Biodiv Sci ›› 2023, Vol. 31 ›› Issue (12): 23183. DOI: 10.17520/biods.2023183
• Special Feature: Celebrating Alfred Russel Wallace’s Bicentenary • Next Articles
Chang Cai1, Xue Zhang1(), Chen Zhu1(), Yuhao Zhao2,3(), Gexia Qiao4,5(), Ping Ding1,*()
Received:
2023-06-04
Accepted:
2023-08-19
Online:
2023-12-20
Published:
2023-10-08
Contact:
E-mail: Chang Cai, Xue Zhang, Chen Zhu, Yuhao Zhao, Gexia Qiao, Ping Ding. Nested assemblages of aphid species in the Thousand Island Lake: The importance of island area and host plant diversity[J]. Biodiv Sci, 2023, 31(12): 23183.
岛屿 编号 Island code | 面积 Area (ha) | 距最近大陆距离 Distance to the nearest mainland (m) | 距最近岛屿距离 Distance to the nearest island (m) | 样带数量 Number of transect | 样带总长度 Total transect length (m) | 嵌套序列 Nested matrix rank | 蚜虫物种 丰富度 Aphid richness | 生境植物物 种丰富度 Habitat plant species richness | 寄主植物物 种丰富度 Host plant species richness | 互惠蚂蚁物 种丰富度 Mutualistic ant species richness |
---|---|---|---|---|---|---|---|---|---|---|
B2 | 128.040 | 1,452.275 | 27.072 | 5 | 2,000 | 1 | 16 | 113 | 20 | 21 |
S07 | 0.488 | 2,105.772 | 15.236 | 1 | 400 | 2 | 12 | 38 | 17 | 5 |
B6 | 51.889 | 950.346 | 31.812 | 4 | 1,600 | 3 | 11 | 67 | 18 | 18 |
B7 | 29.054 | 1,938.729 | 67.309 | 3 | 1,200 | 4 | 10 | 76 | 16 | 17 |
S30 | 4.058 | 2,588.229 | 26.041 | 2 | 800 | 5 | 10 | 41 | 15 | 14 |
S01 | 0.434 | 3,725.022 | 89.542 | 1 | 400 | 6 | 9 | 36 | 12 | 8 |
S02 | 0.623 | 3,204.960 | 71.298 | 1 | 400 | 7 | 9 | 34 | 11 | 7 |
S46 | 1.035 | 727.554 | 14.890 | 2 | 800 | 8 | 9 | 57 | 15 | 9 |
S11 | 1.560 | 1,098.858 | 53.295 | 2 | 800 | 9 | 8 | 44 | 14 | 7 |
S17 | 0.715 | 892.695 | 143.517 | 1 | 400 | 10 | 8 | 32 | 14 | 10 |
S26 | 9.729 | 2,163.768 | 135.660 | 2 | 800 | 11 | 8 | 46 | 14 | 10 |
S43 | 2.233 | 1,187.389 | 77.688 | 2 | 800 | 12 | 8 | 46 | 11 | 14 |
S05 | 0.588 | 2,320.772 | 29.648 | 1 | 400 | 13 | 7 | 36 | 12 | 8 |
S09 | 1.819 | 1,046.338 | 121.168 | 2 | 800 | 14 | 7 | 55 | 12 | 15 |
S48 | 0.887 | 356.092 | 62.151 | 1 | 400 | 15 | 7 | 41 | 11 | 8 |
S19 | 0.338 | 1,529.966 | 52.729 | 1 | 400 | 16 | 6 | 21 | 6 | 8 |
S31 | 0.079 | 2,567.282 | 47.085 | 1 | 400 | 17 | 6 | 28 | 8 | 7 |
S33 | 0.289 | 3,039.890 | 87.270 | 1 | 400 | 18 | 5 | 28 | 5 | 9 |
Table 1 Characteristic parameters of the 18 studied islands in the Thousand Island Lake, China
岛屿 编号 Island code | 面积 Area (ha) | 距最近大陆距离 Distance to the nearest mainland (m) | 距最近岛屿距离 Distance to the nearest island (m) | 样带数量 Number of transect | 样带总长度 Total transect length (m) | 嵌套序列 Nested matrix rank | 蚜虫物种 丰富度 Aphid richness | 生境植物物 种丰富度 Habitat plant species richness | 寄主植物物 种丰富度 Host plant species richness | 互惠蚂蚁物 种丰富度 Mutualistic ant species richness |
---|---|---|---|---|---|---|---|---|---|---|
B2 | 128.040 | 1,452.275 | 27.072 | 5 | 2,000 | 1 | 16 | 113 | 20 | 21 |
S07 | 0.488 | 2,105.772 | 15.236 | 1 | 400 | 2 | 12 | 38 | 17 | 5 |
B6 | 51.889 | 950.346 | 31.812 | 4 | 1,600 | 3 | 11 | 67 | 18 | 18 |
B7 | 29.054 | 1,938.729 | 67.309 | 3 | 1,200 | 4 | 10 | 76 | 16 | 17 |
S30 | 4.058 | 2,588.229 | 26.041 | 2 | 800 | 5 | 10 | 41 | 15 | 14 |
S01 | 0.434 | 3,725.022 | 89.542 | 1 | 400 | 6 | 9 | 36 | 12 | 8 |
S02 | 0.623 | 3,204.960 | 71.298 | 1 | 400 | 7 | 9 | 34 | 11 | 7 |
S46 | 1.035 | 727.554 | 14.890 | 2 | 800 | 8 | 9 | 57 | 15 | 9 |
S11 | 1.560 | 1,098.858 | 53.295 | 2 | 800 | 9 | 8 | 44 | 14 | 7 |
S17 | 0.715 | 892.695 | 143.517 | 1 | 400 | 10 | 8 | 32 | 14 | 10 |
S26 | 9.729 | 2,163.768 | 135.660 | 2 | 800 | 11 | 8 | 46 | 14 | 10 |
S43 | 2.233 | 1,187.389 | 77.688 | 2 | 800 | 12 | 8 | 46 | 11 | 14 |
S05 | 0.588 | 2,320.772 | 29.648 | 1 | 400 | 13 | 7 | 36 | 12 | 8 |
S09 | 1.819 | 1,046.338 | 121.168 | 2 | 800 | 14 | 7 | 55 | 12 | 15 |
S48 | 0.887 | 356.092 | 62.151 | 1 | 400 | 15 | 7 | 41 | 11 | 8 |
S19 | 0.338 | 1,529.966 | 52.729 | 1 | 400 | 16 | 6 | 21 | 6 | 8 |
S31 | 0.079 | 2,567.282 | 47.085 | 1 | 400 | 17 | 6 | 28 | 8 | 7 |
S33 | 0.289 | 3,039.890 | 87.270 | 1 | 400 | 18 | 5 | 28 | 5 | 9 |
Fig. 2 General structural equation model depicting relationships between island geographical and biological factors and island nestedrank of aphid communities
嵌套度量化 Nestedness metric | 观测值 Nobs | 期望值 Nexp | 标准差 SD | Z值 Z-score | P | |
---|---|---|---|---|---|---|
蚜虫 Aphid | 总NODF | 62.86 | 36.52 | 2.00 | 13.22 | < 0.001 |
岛屿NODFC | 57.78 | 37.58 | 2.31 | 8.75 | < 0.001 | |
物种NODFR | 72.03 | 41.54 | 3.28 | 9.29 | < 0.001 | |
生境植物 Habitat plant | 总NODF | 57.74 | 30.15 | 0.63 | 44.12 | < 0.001 |
Table 2 Analysis of nested pattern of aphid communities and its habitat plant communities in the 18 studied islands in the Thousand Island Lake, China
嵌套度量化 Nestedness metric | 观测值 Nobs | 期望值 Nexp | 标准差 SD | Z值 Z-score | P | |
---|---|---|---|---|---|---|
蚜虫 Aphid | 总NODF | 62.86 | 36.52 | 2.00 | 13.22 | < 0.001 |
岛屿NODFC | 57.78 | 37.58 | 2.31 | 8.75 | < 0.001 | |
物种NODFR | 72.03 | 41.54 | 3.28 | 9.29 | < 0.001 | |
生境植物 Habitat plant | 总NODF | 57.74 | 30.15 | 0.63 | 44.12 | < 0.001 |
Fig. 3 Maximally nested presence-absence matrix (A) and the result of passive sampling (B) of aphid communities on the 18 islands of the Thousand Island Lake, China. (B) The passive sampling model shows the expected values (blue lines) and associated standard deviations (± SD, grey lines), and orange dots for observed species richness.
回归系数 Coefficient | 截距 Intercept | 校正决定系数 Adjusted R-squared $(R_{\mathrm{adj}}^2)$ | F | |||
---|---|---|---|---|---|---|
岛屿面积 Island area | 距最近大陆距离 Distance to the nearest mainland | 距最近岛屿距离 Distance to the nearest island | ||||
蚜虫岛屿嵌套程度 Island nestedrank of aphid communities (A'K) | 0.112** | < 0.001 | -0.002 | 0.443* | 0.479 | 6.21** |
生境植物物种丰富度 Habitat plant species richness | 0.172*** | < -0.001 | -0.001 | 3.818*** | 0.751 | 18.13*** |
寄主植物物种丰富度 Host plant speices richness | 0.119** | < -0.001 | -0.001 | 2.597*** | 0.397 | 4.731* |
互惠蚂蚁物种丰富度 Mutualistic ant species richness | 0.167*** | < -0.001 | 0.001 | 2.151*** | 0.638 | 10.98*** |
Table 3 Results of the multiple linear regression models of the effects of island geographic factors on aphid island nestedrank and species richness of each biological group
回归系数 Coefficient | 截距 Intercept | 校正决定系数 Adjusted R-squared $(R_{\mathrm{adj}}^2)$ | F | |||
---|---|---|---|---|---|---|
岛屿面积 Island area | 距最近大陆距离 Distance to the nearest mainland | 距最近岛屿距离 Distance to the nearest island | ||||
蚜虫岛屿嵌套程度 Island nestedrank of aphid communities (A'K) | 0.112** | < 0.001 | -0.002 | 0.443* | 0.479 | 6.21** |
生境植物物种丰富度 Habitat plant species richness | 0.172*** | < -0.001 | -0.001 | 3.818*** | 0.751 | 18.13*** |
寄主植物物种丰富度 Host plant speices richness | 0.119** | < -0.001 | -0.001 | 2.597*** | 0.397 | 4.731* |
互惠蚂蚁物种丰富度 Mutualistic ant species richness | 0.167*** | < -0.001 | 0.001 | 2.151*** | 0.638 | 10.98*** |
Fig. 4 Structural equation model depicting relationships between island area and biological factors and island nestedrank of aphid communities. Blue, red and dashed arrows represent significantly positive, negative or non-significant effects at the 0.05 level, respectively. Arrow thickness represents the relative magnitude of the standardized path coefficients.
[1] |
Alarcón R, Waser NM, Ollerton J (2008) Year-to-year variation in the topology of a plant-pollinator interaction network. Oikos, 117, 1796-1807.
DOI URL |
[2] |
Almeida-Neto M, Guimarães P, Guimarães PR Jr, Loyola RD, Ulrich W (2008) A consistent metric for nestedness analysis in ecological systems: Reconciling concept and measurement. Oikos, 117, 1227-1239.
DOI URL |
[3] | Almeida-Neto M, Ulrich W (2011) A straightforward computational approach for measuring nestedness using quantitative matrices. Environmental Modelling & Software, 26, 173-178. |
[4] |
Andrén H (1994) Can one use nested subset pattern to reject the random sample hypothesis? Examples from boreal bird communities. Oikos, 70, 489-491.
DOI URL |
[5] | Beckett SJ, Boulton CA, Williams HTP (2014) FALCON: A software package for analysis of nestedness in bipartite networks. F1000Research, 3, 185. |
[6] | Blackman RL, Eastop VF (1994) Aphids on the World’s Trees: An Identification and Information Guide. CAB International, Wallingford. |
[7] |
Boecklen WJ (1997) Nestedness, biogeographic theory, and the design of nature reserves. Oecologia, 112, 123-142.
DOI PMID |
[8] |
Chen CW, Xu AC, Ding P, Wang YP (2019) The small-island effect and nestedness in assemblages of medium- and large-bodied mammals on Chinese reservoir land-bridge islands. Basic and Applied Ecology, 38, 47-57.
DOI URL |
[9] |
Chen CW, Zhan CX, Wang YP (2022) Do functional and phylogenetic nestedness follow the same mechanisms as taxonomic nestedness? Evidence from amphibians in the largest archipelago of China. Journal of Animal Ecology, 91, 2424-2436.
DOI URL |
[10] |
Coleman BD, Mares MA, Willig MR, Hsieh YH (1982) Randomness, area, and species richness. Ecology, 63, 1121-1133.
DOI URL |
[11] |
Cutler AH (1994) Nested biotas and biological conservation: Metrics, mechanisms, and meaning of nestedness. Landscape and Urban Planning, 28, 73-82.
DOI URL |
[12] | Darlington PJ (1957) Zoogeography:The Geographical Distribution of Animals. John Wiley & Sons, New York. |
[13] | Dormann CF, Gruber B, Fründ J (2008) Introducing the bipartite package: Analysing ecological networks. R News, 8, 8-11. |
[14] | Eastop V (1986) Aphid-plant associations. In: Coevolution and Systematics (eds Stone AR, Hawksworth DL), pp. 35-54. Clarendon Press, Oxford. |
[15] | Fischer CY, Vanderplanck M, Lognay GC, Detrain C, Verheggen FJ (2015) Do aphids actively search for ant partners? Insect Science, 22, 283-288. |
[16] | Fornoff F, Klein AM, Blüthgen N, Staab M (2019) Tree diversity increases robustness of multi-trophic interactions. Proceedings of the Royal Society B: Biological Sciences, 286, 20182399. |
[17] |
Gao SX, Liu DG, Chen H, Meng XX (2014) Fitness traits and underlying genetic variation related to host plant specialization in the aphid Sitobion avenae. Insect Science, 21, 352-362.
DOI URL |
[18] |
Ghosh S, Roy A, Chatterjee A, Sikdar SR (2019) Effect of regional wind circulation and meteorological factors on long-range migration of mustard aphids over Indo-Gangetic plain. Scientific Reports, 9, 5626.
DOI PMID |
[19] |
Grez AA, Zaviezo T, Díaz S, Camousseigt B, Cortés G (2008) Effects of habitat loss and fragmentation on the abundance and species richness of aphidophagous beetles and aphids in experimental alfalfa landscapes. European Journal of Entomology, 105, 411-420.
DOI URL |
[20] |
Hacker SD, Gaines SD (1997) Some implications of direct positive interactions for community species diversity. Ecology, 78, 1990-2003.
DOI URL |
[21] |
Hsieh TC, Ma KH, Chao A (2016) iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution, 7, 1451-1456.
DOI URL |
[22] | Huang XL, Qiao GX (2006) Research status and trends in Aphidology. Acta Entomologica Sinica, 49, 1017-1026. (in Chinese with English abstract) |
[黄晓磊, 乔格侠 (2006) 蚜虫学研究现状与学科发展趋势. 昆虫学报, 49, 1017-1026.] | |
[23] |
Kim S (2015) ppcor: An R package for a fast calculation to semi-partial correlation coefficients. Communications for Statistical Applications and Methods, 22, 665-674.
DOI PMID |
[24] |
Lefcheck JS (2016) piecewiseSEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods in Ecology and Evolution, 7, 573-579.
DOI URL |
[25] |
Li WD, Zhu C, Grass I, Vázquez DP, Wang DR, Zhao YH, Zeng D, Kang Y, Ding P, Si XF (2022) Plant-frugivore network simplification under habitat fragmentation leaves a small core of interacting generalists. Communications Biology, 5, 1214.
DOI PMID |
[26] |
Liu JL, Matthews TJ, Zhong L, Liu JJ, Wu DH, Yu MJ (2020) Environmental filtering underpins the island species-area relationship in a subtropical anthropogenic archipelago. Journal of Ecology, 108, 424-432.
DOI URL |
[27] | Liu XD, Zhai BP, Zhang XX (2004) Advance in the studies of migration of aphids. Entomological Knowledge, 41, 301-307. (in Chinese with English abstract) |
[刘向东, 翟保平, 张孝羲 (2004) 蚜虫迁飞的研究进展. 昆虫知识, 41, 301-307.] | |
[28] |
Matthews TJ, Cottee-Jones HEW, Whittaker RJ (2015) Quantifying and interpreting nestedness in habitat islands: A synthetic analysis of multiple datasets. Diversity and Distributions, 21, 392-404.
DOI URL |
[29] |
Michel AP, Mian MA, Davila-Olivas NH, Cañas LA (2010) Detached leaf and whole plant assays for soybean aphid resistance: Differential responses among resistance sources and biotypes. Journal of Economic Entomology, 103, 949-957.
PMID |
[30] |
Mitchell MGE, Hartley E, Tsuruda M, Gonzalez A, Bennett EM (2022) Contrasting responses of soybean aphids, primary parasitoids, and hyperparasitoids to forest fragments and agricultural landscape structure. Agriculture, Ecosystems & Environment, 326, 107752.
DOI URL |
[31] |
Moreira X, Abdala-Roberts L, Rasmann S, Castagneyrol B, Mooney KA (2016) Plant diversity effects on insect herbivores and their natural enemies: Current thinking, recent findings, and future directions. Current Opinion in Insect Science, 14, 1-7.
DOI PMID |
[32] |
Nelson AS, Mooney KA (2022) The evolution and ecology of interactions between ants and honeydew-producing hemipteran insects. Annual Review of Ecology, Evolution, and Systematics, 53, 379-402.
DOI URL |
[33] |
Nelson AS, Pratt RT, Pratt JD, Smith RA, Symanski CT, Prenot C, Mooney KA (2019) Progressive sensitivity of trophic levels to warming underlies an elevational gradient in ant-aphid mutualism strength. Oikos, 128, 540-550.
DOI URL |
[34] |
Nolte D, Schuldt A, Gossner MM, Ulrich W, Assmann T (2017) Functional traits drive ground beetle community structures in Central European forests: Implications for conservation. Biological Conservation, 213, 5-12.
DOI URL |
[35] | Patefield WM (1981) Algorithm AS 159: An efficient method of generating random R × C tables with given row and column totals. Applied Statistics, 30, 91-97. |
[36] |
Patterson BD, Atmar W (1986) Nested subsets and the structure of insular mammalian faunas and archipelagos. Biological Journal of the Linnean Society, 28, 65-82.
DOI URL |
[37] | Platková H, Pyszko P, Coeur d'Acier A, Jousselin E, Drozd P (2020) Spatial distribution of aphids in the canopy of a temperate forest: Where can they be found? Agricultural and Forest Entomology, 22, 379-389. |
[38] | R Core Team (2022) R: A Language and Environment for Statistical Computing. http://www.r-project.org. (accessed on 2022-04-25) |
[39] |
Ragsdale DW, McCornack BP, Venette RC, Potter BD, MacRae IV, Hodgson EW, O’Neal ME, Johnson KD, O’Neil RJ, Difonzo CD, Hunt TE, Glogoza PA, Cullen EM (2007) Economic threshold for soybean aphid (Hemiptera: Aphididae). Journal of Economic Entomology, 100, 1258-1267.
DOI PMID |
[40] |
Schouten MA, Verweij PA, Barendregt A, Kleukers RJM, De Ruiter PC (2007) Nested assemblages of Orthoptera species in the Netherlands: The importance of habitat features and life-history traits. Journal of Biogeography, 34, 1938-1946.
DOI URL |
[41] |
Schrader J, Wright IJ, Kreft H, Westoby M (2021) A roadmap to plant functional island biogeography. Biological Reviews of the Cambridge Philosophical Society, 96, 2851-2870.
DOI PMID |
[42] |
Šeat J, Nadaždin B, Milić N, Ćuk M, Torma A (2021) How steady is the nested pattern in saline grassland true bug communities? Effects of sampling effort and data completeness on nestedness. Acta Oecologica, 110, 103670.
DOI URL |
[43] |
Shih PY, Sugio A, Simon JC (2023) Molecular mechanisms underlying host plant specificity in aphids. Annual Review of Entomology, 68, 431-450.
DOI URL |
[44] | Si XF, Baselga A, Ding P (2015) Revealing beta-diversity patterns of breeding bird and lizard communities on inundated land-bridge islands by separating the turnover and nestedness components. PLoS ONE, 10, e0127692. |
[45] |
Staab M, Blüthgen N, Klein AM (2015) Tree diversity alters the structure of a tri-trophic network in a biodiversity experiment. Oikos, 124, 827-834.
DOI URL |
[46] |
Stegner MA, Karp DS, Rominger AJ, Hadly EA (2017) Can protected areas really maintain mammalian diversity? Insights from a nestedness analysis of the Colorado Plateau. Biological Conservation, 209, 546-553.
DOI URL |
[47] |
Taimr L, Holman J, Kr̂íẑ J, Kůdelová A (1978) Large-scale radiophosphorus marking of the hop aphid (Phorodon humuli Schrank) in situ on the primary host. Zeitschrift Für Angewandte Entomologie, 86, 145-160.
DOI URL |
[48] |
Tan XW, Yang XR, Chen CW, Wang YP (2021) Nestedness and underlying processes of bird assemblages in Nanjing urban parks. Current Zoology, 67, 383-392.
DOI URL |
[49] |
Tscharntke T, Brandl R (2004) Plant-insect interactions in fragmented landscapes. Annual Review of Entomology, 49, 405-430.
PMID |
[50] |
Wang BX, Hof AR, Matson KD, van Langevelde F, Ma CS (2023) Climate change, host plant availability, and irrigation shape future region-specific distributions of the Sitobion grain aphid complex. Pest Management Science, 79, 2311-2324.
DOI URL |
[51] |
Wang RX, Yang XJ (2021) Nestedness theory suggests wetland fragments with large areas and macrophyte diversity benefit waterbirds. Ecology and Evolution, 11, 12651-12664.
DOI PMID |
[52] |
Wang YP, Bao YX, Yu MJ, Xu GF, Ding P (2010) Nestedness for different reasons: The distributions of birds, lizards and small mammals on islands of an inundated lake. Diversity and Distributions, 16, 862-873.
DOI URL |
[53] |
Wang YP, Wang X, Ding P (2012) Nestedness of snake assemblages on islands of an inundated lake. Current Zoology, 58, 828-836.
DOI URL |
[54] | Wimp GM, Whitham TG (2001) Biodiversity consequences of predation and host plant hybridization on an aphid-ant mutualism. Ecology, 82, 440-452. |
[55] |
Wisz MS, Pottier J, Kissling WD, Pellissier L, Lenoir J, Damgaard CF, Dormann CF, Forchhammer MC, Grytnes JA, Guisan A, Heikkinen RK, Høye TT, Kühn I, Luoto M, Maiorano L, Nilsson MC, Normand S, Öckinger E, Schmidt NM, Termansen M, Timmermann A, Wardle DA, Aastrup P, Svenning JC (2013) The role of biotic interactions in shaping distributions and realised assemblages of species: Implications for species distribution modelling. Biological Reviews, 88, 15-30.
DOI URL |
[56] |
Wright DH, Patterson BD, Mikkelson GM, Cutler A, Atmar W (1997) A comparative analysis of nested subset patterns of species composition. Oecologia, 113, 1-20.
DOI PMID |
[57] |
Wu YR, Si XF, Chen CW, Zeng D, Zhao YH, Li JQ, Ding P (2016) Effects of dispersal abilities on community dynamics of breeding birds on the land-bridge islands in the Thousand Island Lake, China. Biodiversity Science, 24, 1135-1145. (in Chinese with English abstract)
DOI |
[吴奕如, 斯幸峰, 陈传武, 曾頔, 赵郁豪, 李家琦, 丁平 (2016) 千岛湖陆桥岛屿繁殖鸟类的扩散能力差异对群落动态的影响. 生物多样性, 24, 1135-1145.]
DOI |
|
[58] |
Zhang JC, Wang YP, Jiang PP, Li P, Yu MJ, Ding P (2008) Nested analysis of passeriform bird assemblages in the Thousand Island Lake region. Biodiversity Science, 16, 321-331. (in Chinese with English abstract)
DOI |
[张竞成, 王彦平, 蒋萍萍, 李鹏, 于明坚, 丁平 (2008) 千岛湖雀形目鸟类群落嵌套结构分析. 生物多样性, 16, 321-331.]
DOI |
|
[59] | Zhang MC, Tang CN, Zhang Q, Zhan CX, Chen CW, Wang YP (2022) Selective extinction and habitat nestedness are the main drivers of lizard nestedness in the Zhoushan Archipelago. Current Zoology, zoac103. |
[60] |
Zhang XM, Han XF, Liu LW, Xu AC (2016) Influencing factors of the nested distribution of butterfly assemblages in the Zhoushan Archipelago, China. Biodiversity Science, 24, 321-331. (in Chinese with English abstract)
DOI |
[张雪梅, 韩徐芳, 刘立伟, 徐爱春 (2016) 舟山群岛蝶类群落嵌套分布格局及其影响因素. 生物多样性, 24, 321-331.]
DOI |
|
[61] |
Zhao YH, Dunn RR, Zhou HN, Si XF, Ding P (2020) Island area, not isolation, drives taxonomic, phylogenetic and functional diversity of ants on land-bridge islands. Journal of Biogeography, 47, 1627-1637.
DOI URL |
[62] |
Zhou HN, Zhao YH, Zeng D, Liu J, Jin TH, Ding P (2019) Spatial patterns and influencing factors of ground ant species diversity on the land-bridge islands in the Thousand Island Lake, China. Biodiversity Science, 27, 1101-1111. (in Chinese with English abstract)
DOI |
[周浩楠, 赵郁豪, 曾頔, 刘娟, 金挺浩, 丁平 (2019) 千岛湖陆桥岛屿地表蚂蚁群落物种多样性空间格局及其影响因素. 生物多样性, 27, 1101-1111.]
DOI |
|
[63] | Zhou SY (2001) Ants of Guangxi. Guangxi Normal University Press, Guilin. (in Chinese) |
周善义 (2001) 广西蚂蚁. 广西师范大学出版社, 桂林.] | |
[64] |
Zungu MM, Maseko MST, Kalle R, Ramesh T, Downs CT (2019) Fragment and life-history correlates of extinction vulnerability of forest mammals in an urban-forest mosaic in EThekwini Municipality, Durban, South Africa. Animal Conservation, 22, 362-375.
DOI |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn