Biodiv Sci ›› 2023, Vol. 31 ›› Issue (10): 23152. DOI: 10.17520/biods.2023152
• Original Papers: Animal Diversity • Previous Articles Next Articles
Ruihe Gao1,2,*(), Shiming Fan1,2, Jianghai Dong1,2, Rongjiao Li1,2, Zhiwei Zhang1,2
Received:
2023-05-15
Accepted:
2023-07-03
Online:
2023-10-20
Published:
2023-11-23
Contact:
*E-mail: gaoruihe1989@163.com
Ruihe Gao, Shiming Fan, Jianghai Dong, Rongjiao Li, Zhiwei Zhang. Characteristics and vertical distribution of insect functional groups along an altitude gradient in Guandi Mountains[J]. Biodiv Sci, 2023, 31(10): 23152.
海拔 Altitude (m) | 优势植物 Dominant plants | 坡度 Slope | 植被盖度 Vegetation coverage (%) | 乔木密度 Tree density (tree/ha) | 乔木胸径 Mean DBH (cm) | 平均树高 Mean tree height (m) |
---|---|---|---|---|---|---|
1,600 | 辽东栎 Quercus liaotungensis | 26.16° ± 1.41° | 82.67 ± 2.52 | 1,058.33 ± 101.04 | 9.36 ± 2.00 | 9.12 ± 2.55 |
1,800 | 油松 Pinus tabuliformis | 21.25° ± 2.02° | 81.67 ± 10.12 | 741.67 ± 128.29 | 17.44 ± 0.65 | 13.67 ± 2.43 |
2,000 | 山杨、白桦 Populus davidiana, Betula platyphylla | 12.93° ± 5.20° | 73.50 ± 2.12 | 516.67 ± 14.43 | 17.15 ± 3.57 | 12.62 ± 1.55 |
2,200 | 云杉 Picea asperata | 18.62° ± 6.25° | 82.33 ± 4.04 | 816.67 ± 80.36 | 16.98 ± 2.73 | 14.89 ± 1.80 |
2,400 | 华北落叶松、云杉 Larix principis-rupprechtii, Picea asperata | 23.33° ± 4.16° | 77.67 ± 2.08 | 483.33 ± 38.19 | 30.82 ± 4.95 | 18.31 ± 3.00 |
2,600 | 华北落叶松 Larix principis-rupprechtii | 26.36° ± 6.53° | 76.33 ± 1.53 | 491.67 ± 87.80 | 25.38 ± 2.46 | 16.54 ± 2.78 |
2,800 | 亚高山草甸 Subalpine meadow | 17.16° ± 3.28° | 92.67 ± 1.56 |
Table 1 Stand characteristics of typical communities along the gradient in the Guandi Mountains
海拔 Altitude (m) | 优势植物 Dominant plants | 坡度 Slope | 植被盖度 Vegetation coverage (%) | 乔木密度 Tree density (tree/ha) | 乔木胸径 Mean DBH (cm) | 平均树高 Mean tree height (m) |
---|---|---|---|---|---|---|
1,600 | 辽东栎 Quercus liaotungensis | 26.16° ± 1.41° | 82.67 ± 2.52 | 1,058.33 ± 101.04 | 9.36 ± 2.00 | 9.12 ± 2.55 |
1,800 | 油松 Pinus tabuliformis | 21.25° ± 2.02° | 81.67 ± 10.12 | 741.67 ± 128.29 | 17.44 ± 0.65 | 13.67 ± 2.43 |
2,000 | 山杨、白桦 Populus davidiana, Betula platyphylla | 12.93° ± 5.20° | 73.50 ± 2.12 | 516.67 ± 14.43 | 17.15 ± 3.57 | 12.62 ± 1.55 |
2,200 | 云杉 Picea asperata | 18.62° ± 6.25° | 82.33 ± 4.04 | 816.67 ± 80.36 | 16.98 ± 2.73 | 14.89 ± 1.80 |
2,400 | 华北落叶松、云杉 Larix principis-rupprechtii, Picea asperata | 23.33° ± 4.16° | 77.67 ± 2.08 | 483.33 ± 38.19 | 30.82 ± 4.95 | 18.31 ± 3.00 |
2,600 | 华北落叶松 Larix principis-rupprechtii | 26.36° ± 6.53° | 76.33 ± 1.53 | 491.67 ± 87.80 | 25.38 ± 2.46 | 16.54 ± 2.78 |
2,800 | 亚高山草甸 Subalpine meadow | 17.16° ± 3.28° | 92.67 ± 1.56 |
海拔 Altitude (m) | 植食性昆虫 Herbivorous insects | 肉食性昆虫 Sarcophagous insects | 腐食性类群 Saprophagous insects | 杂食性昆虫 Omnivorous insects | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NS | Rs | Ni | Ri | NS | Rs | Ni | Ri | NS | Rs | Ni | Ri | NS | Rs | Ni | Ri | |
1,600 | 22 | 21.78 | 367 | 13.65 | 27 | 46.55 | 606 | 27.82 | 11 | 47.83 | 399 | 26.72 | 10 | 62.50 | 425 | 14.36 |
1,800 | 11 | 10.89 | 229 | 8.52 | 12 | 20.69 | 336 | 15.43 | 8 | 34.78 | 255 | 17.08 | 9 | 56.25 | 610 | 20.62 |
2,000 | 11 | 10.89 | 130 | 4.83 | 21 | 36.21 | 372 | 17.08 | 7 | 30.43 | 288 | 19.29 | 9 | 56.25 | 735 | 24.84 |
2,200 | 16 | 15.84 | 447 | 16.62 | 15 | 25.86 | 273 | 12.53 | 8 | 34.78 | 209 | 14.00 | 4 | 25.00 | 277 | 9.36 |
2,400 | 13 | 12.87 | 206 | 7.66 | 11 | 18.97 | 202 | 9.27 | 7 | 30.43 | 144 | 9.65 | 5 | 31.25 | 487 | 16.46 |
2,600 | 18 | 17.82 | 308 | 11.45 | 13 | 22.41 | 208 | 9.55 | 5 | 21.74 | 135 | 9.04 | 9 | 56.25 | 193 | 6.52 |
2,800 | 83 | 82.18 | 1,004 | 37.34 | 27 | 46.55 | 181 | 8.31 | 12 | 52.17 | 63 | 4.22 | 6 | 37.50 | 232 | 7.84 |
总计 Total | 101 | 2,691 | 100 | 58 | 2,178 | 100 | 23 | 1,493 | 100 | 16 | 2,959 | 100 |
Table 2 Structural characteristics of insect functional groups at different altitudes in Guandi Mountains
海拔 Altitude (m) | 植食性昆虫 Herbivorous insects | 肉食性昆虫 Sarcophagous insects | 腐食性类群 Saprophagous insects | 杂食性昆虫 Omnivorous insects | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NS | Rs | Ni | Ri | NS | Rs | Ni | Ri | NS | Rs | Ni | Ri | NS | Rs | Ni | Ri | |
1,600 | 22 | 21.78 | 367 | 13.65 | 27 | 46.55 | 606 | 27.82 | 11 | 47.83 | 399 | 26.72 | 10 | 62.50 | 425 | 14.36 |
1,800 | 11 | 10.89 | 229 | 8.52 | 12 | 20.69 | 336 | 15.43 | 8 | 34.78 | 255 | 17.08 | 9 | 56.25 | 610 | 20.62 |
2,000 | 11 | 10.89 | 130 | 4.83 | 21 | 36.21 | 372 | 17.08 | 7 | 30.43 | 288 | 19.29 | 9 | 56.25 | 735 | 24.84 |
2,200 | 16 | 15.84 | 447 | 16.62 | 15 | 25.86 | 273 | 12.53 | 8 | 34.78 | 209 | 14.00 | 4 | 25.00 | 277 | 9.36 |
2,400 | 13 | 12.87 | 206 | 7.66 | 11 | 18.97 | 202 | 9.27 | 7 | 30.43 | 144 | 9.65 | 5 | 31.25 | 487 | 16.46 |
2,600 | 18 | 17.82 | 308 | 11.45 | 13 | 22.41 | 208 | 9.55 | 5 | 21.74 | 135 | 9.04 | 9 | 56.25 | 193 | 6.52 |
2,800 | 83 | 82.18 | 1,004 | 37.34 | 27 | 46.55 | 181 | 8.31 | 12 | 52.17 | 63 | 4.22 | 6 | 37.50 | 232 | 7.84 |
总计 Total | 101 | 2,691 | 100 | 58 | 2,178 | 100 | 23 | 1,493 | 100 | 16 | 2,959 | 100 |
海拔 Altitude (m) | 1,800 | 2,000 | 2,200 | 2,400 | 2,600 | 2,800 |
---|---|---|---|---|---|---|
1,600 | 0.34 | 0.31 | 0.35 | 0.38 | 0.37 | 0.14 |
1,800 | 0.29 | 0.41 | 0.29 | 0.39 | 0.16 | |
2,000 | 0.28 | 0.29 | 0.26 | 0.14 | ||
2,200 | 0.27 | 0.38 | 0.17 | |||
2,400 | 0.35 | 0.13 | ||||
2,600 | 0.18 |
Table 3 Jaccard similarity index of insect community along the altitude gradient in Guandi Mountains
海拔 Altitude (m) | 1,800 | 2,000 | 2,200 | 2,400 | 2,600 | 2,800 |
---|---|---|---|---|---|---|
1,600 | 0.34 | 0.31 | 0.35 | 0.38 | 0.37 | 0.14 |
1,800 | 0.29 | 0.41 | 0.29 | 0.39 | 0.16 | |
2,000 | 0.28 | 0.29 | 0.26 | 0.14 | ||
2,200 | 0.27 | 0.38 | 0.17 | |||
2,400 | 0.35 | 0.13 | ||||
2,600 | 0.18 |
Fig. 5 Heat map of Pearson correlation coefficients between insect functional groups and environmental factors in the Guandi Mountains. The values in the scale bar represents the correlation coefficients. T, Temperature; RH, Relative humidity; pH, Soil pH; EC, Electrical conductivity; AN, Available nitrogen; AP, Available phosphorus; AK, Available potassium; P/N, The ratio of AP to AN; N/K, The ration of AN to AK; P/K, The ratio of AP to AK. BD, Bulk density; MWHC, Maximum water holding capacity; CWHC, Capillary water holding capacity; NP, Non-capillary porosity; CP, Capillary porosity; TSP, Total soil porosity. The color of the circle indicates the direction of the correlation, where red indicates positive correlation and blue indicates negative correlation, and the darker the color indicates stronger correlation. * P < 0.05, ** P < 0.01.
Fig. 6 Redundancy analysis of insect functional groups and environmental factors along the altitude gradient in Guandi Mountains. T, Temperature; RH, Relative humidity; pH, Soil pH; EC, Electrical conductivity; AN, Available nitrogen; AP, Available phosphorus; AK, Available potassium; P/N, The ratio of AP to AN; N/K, The ration of AN to AK; P/K, The ratio of AP to AK; BD, Bulk density; MWHC, Maximum water holding capacity; CWHC, Capillary water holding capacity; NP, Non-capillary porosity; CP, Capillary porosity; TSP, Total soil porosity.
环境变量 Variables | RDA 1得分 RDA 1 score | RDA 2得分 RDA 2 score | R2 | P |
---|---|---|---|---|
温度 Temperature (T) | 0.17 | 0.66 | 0.329* | 0.028 |
相对湿度 Relative humidity (RH) | -0.30 | -0.35 | 0.173 | 0.176 |
土壤pH Soil pH | 0.38 | -0.06 | 0.119 | 0.316 |
电导率 Electric conductivity (EC) | -0.17 | -0.13 | 0.039 | 0.694 |
速效氮 Available nitrogen (AN) | -0.25 | -0.05 | 0.055 | 0.589 |
速效磷 Available phosphorus (AP) | -0.18 | -0.09 | 0.033 | 0.731 |
速效钾 Available potassium (AK) | -0.20 | -0.10 | 0.043 | 0.666 |
速效磷与速效氮的比值 The ratio of AP to AN (P/N) | -0.61 | 0.21 | 0.320* | 0.038 |
速效氮与速效钾的比值 The ratio of AN to AK (N/K) | -0.12 | 0.23 | 0.044 | 0.648 |
速效磷与速效钾的比值 The ratio of AP to AK (P/K) | 0.18 | 0.18 | 0.053 | 0.617 |
土壤容重 Soil bulk density (BD) | -0.08 | 0.39 | 0.106 | 0.357 |
土壤最大持水量 Soil maximum water holding capacity (MWHC) | 0.09 | -0.14 | 0.019 | 0.86 |
土壤毛管持水量 Soil capillary water holding capacity (CWHC) | 0.09 | -0.16 | 0.022 | 0.844 |
土壤非毛管孔隙度 Soil noncapillary porosity (NP) | 0.05 | 0.07 | 0.007 | 0.964 |
土壤毛管孔隙度 Soil capillary porosity (CP) | 0.07 | -0.21 | 0.032 | 0.76 |
土壤总孔隙度 Total soil porosity (TSP) | 0.08 | -0.19 | 0.027 | 0.792 |
Table 4 The score of environmental factors on the RDA axis and their effects on the distribution of insect functional groups
环境变量 Variables | RDA 1得分 RDA 1 score | RDA 2得分 RDA 2 score | R2 | P |
---|---|---|---|---|
温度 Temperature (T) | 0.17 | 0.66 | 0.329* | 0.028 |
相对湿度 Relative humidity (RH) | -0.30 | -0.35 | 0.173 | 0.176 |
土壤pH Soil pH | 0.38 | -0.06 | 0.119 | 0.316 |
电导率 Electric conductivity (EC) | -0.17 | -0.13 | 0.039 | 0.694 |
速效氮 Available nitrogen (AN) | -0.25 | -0.05 | 0.055 | 0.589 |
速效磷 Available phosphorus (AP) | -0.18 | -0.09 | 0.033 | 0.731 |
速效钾 Available potassium (AK) | -0.20 | -0.10 | 0.043 | 0.666 |
速效磷与速效氮的比值 The ratio of AP to AN (P/N) | -0.61 | 0.21 | 0.320* | 0.038 |
速效氮与速效钾的比值 The ratio of AN to AK (N/K) | -0.12 | 0.23 | 0.044 | 0.648 |
速效磷与速效钾的比值 The ratio of AP to AK (P/K) | 0.18 | 0.18 | 0.053 | 0.617 |
土壤容重 Soil bulk density (BD) | -0.08 | 0.39 | 0.106 | 0.357 |
土壤最大持水量 Soil maximum water holding capacity (MWHC) | 0.09 | -0.14 | 0.019 | 0.86 |
土壤毛管持水量 Soil capillary water holding capacity (CWHC) | 0.09 | -0.16 | 0.022 | 0.844 |
土壤非毛管孔隙度 Soil noncapillary porosity (NP) | 0.05 | 0.07 | 0.007 | 0.964 |
土壤毛管孔隙度 Soil capillary porosity (CP) | 0.07 | -0.21 | 0.032 | 0.76 |
土壤总孔隙度 Total soil porosity (TSP) | 0.08 | -0.19 | 0.027 | 0.792 |
[1] |
Acharya BK, Vijayan L (2015) Butterfly diversity along the elevation gradient of Eastern Himalaya. Ecological Research, 30, 909-919.
DOI URL |
[2] |
Aranda R, Graciolli G (2015) Spatial-temporal distribution of the Hymenoptera in the Brazilian savanna and the effects of habitat heterogeneity on these patterns. Journal of Insect Conservation, 19, 1173-1187.
DOI URL |
[3] |
Basset Y, Cizek L, Cuénoud P, Didham RK, Guilhaumon F, Missa O, Novotny V, Ødegaard F, Roslin T, Schmidl J, Tishechkin AK, Winchester NN, Roubik DW, Aberlenc HP, Bail J, Barrios H, Bridle JR, Castaño-Meneses G, Corbara B, Curletti G, da Rocha WD, De Bakker D, Delabie JHC, Dejean A, Fagan LL, Floren A, Kitching RL, Medianero E, Miller SE, de Oliveira EG, Orivel J, Pollet M, Rapp M, Ribeiro SP, Roisin Y, Schmidt JB, Sørensen L, Leponce M (2012) Arthropod diversity in a tropical forest. Science, 338, 1481-1484.
DOI PMID |
[4] |
Beirão Marina V, Neves Frederico S, Wilson FG (2020) Climate and plant structure determine the spatiotemporal butterfly distribution on a tropical mountain. Biotropica, 53, 191-200.
DOI URL |
[5] |
Brown JH (2014) Why are there so many species in the tropics? Journal of Biogeography, 41, 8-22.
PMID |
[6] | Cai WZ, Pang XF, Hua BZ, Liang GW, Song DL (2011) General Entomology. China Agricultural University Press, Beijing. (in Chinese) |
[彩万志, 庞雄飞, 花保祯, 梁广文, 宋敦伦 (2011) 普通昆虫学. 中国农业大学出版社, 北京.] | |
[7] | Chen ZM, Huang XD, Zhang M, Li ZS, Chang ZM, Long JK (2021) Study on insect community diversity of shrub grassland in karst plateau mountainous area, Guizhou, China. Journal of Environmental Entomology, 43, 1178-1189. (in Chinese with English abstract) |
[陈志敏, 黄秀东, 张茂, 李中森, 常志敏, 龙见坤 (2021) 喀斯特高原山区灌丛草地昆虫群落多样性研究. 环境昆虫学报, 43, 1178-1189.] | |
[8] |
Currie DJ (1991) Energy and large-scale patterns of animal- and plant-species richness. The American Naturalist, 137, 27-49.
DOI URL |
[9] | Dong X, Li YH, Xin ZM, Duan RB, Yao B, Bao YF, Zhang ZG, Liu Y (2021) Patterns of altitudinal distribution of species diversity of desert gobi shrub communities in west Hexi Corridor of China. Scientia Silvae Sinicae, 57(2), 168-178. (in Chinese with English abstract) |
[董雪, 李永华, 辛智鸣, 段瑞兵, 姚斌, 包岩峰, 张正国, 刘源 (2021) 河西走廊西段荒漠戈壁灌木群落物种多样性的海拔格局. 林业科学, 57(2), 168-178.] | |
[10] |
Fine PVA (2015) Ecological and evolutionary drivers of geographic variation in species diversity. Annual Review of Ecology, Evolution, and Systematics, 46, 369-392.
DOI URL |
[11] | Gao X, Zhang LM, Zhang XM, Yang J, Chen GH, Shi AX, Song JX, Li Q (2014) Analysis of differences in insect communities at different altitudes in Zanthoxylum bungeanum gardens, Yunnan, China. Acta Ecologica Sinica, 34, 2085-2094. (in Chinese with English abstract) |
[高鑫, 张立敏, 张晓明, 杨洁, 陈国华, 石安宪, 宋家雄, 李强 (2014) 云南花椒园中昆虫群落特征的海拔间差异分析. 生态学报, 34, 2085-2094.] | |
[12] | Guo QF, Fei SL, Potter KM, Liebhold AM, Wen J (2019) Tree diversity regulates forest pest invasion. Proceedings of the National Academy of Sciences, USA, 116, 7382-7386. |
[13] | Han YF (1997) Economic Insect Fauna of China. Science Press, Beijing. (in Chinese) |
[韩运发 (1997) 中国经济昆虫志. 科学出版社, 北京.] | |
[14] |
Hamer KC, Hill JK, Benedick S, Mustaffa N, Chey VK, Maryati M (2006) Diversity and ecology of carrion- and fruit-feeding butterflies in Bornean rain forest. Journal of Tropical Ecology, 22, 25-33.
DOI URL |
[15] |
Han YR, Xue QQ, Song HJ, Qi JY, Gao RH, Cui SP, Men LN, Zhang ZW (2022) Diversity and influencing factors of flower-visiting insects in the Yanshan area. Biodiversity Science, 30, 21448. (in Chinese with English abstract)
DOI |
[韩艺茹, 薛琪琪, 宋厚娟, 祁靖宇, 高瑞贺, 崔绍朋, 门丽娜, 张志伟 (2022) 燕山地区访花昆虫多样性及其影响因子. 生物多样性, 30, 21448.]
DOI |
|
[16] |
Hodkinson ID (2005) Terrestrial insects along elevation gradients: Species and community responses to altitude. Biological Reviews, 80, 489-513.
DOI PMID |
[17] |
Jaccard P (1912) The distribution of the flora in the alpine zone. New Phytologist, 11, 37-50.
DOI URL |
[18] |
Jaworski T, Hilszczański J (2013) The effect of temperature and humidity changes on insects development their impact on forest ecosystems in the expected climate change. Forest Research Papers, 74, 345-355.
DOI URL |
[19] |
Jobidon R, Cyr G, Thiffault N (2004) Plant species diversity and composition along an experimental gradient of northern hardwood abundance in Picea mariana plantations. Forest Ecology and Management, 198, 209-221.
DOI URL |
[20] |
Keil P, Konvicka M (2005) Local species richness of Central European hoverflies (Diptera: Syrphidae): A lesson taught by local faunal lists. Diversity and Distributions, 11, 417-426.
DOI URL |
[21] |
Körner C (2007) The use of ‘altitude’ in ecological research. Trends in Ecology & Evolution, 22, 569-574.
DOI URL |
[22] |
Laiolo P, Pato J, Obeso JR (2018) Ecological and evolutionary drivers of the elevational gradient of diversity. Ecology Letters, 21, 1022-1032.
DOI PMID |
[23] |
Laossi KR, Barot S, Carvalho D, Desjardins T, Lavelle P, Martins M, Mitja D, Carolina Rendeiro A, Rousseau G, Sarrazin M, Velasquez E, Grimaldi M (2008) Effects of plant diversity on plant biomass production and soil macrofauna in Amazonian pastures. Pedobiologia, 51, 397-407.
DOI URL |
[24] | Li XY, Yang YC, He ZS, Yang GJ (2020) Diversity of butterflies community and its environmental factors in Helan Mountain Nature Reserve, Ningxia. Journal of Environmental Entomology, 42, 660-673. (in Chinese with English abstract) |
[李欣芸, 杨益春, 贺泽帅, 杨贵军 (2020) 宁夏贺兰山自然保护区蝴蝶群落多样性及其环境影响因子. 环境昆虫学报, 42, 660-673.] | |
[25] | Liang W, Ma YH, Chen LH, Wei HY (2022) Research progress in the influence of host plants on the selection behaviors of herbivorous insects. Biological Disaster Science, 45, 299-304. (in Chinese with English abstract) |
[梁薇, 麻亚辉, 陈丽慧, 魏洪义 (2022) 寄主植物对植食性昆虫选择行为影响的研究进展. 生物灾害科学, 45, 299-304.] | |
[26] |
Lin YY, Wang YZ, Feng YL, Zhao WZ, Gao JW, Liu JL (2022) Dynamic change of ground-dwelling beetle community in a gobi desert of the middle of Hexi Corridor and its influencing factors. Biodiversity Science, 30, 22343. (in Chinese with English abstract)
DOI |
[林永一, 王永珍, 冯怡琳, 赵文智, 高俊伟, 刘继亮 (2022) 河西走廊中部戈壁地表甲虫群落动态变化及其影响因素. 生物多样性, 30, 22343.]
DOI |
|
[27] | Lu HH, Huang SC, Liu WP, Deng Y, Zhu HX, Zhao KX, Wei W, Yang WH, Huang DY (2022) Structure characteristics and diversity analysis of pollinators of Olea europaea. Acta Ecologica Sinica, 42, 10329-10337. (in Chinese with English abstract) |
[陆欢欢, 黄思程, 刘文平, 邓煜, 朱恒星, 赵凯旋, 魏玮, 杨文华, 黄敦元 (2022) 油橄榄传粉昆虫群落结构特征及多样性分析. 生态学报, 42, 10329-10337.] | |
[28] |
Luo JY, Zhang S, Zhu XZ, Wang CY, Lü LM, Li CH, Cui JJ (2016) Insect community diversity in transgenic Bt cotton in saline and dry soils. Biodiversity Science, 24, 332-340. (in Chinese with English abstract)
DOI URL |
[雒珺瑜, 张帅, 朱香镇, 王春义, 吕丽敏, 李春花, 崔金杰 (2016) 盐碱旱地转基因抗虫棉田昆虫群落多样性. 生物多样性, 24, 332-340.]
DOI |
|
[29] | Ma KP (1994) Measurement of biotic community diversity. I. α diversity (Part 1). Chinese Biodiversity, 2, 162-168. (in Chinese) |
[马克平 (1994) 生物群落多样性的测度方法. I. α多样性的测度方法(上). 生物多样性, 2, 162-168.] | |
[30] | Ma KP, Liu YM (1994) Measurement of biotic community diversity. I. α diversity (Part 2). Chinese Biodiversity, 2, 231-239. (in Chinese) |
[马克平, 刘玉明 (1994) 生物群落多样性的测度方法. I. α多样性的测度方法(下). 生物多样性, 2, 231-239.] | |
[31] |
Maguire DY, James PMA, Buddle CM, Bennett EM (2015) Landscape connectivity and insect herbivory: A framework for understanding tradeoffs among ecosystem services. Global Ecology and Conservation, 4, 73-84.
DOI URL |
[32] | Margalef R (1958) Information theory in ecology. Geography, 3, 36-71. |
[33] |
Maveety SA, Browne RA, Erwin TL (2013) Carabid beetle diversity and community composition as related to altitude and seasonality in Andean forests. Studies on Neotropical Fauna and Environment, 48, 165-174.
DOI URL |
[34] |
Moreira X, Abdala-Roberts L, Rasmann S, Castagneyrol B, Mooney KA (2016) Plant diversity effects on insect herbivores and their natural enemies: Current thinking, recent findings, and future directions. Current Opinion in Insect Science, 14, 1-7.
DOI PMID |
[35] |
Nahmani J, Lavelle P, Rossi JP (2006) Does changing the taxonomical resolution alter the value of soil macroinvertebrates as bioindicators of metal pollution? Soil Biology and Biochemistry, 38, 385-396.
DOI URL |
[36] |
Neves FS, Silva JO, Espírito-Santo MM, Fernandes GW (2014) Insect herbivores and leaf damage along successional and vertical gradients in a tropical dry forest. Biotropica, 46, 14-24.
DOI URL |
[37] | Pielou EC (1975) Ecological Diversity. John Wiley & Sons, New Jersey. |
[38] |
Rasmann S, Agrawal AA (2011) Latitudinal patterns in plant defense: Evolution of cardenolides, their toxicity and induction following herbivory. Ecology Letters, 14, 476-483.
DOI PMID |
[39] |
Rasmann S, Pellissier L, Defossez E, Jactel H, Kunstler G (2014) Climate-driven change in plant-insect interactions along elevation gradients. Functional Ecology, 28, 46-54.
DOI URL |
[40] |
Ricklefs RE, Marquis RJ (2012) Species richness and niche space for temperate and tropical folivores. Oecologia, 168, 213-220.
DOI PMID |
[41] |
Savary S, Horgan F, Willocquet L, Heong KL (2012) A review of principles for sustainable pest management in rice. Crop Protection, 32, 54-63.
DOI URL |
[42] |
Shao XL, Zhang Q, Yang XT (2021) Spatial patterns of insect herbivory within a forest landscape: The role of soil type and forest stratum. Forest Ecosystems, 8, 69.
DOI |
[43] |
Stein A, Gerstner K, Kreft H (2014) Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters, 17, 866-880.
DOI PMID |
[44] | Stiegel S, Entling MH, Mantilla-Contreras J (2017) Reading the leaves’ palm: Leaf traits and herbivory along the microclimatic gradient of forest layers. PLoS ONE, 12, e0169741. |
[45] |
Wang XW, Müller J, An LL, Ji LZ, Liu Y, Wang XG, Hao ZQ (2014) Intra-annual variations in abundance and species composition of carabid beetles in a temperate forest in Northeast China. Journal of Insect Conservation, 18, 85-98.
DOI URL |
[46] |
Wei HY, Chen K, Wang BX (2020) The spatial scale dependency of elevational patterns of taxonomic and functional diversity in aquatic insects in the Lancang River, Yunnan, China. Biodiversity Science, 28, 504-514. (in Chinese with English abstract)
DOI |
[魏慧玉, 陈凯, 王备新 (2020) 澜沧江流域水生昆虫群落分类多样性和功能多样性海拔格局的空间尺度依赖性. 生物多样性, 28, 504-514.]
DOI |
|
[47] |
Whittaker RH (1972) Evolution and measurement of species diversity. Taxon, 21, 213-251.
DOI URL |
[48] | Yang XZ, Yuan ML (2019) Effect of grazing on insect communities in grassland ecosystems: Research status and progress. Pratacultural Science, 36, 2937-2951. (in Chinese with English abstract) |
[杨兴卓, 袁明龙 (2019) 放牧对天然草地昆虫群落的研究现状及进展. 草业科学, 36, 2937-2951.] | |
[49] | Yang YC, Yang GJ, Wang J (2017) Effects of topographic factors on the distribution pattern of carabid species diversity in the Helan Mountains, northwestern China. Acta Entomologica Sinica, 60, 1060-1073. (in Chinese with English abstract) |
[杨益春, 杨贵军, 王杰 (2017) 地形对贺兰山步甲群落物种多样性分布格局的影响. 昆虫学报, 60, 1060-1073.]
DOI |
|
[50] |
Zhang C, Li J, Cheng HY, Duan JC, Pan Z (2023) Patterns and environmental drivers of the butterfly diversity in the western region of Qinling Mountains. Biodiversity Science, 31, 22272. (in Chinese with English abstract)
DOI |
[张超, 李娟, 程海云, 段家充, 潘昭 (2023) 秦岭西段地区蝴蝶群落多样性与环境因子相关性. 生物多样性, 31, 22272.]
DOI |
|
[51] | Zhang WW, Li YS (2011) Chinese Insects Illustrated. Chongqing University Press, Chongqing. (in Chinese) |
[张巍巍, 李元胜 (2011) 中国昆虫生态大图鉴. 重庆大学出版社, 重庆.] | |
[52] | Zhang XX (2011) Insect Ecology and Forecast. China Agricuture Press, Beijing. (in Chinese) |
[张孝羲 (2011) 昆虫生态及预测预报. 中国农业出版社, 北京.] | |
[53] |
Zhang Y, Feng G (2018) Distribution pattern and mechanism of insect species diversity in Inner Mongolia. Biodiversity Science, 26, 701-706. (in Chinese with English abstract)
DOI |
[张宇, 冯刚 (2018) 内蒙古昆虫物种多样性分布格局及其机制. 生物多样性, 26, 701-706.]
DOI |
|
[54] |
Zhang Y, Wang LY, Xiang CL, Duan MC, Zhang ZS (2021) Effects of different grazing intensities on spider diversity in Saihanwula Grassland. Biodiversity Science, 29, 467-476. (in Chinese with English abstract)
DOI |
[张宇, 王露雨, 向昌林, 段美春, 张志升 (2021) 不同放牧强度对赛罕乌拉草原蜘蛛多样性的影响. 生物多样性, 29, 467-476.]
DOI |
|
[55] |
Zhao LJ, Gao RH, Liu JQ, Liu L, Li RJ, Men LN, Zhang ZW (2023) Effects of environmental factors on the spatial distribution pattern and diversity of insect communities along altitude gradients in Guandi Mountain, China. Insects, 14, 224.
DOI URL |
[56] | Zhong YN, Zou Y, Wang SS, Li LK, Li RZ, Xiao NW, Chen FJ (2023) Investigation and analysis of the species and community diversity of insects in different types of habitats in Beijing-Tianjin-Hebei area of Taihang Mountain. Journal of Environmental Entomology, 45, 285-292. (in Chinese with English abstract) |
[钟燕妮, 邹言, 王诗诗, 李立坤, 李润钊, 肖能文, 陈法军 (2023) 京津冀太行山片区不同生境昆虫种类和群落多样性调查与分析. 环境昆虫学报, 45, 285-292.] | |
[57] | Zhou LY, Ding SY, Lu XL, Liu YM (2020) Effects of anthropogenic disturbance on species diversity and niche of dominant group in pollinators community. Acta Ecologica Sinica, 40, 2111-2121. (in Chinese with English abstract) |
[周立垚, 丁圣彦, 卢训令, 刘娅萌 (2020) 人为干扰对传粉昆虫群落物种多样性及其优势类群生态位的影响. 生态学报, 40, 2111-2121.] | |
[58] | Zhou Y (1999) Illustrated Book of Primary Colors of Chinese Butterflies. Henan Science and Technology Press, Zhengzhou. (in Chinese) |
[周尧 (1999) 中国蝴蝶原色图鉴. 河南科学技术出版社, 郑州.] |
[1] | Yili Guo, Dongxing Li, Bin Wang, Kundong Bai, Wusheng Xiang, Xiankun Li. C, N and P stoichiometric characteristics of soil and litter fall for six common tree species in a northern tropical karst seasonal rainforest in Nonggang, Guangxi, southern China [J]. Biodiv Sci, 2017, 25(10): 1085-1094. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn