
Biodiv Sci ›› 2025, Vol. 33 ›› Issue (9): 25336. DOI: 10.17520/biods.2025336 cstr: 32101.14.biods.2025336
• Reviews • Previous Articles Next Articles
Qilin Yang1,2,3(
), Xiaoshuang Li1,2,3,*(
)(
), Ruirui Yang1,2,3, Xiujin Liu1,2,3, Yuqing Liang1,2,3, Huan Zhang1,2,3, Fangliu Yin1,2,3, Daoyuan Zhang1,2,3,*(
)(
)
Received:2025-08-24
Accepted:2025-09-26
Online:2025-09-20
Published:2025-10-31
Contact:
*E-mail: lixs@ms.xjb.ac.cn; zhangdy@ms.xjb.ac.cn
Supported by:Qilin Yang, Xiaoshuang Li, Ruirui Yang, Xiujin Liu, Yuqing Liang, Huan Zhang, Fangliu Yin, Daoyuan Zhang. Desiccation tolerance mechanisms of the extremely tolerant moss Syntrichia caninervis and its implications for crop improvement[J]. Biodiv Sci, 2025, 33(9): 25336.
Fig. 1 Differential physiological responses of desiccation tolerant and non-desiccation tolerant plants (crops) to varying levels of water stress, and the implications of underlying tolerance mechanisms for crop improvement
Fig. 2 Bibliometric of the research landscape on desiccation tolerant mosses. A, Proportion of annual publications on desiccation tolerant mosses; B, Major research fields in the study of desiccation tolerant mosses.
Fig. 3 Habitat and morphological and structural features of Syntrichia caninervis. (A) The main habitat area of S. caninervis; (B) Desiccated-hydrated morphology of a S. caninervis colony; (C) Desiccated-hydrated morphology of an individual S. caninervis; (D) Morphology of the leaf and awn tip of S. caninervis.
Fig. 4 A schematic model of the hierarchical regulatory network governing desiccation tolerance in Syntrichia caninervis. LEA, Late embryogenesis abundant proteins; CAT, Catalase; ELIP, Early light-inducible proteins; HSP, Heat shock protein.
| [1] |
Alpert P (2005) The limits and frontiers of desiccation-tolerant life. Integrative and Comparative Biology, 45, 685-695.
DOI PMID |
| [2] |
Alpert P (2006) Constraints of tolerance: Why are desiccation- tolerant organisms so small or rare? Journal of Experimental Biology, 209, 1575-1584.
DOI PMID |
| [3] |
Bai WW, Salih H, Yang RR, Yang QL, Jin P, Liang YQ, Zhang DY, Li XS (2025) ScDREBA5 enhances cold tolerance by regulating photosynthetic and antioxidant genes in the desert moss Syntrichia caninervis. Plant, Cell & Environment, 48, 3293-3313.
DOI URL |
| [4] |
Bartlett MK, Scoffoni C, Sack L (2012) The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: A global meta-analysis. Ecology Letters, 15, 393-405.
DOI PMID |
| [5] |
Benassi M, Stark LR, Brinda JC, McLetchie DN, Bonine M, Mishler BD (2011) Plant size, sex expression and sexual reproduction along an elevation gradient in a desert moss. The Bryologist, 114, 277-288.
DOI URL |
| [6] | Biswas A, Sarkar S, Das S, Dutta S, Roy Choudhury M, Giri A, Bera B, Bag K, Mukherjee B, Banerjee K, Gupta D, Paul D (2025) Water scarcity: A global hindrance to sustainable development and agricultural production—A critical review of the impacts and adaptation strategies. Cambridge Prisms: Water, 3, e4. |
| [7] |
Brodribb TJ, Holbrook NM (2003) Stomatal closure during leaf dehydration, correlation with other leaf physiological traits. Plant Physiology, 132, 2166-2173.
DOI PMID |
| [8] |
Cao T, Haxim Y, Liu X, Yang Q, Hawar A, Waheed A, Li X, Zhang D (2023) ScATG8 gene cloned from desert moss Syntrichia caninervis exhibits multiple stress tolerance. Plants, 13, 59.
DOI URL |
| [9] |
Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought—From genes to the whole plant. Functional Plant Biology, 30, 239-264.
DOI URL |
| [10] | Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress:Effects, mechanisms and management. In: Sustainable Agriculture (eds Lichtfouse E, Navarrete M, Debaeke P, Véronique S, Alberola C), pp. 153-188. Springer Netherlands, Dordrecht. |
| [11] |
Farrant JM, Hilhorst HWM (2021) What is dry? Exploring metabolism and molecular mobility at extremely low water contents. Journal of Experimental Botany, 72, 1507-1510.
DOI PMID |
| [12] |
Farrant JM, Moore JP (2011) Programming desiccation- tolerance: From plants to seeds to resurrection plants. Current Opinion in Plant Biology, 14, 340-345.
DOI PMID |
| [13] |
Farrant JM, Moore JP, Hilhorst HWM (2020) Unifying insights into the desiccation tolerance mechanisms of resurrection plants and seeds. Frontiers in Plant Science, 11, 1089.
DOI PMID |
| [14] | Gao B, Li XS, Liang YQ, Chen MX, Liu HL, Liu YG, Wang JC, Zhang JH, Zhang YM, Oliver MJ, Zhang D (2024) Drying without dying: A genome database for desiccation-tolerant plants and evolution of desiccation tolerance. Plant Physiology, 194, 2249-2262. |
| [15] |
Gao B, Zhao JC, Li XS, Zhang JH, Oliver MJ, Zhang DY (2025) Telomere-to-telomere genome of the desiccation-tolerant desert moss Syntrichia caninervis illuminates Copia-dominant centromeric architecture. Plant Biotechnology Journal, 23, 927-929.
DOI URL |
| [16] |
Gechev T, Lyall R, Petrov V, Bartels D (2021) Systems biology of resurrection plants. Cellular and Molecular Life Sciences, 78, 6365-6394.
DOI PMID |
| [17] |
Hawar A, Haxim Y, Yang QL, Yin FL, Liu XC, Li XS, Zhang DY (2025) Genome-wide identification of histone acetyltransferase members and functional dissection of histone acetylation-mediated desiccation tolerance in Syntrichia caninervis. Plant Science, 360, 112658.
DOI URL |
| [18] | Jury WA, Vaux Jr HJ (2007) The emerging global water crisis: Managing scarcity and conflict between water users. Advances in Agronomy, 95, 1-76. |
| [19] | Kappen L, Valladares F (2007) Opportunistic growth and desiccation tolerance:The ecological success of poikilohydrous autotrophs. In: Functional Plant Ecology (eds Pugnaire FI, Valladares F), pp. 7-66. CRC Press, Boca Raton. |
| [20] |
Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell & Environment, 25, 275-294.
DOI URL |
| [21] |
Lei FY, Liang YQ, Yang RR, Yang QL, Bai WW, Yin FL, Zhang DY, Li XS (2024) ScbZIP1 positively regulates desiccation tolerance of desert moss Syntrichia caninervis by ROS scavenging and photosynthesis pathways. Environmental and Experimental Botany, 224, 105817.
DOI URL |
| [22] |
Li HY, Zhang DY, Li XS, Guan K, Yang HL (2016) Novel DREB A-5 subgroup transcription factors from desert moss (Syntrichia caninervis) confers multiple abiotic stress tolerance to yeast. Journal of Plant Physiology, 194, 45-53.
DOI PMID |
| [23] |
Li XS, Bai WW, Yang QL, Yin BF, Zhang ZL, Zhao BC, Kuang TY, Zhang YM, Zhang DY (2024) The extremotolerant desert moss Syntrichia caninervis is a promising pioneer plant for colonizing extraterrestrial environments. The Innovation, 5, 100657.
DOI URL |
| [24] |
Li XS, Liang YQ, Gao B, Mijiti M, Bozorov TA, Yang HL, Zhang DY, Wood AJ (2019) ScDREB10, an A-5c type of DREB gene of the desert moss Syntrichia caninervis, confers osmotic and salt tolerances to Arabidopsis. Genes, 10, 146.
DOI URL |
| [25] |
Li XS, Yang RR, Liang YQ, Gao B, Li SM, Bai WW, Oliver MJ, Zhang DY (2023) The ScAPD1-like gene from the desert moss Syntrichia caninervis enhances resistance to Verticillium dahliae via phenylpropanoid gene regulation. The Plant Journal, 113, 75-91.
DOI URL |
| [26] |
Li Y, Wang ZB, Xu TH, Tu WF, Liu C, Zhang YM, Yang CH (2010) Reorganization of photosystem II is involved in the rapid photosynthetic recovery of desert moss Syntrichia caninervis upon rehydration. Journal of Plant Physiology, 167, 1390-1397.
DOI PMID |
| [27] | Li YG, Zhang YM (2018) Response of non-structural carbohydrate content of Syntrichia caninervis to dehydration process. Acta Ecologica Sinica, 38, 8408-8416. (in Chinese with English abstract) |
| [李永刚, 张元明 (2018) 荒漠齿肋赤藓(Syntrichia caninervis)非结构性碳水化合物含量对植株脱水的响应. 生态学报, 38, 8408-8416.] | |
| [28] |
Liang YQ, Li XS, Zhang DY, Gao B, Yang HL, Wang YC, Guan KY, Wood AJ (2017) ScDREB8, a novel A-5 type of DREB gene in the desert moss Syntrichia caninervis, confers salt tolerance to Arabidopsis. Plant Physiology and Biochemistry, 120, 242-251.
DOI URL |
| [29] |
Liang YQ, Li XS, Zhang J, Zhuo L, Liu XJ, Yang RR, Zhang DY (2021) Dehydration rates impact physiological, biochemical and molecular responses in desert moss Bryum argenteum. Environmental and Experimental Botany, 183, 104346.
DOI URL |
| [30] |
Liu JY, Yang RR, Liang YQ, Wang Y, Li XS (2022) The DREB A-5 transcription factor ScDREB5 from Syntrichia caninervis enhanced salt tolerance by regulating jasmonic acid biosynthesis in transgenic Arabidopsis. Frontiers in Plant Science, 13, 857396.
DOI URL |
| [31] | Liu XJ, Yan Z, Zhang DY (2021) Functional analysis of Syntrichia caninervis early light-induced protein genes ScELIPs in response to abiotic stresses. Plant Physiology Journal, 57, 1679-1689. (in Chinese with English abstract) |
| [刘秀瑾, 闫振, 张道远 (2021) 齿肋赤藓早期光诱导蛋白基因ScELIPs响应非生物胁迫的功能鉴定. 植物生理学报, 57, 1679-1689.] | |
| [32] |
Liu XJ, Zhang YG, Yang HL, Liang YQ, Li XS, Oliver MJ, Zhang DY (2020) Functional aspects of early light-induced protein (ELIP) genes from the desiccation-tolerant moss Syntrichia caninervis. International Journal of Molecular Sciences, 21, 1411.
DOI URL |
| [33] |
Liu XJ, Zhou P, Li XS, Zhang DY (2021) Propagation of desert moss Syntrichia caninervis in peat pellet: A method for rapidly obtaining large numbers of cloned gametophytes. Plant Methods, 17, 42.
DOI |
| [34] |
Marks RA, Ekwealor JTB, Artur MAS, Bondi L, Boothby TC, Carmo OMS, Centeno DC, Coe KK, Dace HJW, Field S, Hutt A, Porembski S, Thalhammer A, van der Pas L, Wood AJ, Alpert P, Bartels D, Boeynaems S, Datar MN, Giese T, Seidou WI, Kirchner SM, Köhler J, Kumara UGVSS, Kyung J, Lyall R, Mishler BD, Ndongmo JBVT, Otegui MS, Reddy V, Rexroth J, Tebele SM, VanBuren R, Verdier J, Vothknecht UC, Wittenberg MF, Zokov E, Oliver MJ, Rhee SY (2025) Life on the dry side: A roadmap to understanding desiccation tolerance and accelerating translational applications. Nature Communications, 16, 3284.
DOI |
| [35] |
Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environmental and Experimental Botany, 49, 69-76.
DOI URL |
| [36] | Oliver MJ, Bewley JD (2010) Desiccation-tolerance of plant tissues: A mechanistic overview. Horticultural Reviews, 18, 171-213. |
| [37] | Oliver MJ, Cushman JC, Koster KL (2010) Dehydration tolerance in plants. In: Plant Stress Tolerance: Methods and Protocols (ed. Sunkar R), pp.3-24. Humana Press, Totowa. |
| [38] |
Oliver MJ, Farrant JM, Hilhorst HWM, Mundree S, Williams B, Bewley JD (2020) Desiccation tolerance: Avoiding cellular damage during drying and rehydration. Annual Review of Plant Biology, 71, 435-460.
DOI PMID |
| [39] |
Oliver MJ, O’mahony P, Wood AJ (1998) “To dryness and beyond”—Preparation for the dried state and rehydration in vegetative desiccation-tolerant plants. Plant Growth Regulation, 24, 193-201.
DOI |
| [40] |
Oliver MJ, Tuba Z, Mishler BD (2000a) The evolution of vegetative desiccation tolerance in land plants. Plant Ecology, 151, 85-100.
DOI |
| [41] |
Oliver MJ, Velten J, Mishler BD (2005) Desiccation tolerance in bryophytes: A reflection of the primitive strategy for plant survival in dehydrating habitats? Integrative and Comparative Biology, 45, 788-799.
DOI PMID |
| [42] |
Oliver MJ, Velten J, Wood AJ (2000b) Bryophytes as experimental models for the study of environmental stress tolerance: Tortula ruralis and desiccation-tolerance in mosses. Plant Ecology, 151, 73-84.
DOI |
| [43] |
Osakabe Y, Osakabe K, Shinozaki K, Tran LSP (2014) Response of plants to water stress. Frontiers in Plant Science, 5, 86.
DOI PMID |
| [44] |
Pan Z, Pitt WG, Zhang YM, Wu N, Tao Y, Truscott TT (2016) The upside-down water collection system of Syntrichia caninervis. Nature Plants, 2, 16076.
DOI |
| [45] |
Proctor MC, Oliver MJ, Wood AJ, Alpert P, Stark LR, Cleavitt NL, Mishler BD (2007) Desiccation-tolerance in bryophytes: A review. The Bryologist, 110, 595-621.
DOI URL |
| [46] |
Proctor MC, Smirnoff N (2000) Rapid recovery of photosystems on rewetting desiccation-tolerant mosses: Chlorophyll fluorescence and inhibitor experiments. Journal of Experimental Botany, 51, 1695-1704.
PMID |
| [47] |
Rascio N,La Rocca N (2005) Resurrection plants: The puzzle of surviving extreme vegetative desiccation. Critical Reviews in Plant Sciences, 24, 209-225.
DOI URL |
| [48] | Rebecchi L, Altiero T, Guidetti R (2007) Anhydrobiosis: The extreme limit of desiccation tolerance. Invertebrate Survival Journal, 4, 65-81. |
| [49] |
Rensing SA, Goffinet B, Meyberg R, Wu SZ, Bezanilla M (2020) The moss Physcomitrium (Physcomitrella) patens: A model organism for non-seed plants. The Plant Cell, 32, 1361-1376.
DOI PMID |
| [50] |
Salih H, Bai WW, Liang YQ, Yang RR, Zhao MQ, Muhammd SM, Zhang DY, Li XS (2024) ROS scavenging enzyme-encoding genes play important roles in the desert moss Syntrichia caninervis response to extreme cold and desiccation stresses. International Journal of Biological Macromolecules, 254, 127778.
DOI URL |
| [51] |
Silva AT, Gao B, Fisher KM, Mishler BD, Ekwealor JTB, Stark LR, Li XS, Zhang DY, Bowker MA, Brinda JC, Coe KK, Oliver MJ (2021) To dry perchance to live: Insights from the genome of the desiccation-tolerant biocrust moss Syntrichia caninervis. The Plant Journal, 105, 1339-1356.
DOI URL |
| [52] |
Stark LR, Nichols L 2nd, McLetchie DN, Smith SD, Zundel C (2004) Age and sex-specific rates of leaf regeneration in the Mojave Desert moss Syntrichia caninervis. American Journal of Botany, 91, 1-9.
DOI URL |
| [53] |
Tao Y, Zhang YM (2012) Effects of leaf hair points of a desert moss on water retention and dew formation: Implications for desiccation tolerance. Journal of Plant Research, 125, 351-360.
DOI PMID |
| [54] |
Tao Y, Zhang YM (2012) Effect of leaf awns on dew formation and evaporation in Syntrichia caninervis crusts. Acta Ecologica Sinica, 32, 7-16. (in Chinese with English abstract)
DOI URL |
| [陶冶, 张元明 (2012) 叶片毛尖对齿肋赤藓结皮凝结水形成及蒸发的影响. 生态学报, 32, 7-16.] | |
| [55] | Tao Y, Zhang YM, Wu N, Zhang BC (2011) Effects of leaf hair points of the moss Syntrichia caninervis Mitt. on plant water content and water loss in biological soil crusts in Gurbantunggut Desert, Northwestern China. Arid Land Geography, 34, 800-808. (in Chinese with English abstract) |
| [陶冶, 张元明, 吴楠, 张丙昌 (2011) 生物结皮中齿肋赤藓叶片毛尖对植株含水量及水分散失的影响. 干旱区地理, 34, 800-808.] | |
| [56] |
Turner NC (1981) Techniques and experimental approaches for the measurement of plant water status. Plant and Soil, 58, 339-366.
DOI URL |
| [57] | Vitt DH, Crandall-Stotler B, Wood A (2014) Bryophytes:Survival in a dry world through tolerance and avoidance. In: Plant Ecology and Evolution in Harsh Environments (eds Evert RF, Eichhorn SE), pp. 267-295. Springer, Berlin. |
| [58] | Wei ML, Zhang YM (2009) Microscopic and submicroscopic structure of leaf cells of Syntrichia caninervis Mitt. in biological soil crusts. Journal of Desert Research, 29, 493-498. (in Chinese with English abstract) |
| [魏美丽, 张元明 (2009) 生物结皮中齿肋赤藓叶片细胞显微与亚显微结构特征. 中国沙漠, 29, 493-498.] | |
| [59] | Wei ML, Zhang YM (2010) Effects of dehydration on photosynthetic pigment content and chloroplast ultrastructure of Syntrichia caninervis in biological soil crusts. Journal of Desert Research, 30, 1311-1318. (in Chinese with English abstract) |
| [魏美丽, 张元明 (2010) 脱水对生物结皮中齿肋赤藓光合色素含量和叶绿体结构的影响. 中国沙漠, 30, 1311-1318.] | |
| [60] |
Wood AJ (2007) The nature and distribution of vegetative desiccation-tolerance in hornworts, liverworts and mosses. The Bryologist, 110, 163-177.
DOI URL |
| [61] |
Xu HM, Li J, Zhang YM (2017) Effects of water condition on photochemical efficiency and physiological characteristics in artificially cultivated moss Syntrichia caninervis. Chinese Journal of Plant Ecology, 41, 882-893. (in Chinese with English abstract)
DOI URL |
|
[许红梅, 李进, 张元明 (2017) 水分条件对人工培养齿肋赤藓光化学效率及生理特性的影响. 植物生态学报, 41, 882-893.]
DOI |
|
| [62] |
Xu S, Yin C, He M, Wang Y (2008) A technology for rapid reconstruction of moss-dominated soil crusts. Environmental Engineering Science, 25, 1129-1138.
DOI URL |
| [63] |
Xu SJ, Jiang PG, Wang ZW, Wang Y (2009) Crystal structures and chemical composition of leaf surface wax depositions on the desert moss Syntrichia caninervis. Biochemical Systematics and Ecology, 37, 723-730.
DOI URL |
| [64] |
Xu X, Legay S, Sergeant K, Zorzan S, Leclercq CC, Charton S, Giarola V, Liu X, Challabathula D, Renaut J, Hausman JF, Bartels D, Guerriero G (2021) Molecular insights into plant desiccation tolerance: Transcriptomics, proteomics and targeted metabolite profiling in Craterostigma plantagineum. The Plant Journal, 107, 377-398.
DOI URL |
| [65] |
Yang HL, Bozorov TA, Chen X, Zhang DY, Wang JC, Li XS, Zhang D (2021) Yield comparisons between cotton variety ‘Xin Nong Mian 1’ and its transgenic ScALDH21 lines under different water deficiencies in a desert-oasis ecotone. Agronomy, 11, 1019.
DOI URL |
| [66] |
Yang HL, Yang QL, Zhang DW, Wang JC, Cao T, Bozorov TA, Cheng LH, Zhang DY (2023) Transcriptome reveals the molecular mechanism of the ScALDH21 gene from the desert moss Syntrichia caninervis conferring resistance to salt stress in cotton. International Journal of Molecular Sciences, 24, 5822.
DOI URL |
| [67] | Yang HL, Zhang DW, Li HY, Zhang DY (2015) Transgenic ScALDH21 cotton can enhance cotton salt tolerance at the atage of seed germination and seedling growth. Molecular Plant Breeding, 13, 132-138. (in Chinese with English abstract) |
| [杨红兰, 张大伟, 李海燕, 张道远 (2015) 转ScALDH21基因棉花植株能提高棉花抗盐能力. 分子植物育种, 13, 132-138.] | |
| [68] |
Yang HL, Zhang DW, Li XS, Li HY, Zhang DY, Lan HY, Bozorov TA, Abdullaev AA (2016) Overexpression of ScALDH21 gene in cotton improves drought tolerance and growth in greenhouse and field conditions. Molecular Breeding, 36, 34.
DOI URL |
| [69] |
Yang HL, Zhang DW, Zhang DY, Bozorov TA, Abdullaev AA, Wood AJ, Wang JC, Li XS, Zhao JY (2019) Overexpression of ALDH21 from Syntrichia caninervis moss in upland cotton enhances fiber quality, boll component traits, and physiological parameters during deficit irrigation. Crop Science, 59, 553-564.
DOI URL |
| [70] |
Yang HL, Zhang DY, Li HY, Dong LF, Lan HY, Wood AJ, Wang JC (2015) Ectopic overexpression of the aldehyde dehydrogenase ALDH21 from Syntrichia caninervis in tobacco confers salt and drought stress tolerance. Plant Physiology and Biochemistry, 95, 83-91.
DOI URL |
| [71] |
Yang HL, Zhang DY, Wang JC, Wood AJ, Zhang YM (2012) Molecular cloning of a stress-responsive aldehyde dehydrogenase gene ScALDH21 from the desiccation- tolerant moss Syntrichia caninervis and its responses to different stresses. Molecular Biology Reports, 39, 2645-2652.
DOI URL |
| [72] |
Yang QL, Wang JC, Zhang DW, Feng H, Bozorov TA, Yang HL, Zhang DY (2023a) Effects of multi-resistant ScALDH21 transgenic cotton on soil microbial communities. Frontiers in Microbiomes, 2, 1248384.
DOI URL |
| [73] |
Yang QL, Yang RR, Gao BB, Liang YQ, Liu XJ, Li XS, Zhang DY (2023b) Metabolomic analysis of the desert moss Syntrichia caninervis provides insights into plant dehydration and rehydration response. Plant and Cell Physiology, 64, 1419-1432.
DOI URL |
| [74] |
Yang QL, Yang RR, Zhang H, Yin FL, Wang LY, Zhang DY, Li XS (2025a) Unraveling ScAPD1-mediated resistance mechanism to Verticillium dahliae through integrated host-pathogen transcriptomics. Plant Stress, 17, 100935.
DOI URL |
| [75] |
Yang QL, Zhang H, Yin FL, Salih H, Yang RR, Gao B, Li XS, Zhang DY (2025b) Exploring the mechanisms of desert plant adaptation to arid climates: A multi-omics analysis of dehydration and rehydration responses in Syntrichia caninervis. Stress Biology, 5, 68.
DOI |
| [76] |
Yang RR, Li XS, Yang QL, Zhao MQ, Bai WW, Liang YQ, Liu XJ, Gao B, Zhang DY (2023) Transcriptional profiling analysis providing insights into desiccation tolerance mechanisms of the desert moss Syntrichia caninervis. Frontiers in Plant Science, 14, 1127541.
DOI URL |
| [77] | Yin FL, Liu XC, Hawar A, Bai WW, Yang QL, Zhang H, Cao T, Zhang DY, Li XS (2025) Phosphoproteomics analysis provides novel insight into the mechanisms of extreme desiccation tolerance of the desert moss Syntrichia caninervis. The Plant Journal, 123, e70373. |
| [78] |
Zhang J, Kirkham MB (1994) Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant and Cell Physiology, 35, 785-791.
DOI URL |
| [79] |
Zhang J, Zhang YM, Downing A, Wu N, Zhang BC (2011) Photosynthetic and cytological recovery on remoistening Syntrichia caninervis Mitt., a desiccation-tolerant moss from Northwestern China. Photosynthetica, 49, 13-20.
DOI URL |
| [80] |
Zhang Q, Bartels D (2018) Molecular responses to dehydration and desiccation in desiccation-tolerant angiosperm plants. Journal of Experimental Botany, 69, 3211-3222.
DOI PMID |
| [81] |
Zhang Y, Wang C, Huang MQ, Zhang YG (2022) Functional analysis of ScABI3 from Syntrichia caninervis Mitt. in Medicago sativa L. Agronomy, 12, 2238.
DOI URL |
| [82] |
Zhang YG, Zhang Y, Wang C, Xiao JY, Huang MQ, Zhuo L, Zhang DY (2024) Enhancement of salt tolerance of alfalfa: Physiological and molecular responses of transgenic alfalfa plants expressing Syntrichia caninervis-derived ScABI3. Plant Physiology and Biochemistry, 207, 108335.
DOI URL |
| [83] |
Zhang YM, Chen J, Wang L, Wang XQ, Gu ZH (2007) The spatial distribution patterns of biological soil crusts in the Gurbantunggut Desert, Northern Xinjiang, China. Journal of Arid Environments, 68, 599-610.
DOI URL |
| [84] | Zheng YP, Zhao JC, Zhang BC, Zhang YM (2009) Morphological and structural adaptation and characteristics of protonemal development of Syntrichia caninervis in the mosses crust layer. Journal of Desert Research, 29, 878-884. (in Chinese with English abstract) |
| [郑云普, 赵建成, 张丙昌, 张元明 (2009) 荒漠藓类结皮层中齿肋赤藓形态结构适应性及其原丝体发育特征. 中国沙漠, 29, 878-884.] | |
| [85] |
Zhou P, Liu XJ, Liang YQ, Zhang Y, Li XS, Zhang DY (2024) A simple, highly efficient Agrobacterium tumefaciens- mediated moss transformation system with broad applications. aBIOTECH, 5, 476-487.
DOI |
| [86] | Zhu BJ, Yin BF, Zhang YM (2017) Seasonal dynamics of non-structural carbohydrates contents of Syntrichia caninervis among different microhabitats. Journal of Desert Research, 37, 268-275. (in Chinese with English abstract) |
|
[朱秉坚, 尹本丰, 张元明 (2017) 不同微生境下齿肋赤藓(Syntrichia caninervis)非结构性碳水化合物含量的季节动态. 中国沙漠, 37, 268-275.]
DOI |
|
| [87] |
Zhuo L, Zhang YG, Li XS, Yang HL, Guan KY, Wood AJ, Zhang DY (2018) Differential fragment regeneration in Syntrichia caninervis Mitt. from the Gurbantunggut Desert of China. Journal of Bryology, 40, 265-270.
DOI URL |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn