenetic diversity of plants in a Castanopsis kawakamiinatural forest [J]. Biodiv Sci, 2021, 29(4): 439-448. |
[8] | Mengyue Chen, Yuheng Wu, Chengqing Liao, Fangzhou Ma, Xing Wang. The community characteristics and month dynamics of butterfly at different habitats in the Badagongshan National Nature Reserve [J]. Biodiv Sci, 2020, 28(8): 950-957. |
[9] | Zhuang Ping. Progress on the fertility of Rhododendron [J]. Biodiv Sci, 2019, 27(3): 327-338. |
[10] | Li Jie, Li Weiyue, Fu Jing, Gao Jun, Yang Lei, He Weihang. Using low-altitude UAV remote sensing to identify national park functional zoning boundary: A case study in Qianjiangyuan National Park pilot [J]. Biodiv Sci, 2019, 27(1): 42-50. |
[11] | Yuxian Wang, Zuojun Liu, Zhigang Zhao, Meng Hou, Xiaorui Zhang, Wanling Lü. Responses of floral longevity to pollination environments in 11 species from two alpine meadows [J]. Biodiv Sci, 2018, 26(5): 510-518. |
[12] | Shuoli Zheng, Xiaoling Tian, Chengling Huang, Lingjun Wang, Yuan Feng, Jingli Zhang. Molecular and morphological evidence for natural hybridization between Rhododendron decorum and R. delavayi (Ericaceae) [J]. Biodiv Sci, 2017, 25(6): 627-637. |
[13] | Yili Guo, Dongxing Li, Bin Wang, Kundong Bai, Wusheng Xiang, Xiankun Li. C, N and P stoichiometric characteristics of soil and litter fall for six common tree species in a northern tropical karst seasonal rainforest in Nonggang, Guangxi, southern China [J]. Biodiv Sci, 2017, 25(10): 1085-1094. |
[14] | Zhe Liu, Qi Li, Dongdong Chen, Wenting Zhai, Liang Zhao, Shixiao Xu, Xinquan Zhao. Patterns of plant species diversity along an altitudinal gradient and its effect on above-ground biomass in alpine meadows in Qinghai-Tibet Plateau [J]. Biodiv Sci, 2015, 23(4): 451-462. |
[15] | Ping Zhuang. Analysis of the flowering-leafing phenorhythm of 42 Rhododendron species conserved ex situ in Dujiangyan, Sichuan Province, China [J]. Biodiv Sci, 2014, 22(4): 458-466. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn