Biodiv Sci ›› 2019, Vol. 27 ›› Issue (4): 355-365. DOI: 10.17520/biods.2019016
• Original Papers: Plant Diversity • Next Articles
Yahong Zhang1, Huixia Jia1, Zhibin Wang2, Pei Sun1, Demei Cao1, Jianjun Hu1,*()
Received:
2019-01-21
Accepted:
2019-04-18
Online:
2019-04-20
Published:
2019-06-05
Contact:
Jianjun Hu
Yahong Zhang, Huixia Jia, Zhibin Wang, Pei Sun, Demei Cao, Jianjun Hu. Genetic diversity and population structure of Populus yunnanensis[J]. Biodiv Sci, 2019, 27(4): 355-365.
种群 Population | 代号 Code | 样本量 Sample size | 纬度 Latitude | 经度 Longitude | 海拔 Altitude (m) |
---|---|---|---|---|---|
昭通 Zhaotong | ZT | 12 | 27°33°52″-27°38°29″ N | 103°45°05″-103°46°43″ E | 1,802-1,914 |
会泽 Huize | HZ | 12 | 26°12°07″-26°23°42″ N | 103°15°19″-103°24°09″ E | 2,118-2,303 |
嵩明 Songming | SM | 10 | 25°12°07″-25°17°42″ N | 103°02°42″-103°03°43″ E | 1,900-1,930 |
洱源 Eryuan | EY | 12 | 26°05°56″-26°08°17″ N | 99°58°13″-100°00°08″ E | 2,056-2,060 |
拉市海 Lashihai | LS | 12 | 26°51°03″-27°00°28″ N | 100°08°58″-100°15°24″ E | 2,418-2,657 |
美姑 Meigu | MG | 6 | 28°19°40″-28°20°09″ N | 103°08°22″-103°08°44″ E | 1,944-2,027 |
Table 1 Geographic information and sample size of Populus yunnanensis
种群 Population | 代号 Code | 样本量 Sample size | 纬度 Latitude | 经度 Longitude | 海拔 Altitude (m) |
---|---|---|---|---|---|
昭通 Zhaotong | ZT | 12 | 27°33°52″-27°38°29″ N | 103°45°05″-103°46°43″ E | 1,802-1,914 |
会泽 Huize | HZ | 12 | 26°12°07″-26°23°42″ N | 103°15°19″-103°24°09″ E | 2,118-2,303 |
嵩明 Songming | SM | 10 | 25°12°07″-25°17°42″ N | 103°02°42″-103°03°43″ E | 1,900-1,930 |
洱源 Eryuan | EY | 12 | 26°05°56″-26°08°17″ N | 99°58°13″-100°00°08″ E | 2,056-2,060 |
拉市海 Lashihai | LS | 12 | 26°51°03″-27°00°28″ N | 100°08°58″-100°15°24″ E | 2,418-2,657 |
美姑 Meigu | MG | 6 | 28°19°40″-28°20°09″ N | 103°08°22″-103°08°44″ E | 1,944-2,027 |
名称 Name | 区域 Primer area | 正向序列 Forward primer sequence (5’-3’) | 反向序列 Reverse primer sequence (5’-3’) |
---|---|---|---|
CO2 | trnK | AGATGGAAAAAAGAGAGGATAGAGG | CAAATAATATCCAAATACCAAACCC |
CO5 | rpoC1 | CGAATGGAAGACATAGACAAGT | AAGTGACCTTCGGGAGCTTCTC |
CO9 | atpF | TTGAAGTCCAGACAGAGCAGGTTAC | GGTCAAACAACTATTCAAAGTCCCT |
Table 3 Three chloroplast DNA primers sequence information of Populus yunnanensis
名称 Name | 区域 Primer area | 正向序列 Forward primer sequence (5’-3’) | 反向序列 Reverse primer sequence (5’-3’) |
---|---|---|---|
CO2 | trnK | AGATGGAAAAAAGAGAGGATAGAGG | CAAATAATATCCAAATACCAAACCC |
CO5 | rpoC1 | CGAATGGAAGACATAGACAAGT | AAGTGACCTTCGGGAGCTTCTC |
CO9 | atpF | TTGAAGTCCAGACAGAGCAGGTTAC | GGTCAAACAACTATTCAAAGTCCCT |
种群 Popula-tion | 等位基因Number of alleles (Na) | 有效等位 基因 Number of effective alleles (Ne) | 观测杂合度Observed heterozygosity (Ho) | 期望杂合度Expected heterozygosity (He) | Shannon’s 信息指数Shannon’s information content (I) | 近交系数Inbreeding coefficient (F) | 单倍型多态性 Haplotype diversity (h) | 核苷酸 多样性Nucleotide diversity (π) | 单倍型组成(个体数) Haplotype composition (No. of individuals) |
---|---|---|---|---|---|---|---|---|---|
ZT | 2.000 | 1.695 | 0.537 | 0.345 | 0.514 | -0.439 | 0.864 | 0.00055 | H1(3); H2(1); H3(1); H4(1); H5(4); H6(1); H7(1) |
HZ | 2.000 | 1.759 | 0.522 | 0.345 | 0.528 | -0.432 | - | - | H5(12) |
SM | 2.265 | 1.806 | 0.532 | 0.368 | 0.585 | -0.313 | - | - | H5(10) |
EY | 2.559 | 1.904 | 0.520 | 0.385 | 0.639 | -0.190 | 0.455 | 0.00013 | H5(9); H10(1); H11(1); H12(1) |
LS | 2.441 | 1.862 | 0.559 | 0.390 | 0.627 | -0.260 | 0.378 | 0.00025 | H5(10); H8(1); H9(1) |
MG | 1.794 | 1.623 | 0.495 | 0.324 | 0.473 | -0.454 | 0.333 | 0.00017 | H5(5); H13(1) |
平均Mean | 2.177 | 1.775 | 0.528 | 0.360 | 0.561 | -0.341 | 0.402 | 0.00020 |
Table 4 Genetic diversity of Populus yunnanensis based on SSR and cpDNA. Population codes see Table 1.
种群 Popula-tion | 等位基因Number of alleles (Na) | 有效等位 基因 Number of effective alleles (Ne) | 观测杂合度Observed heterozygosity (Ho) | 期望杂合度Expected heterozygosity (He) | Shannon’s 信息指数Shannon’s information content (I) | 近交系数Inbreeding coefficient (F) | 单倍型多态性 Haplotype diversity (h) | 核苷酸 多样性Nucleotide diversity (π) | 单倍型组成(个体数) Haplotype composition (No. of individuals) |
---|---|---|---|---|---|---|---|---|---|
ZT | 2.000 | 1.695 | 0.537 | 0.345 | 0.514 | -0.439 | 0.864 | 0.00055 | H1(3); H2(1); H3(1); H4(1); H5(4); H6(1); H7(1) |
HZ | 2.000 | 1.759 | 0.522 | 0.345 | 0.528 | -0.432 | - | - | H5(12) |
SM | 2.265 | 1.806 | 0.532 | 0.368 | 0.585 | -0.313 | - | - | H5(10) |
EY | 2.559 | 1.904 | 0.520 | 0.385 | 0.639 | -0.190 | 0.455 | 0.00013 | H5(9); H10(1); H11(1); H12(1) |
LS | 2.441 | 1.862 | 0.559 | 0.390 | 0.627 | -0.260 | 0.378 | 0.00025 | H5(10); H8(1); H9(1) |
MG | 1.794 | 1.623 | 0.495 | 0.324 | 0.473 | -0.454 | 0.333 | 0.00017 | H5(5); H13(1) |
平均Mean | 2.177 | 1.775 | 0.528 | 0.360 | 0.561 | -0.341 | 0.402 | 0.00020 |
Fig. 2 Principal coordinates analysis and clustering dendrogram of Populus yunnanensis. (A) Principal coordinates analysis; (B) UPGMA dendrogram based on genetic distance with SSR data. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1,000 replicates) are shown next to the branches. Population codes see Table 1.
变异来源 Source of variation | 自由度 df | 变异值 Estimated variance of components | 变异来源占比 Percentage of variation (%) | 遗传分化系数 Genetic differentiation coefficient (Fst) | 基因流 Gene flow (Nm) | |||
---|---|---|---|---|---|---|---|---|
SSR | cpDNA | SSR | cpDNA | SSR | cpDNA | |||
种群间 Among population | 5 | 1.966 | 9.663 | 18 | 15 | |||
种群内 Within populations | 59 | 9.016 | 39.047 | 82 | 85 | |||
总计 Total | 64 | 10.982 | 48.710 | 100 | 100 | 0.237 | 0.148 | 0.806 |
Table 5 Analysis of molecular variation (AMOVA) within and among populations based on the SSR and cpDNA
变异来源 Source of variation | 自由度 df | 变异值 Estimated variance of components | 变异来源占比 Percentage of variation (%) | 遗传分化系数 Genetic differentiation coefficient (Fst) | 基因流 Gene flow (Nm) | |||
---|---|---|---|---|---|---|---|---|
SSR | cpDNA | SSR | cpDNA | SSR | cpDNA | |||
种群间 Among population | 5 | 1.966 | 9.663 | 18 | 15 | |||
种群内 Within populations | 59 | 9.016 | 39.047 | 82 | 85 | |||
总计 Total | 64 | 10.982 | 48.710 | 100 | 100 | 0.237 | 0.148 | 0.806 |
ZT | HZ | SM | EY | LS | MG | |
---|---|---|---|---|---|---|
ZT | - | 0.081 | 0.182 | 0.227 | 0.266 | 0.434 |
HZ | 2.837 | - | 0.171 | 0.217 | 0.228 | 0.424 |
SM | 1.124 | 1.214 | - | 0.174 | 0.124 | 0.409 |
EY | 0.849 | 0.904 | 1.186 | - | 0.101 | 0.340 |
LS | 0.689 | 0.844 | 1.763 | 2.216 | - | 0.372 |
MG | 0.327 | 0.339 | 0.362 | 0.486 | 0.422 | - |
Table 6 Genetic differention (Fst, above diagonal) and gene flow (Nm, below diagonal) among populations. Population codes see Table 1.
ZT | HZ | SM | EY | LS | MG | |
---|---|---|---|---|---|---|
ZT | - | 0.081 | 0.182 | 0.227 | 0.266 | 0.434 |
HZ | 2.837 | - | 0.171 | 0.217 | 0.228 | 0.424 |
SM | 1.124 | 1.214 | - | 0.174 | 0.124 | 0.409 |
EY | 0.849 | 0.904 | 1.186 | - | 0.101 | 0.340 |
LS | 0.689 | 0.844 | 1.763 | 2.216 | - | 0.372 |
MG | 0.327 | 0.339 | 0.362 | 0.486 | 0.422 | - |
单倍型 Hap- lotype | 变异位点 Mutation sites | ||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CO2 | CO5 | CO9 | |||||||||||||||||||||||||||||||||
1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | |||||||||||||||||
6 | 7 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 0 | 0 | 1 | 3 | 4 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | 1 | 3 | 3 | 3 | 4 | 7 | |
6 | 9 | 4 | 6 | 6 | 7 | 8 | 8 | 9 | 0 | 0 | 0 | 0 | 1 | 4 | 9 | 0 | 2 | 9 | 3 | 3 | 7 | 8 | 6 | 6 | 6 | 7 | 8 | 8 | 2 | 0 | 3 | 8 | 2 | 7 | |
3 | 3 | 2 | 4 | 6 | 1 | 3 | 7 | 7 | 1 | 2 | 3 | 8 | 0 | 3 | 5 | 2 | 7 | 8 | 4 | 2 | 0 | 5 | 0 | 1 | 3 | 4 | 4 | 9 | 3 | 1 | 5 | 1 | 3 | 2 | |
H1 | - | - | - | G | A | - | - | - | A | A | - | C | - | G | - | G | C | - | C | A | C | T | - | C | T | A | C | C | C | - | - | T | G | G | - |
H2 | . | . | . | . | . | . | . | . | . | . | . | G | . | . | . | . | . | . | . | . | . | C | . | . | . | . | . | . | . | . | . | . | . | . | . |
H3 | . | . | . | . | . | . | . | . | . | C | . | G | . | . | . | . | . | . | . | . | . | C | . | . | . | . | . | . | . | . | . | . | . | . | . |
H4 | . | . | . | A | G | A | T | A | . | . | . | G | . | A | T | . | . | . | . | . | - | . | . | . | . | . | . | . | . | . | . | . | . | . | . |
H5 | . | . | . | . | . | . | . | . | . | . | . | G | . | . | . | . | . | . | . | . | . | C | G | . | . | . | . | . | . | . | . | . | . | . | . |
H6 | . | . | T | . | . | . | . | . | T | . | . | G | T | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | A | . | . |
H7 | . | T | . | . | . | . | . | . | . | . | . | G | . | . | . | . | T | . | T | . | T | . | G | . | . | . | . | . | . | A | . | . | . | . | . |
H8 | . | . | . | . | . | . | T | C | T | . | . | G | . | . | . | . | . | C | . | . | T | C | . | . | . | . | . | . | . | . | . | . | . | . | . |
H9 | . | . | . | . | . | . | . | . | . | . | . | G | . | . | . | A | . | . | . | . | . | C | . | . | . | . | . | . | . | . | T | G | . | . | . |
H10 | . | . | . | . | . | . | . | . | . | . | . | G | . | . | . | . | . | . | . | . | . | C | . | . | . | . | . | A | - | . | . | . | . | . | . |
H11 | . | . | . | . | . | . | . | . | . | . | A | G | . | . | . | . | . | . | . | . | . | C | . | . | . | . | . | . | . | . | . | . | . | A | . |
H12 | G | . | . | - | G | A | . | . | . | . | . | G | . | . | . | . | . | . | . | . | . | C | . | . | . | . | . | . | . | . | . | . | . | . | . |
H13 | . | . | . | . | . | . | . | . | . | . | . | G | . | . | . | . | . | . | . | . | . | C | . | - | - | T | - | A | - | . | . | . | . | . | A |
Table 7 Mutation sites of 13 haplotypes in chloroplast DNA fragments of Populus yunnanensis
单倍型 Hap- lotype | 变异位点 Mutation sites | ||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CO2 | CO5 | CO9 | |||||||||||||||||||||||||||||||||
1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | |||||||||||||||||
6 | 7 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 0 | 0 | 1 | 3 | 4 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | 1 | 3 | 3 | 3 | 4 | 7 | |
6 | 9 | 4 | 6 | 6 | 7 | 8 | 8 | 9 | 0 | 0 | 0 | 0 | 1 | 4 | 9 | 0 | 2 | 9 | 3 | 3 | 7 | 8 | 6 | 6 | 6 | 7 | 8 | 8 | 2 | 0 | 3 | 8 | 2 | 7 | |
3 | 3 | 2 | 4 | 6 | 1 | 3 | 7 | 7 | 1 | 2 | 3 | 8 | 0 | 3 | 5 | 2 | 7 | 8 | 4 | 2 | 0 | 5 | 0 | 1 | 3 | 4 | 4 | 9 | 3 | 1 | 5 | 1 | 3 | 2 | |
H1 | - | - | - | G | A | - | - | - | A | A | - | C | - | G | - | G | C | - | C | A | C | T | - | C | T | A | C | C | C | - | - | T | G | G | - |
H2 | . | . | . | . | . | . | . | . | . | . | . | G | . | . | . | . | . | . | . | . | . | C | . | . | . | . | . | . | . | . | . | . | . | . | . |
H3 | . | . | . | . | . | . | . | . | . | C | . | G | . | . | . | . | . | . | . | . | . | C | . | . | . | . | . | . | . | . | . | . | . | . | . |
H4 | . | . | . | A | G | A | T | A | . | . | . | G | . | A | T | . | . | . | . | . | - | . | . | . | . | . | . | . | . | . | . | . | . | . | . |
H5 | . | . | . | . | . | . | . | . | . | . | . | G | . | . | . | . | . | . | . | . | . | C | G | . | . | . | . | . | . | . | . | . | . | . | . |
H6 | . | . | T | . | . | . | . | . | T | . | . | G | T | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | A | . | . |
H7 | . | T | . | . | . | . | . | . | . | . | . | G | . | . | . | . | T | . | T | . | T | . | G | . | . | . | . | . | . | A | . | . | . | . | . |
H8 | . | . | . | . | . | . | T | C | T | . | . | G | . | . | . | . | . | C | . | . | T | C | . | . | . | . | . | . | . | . | . | . | . | . | . |
H9 | . | . | . | . | . | . | . | . | . | . | . | G | . | . | . | A | . | . | . | . | . | C | . | . | . | . | . | . | . | . | T | G | . | . | . |
H10 | . | . | . | . | . | . | . | . | . | . | . | G | . | . | . | . | . | . | . | . | . | C | . | . | . | . | . | A | - | . | . | . | . | . | . |
H11 | . | . | . | . | . | . | . | . | . | . | A | G | . | . | . | . | . | . | . | . | . | C | . | . | . | . | . | . | . | . | . | . | . | A | . |
H12 | G | . | . | - | G | A | . | . | . | . | . | G | . | . | . | . | . | . | . | . | . | C | . | . | . | . | . | . | . | . | . | . | . | . | . |
H13 | . | . | . | . | . | . | . | . | . | . | . | G | . | . | . | . | . | . | . | . | . | C | . | - | - | T | - | A | - | . | . | . | . | . | A |
Fig. 3 Haplotype network of Populus yunnanensis based on cpDNA. (A) Haplotype geographical distribution map. The circle size represents the number of individuals in the population. Size of pie charts is proportional to the numbers of individuals sequenced in each population. (B) Median-joining network; (C) The maximum parsimony consensus tree (MP). The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1,000 replicates) are shown next to the branches. Branches corresponding to partitions reproduced in less than 50% bootstrap replicates are collapsed. Population codes see Table 1.
[1] | Allen G, Flores-Vergara M, Krasynanski S, Kumar S, Thompson WF (2006) A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nature Protocols, 1, 2320-2325. |
[2] | Bai WN, Zhang DY (2014) Current status and future directions in plant phylogeography. Chinese Bulletin of Life Sciences, 26, 125-137. (in Chinese with English abstract) |
[ 白伟宁, 张大勇 (2014) 植物亲缘地理学的研究现状与发展趋势. 生命科学, 26, 125-137.] | |
[3] |
Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16, 37-48.
DOI URL |
[4] |
Burland TG (2000) DNASTAR’s Lasergene sequence analysis software. Methods in Molecular Biology, 132, 71-91.
DOI URL PMID |
[5] | Chen K (2007) Genetic Relationships among Poplar Species in Section Tacamahaca Spach from Western Sichuan of China. PhD dissertation, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu. (in Chinese with English abstract) |
[ 陈珂 (2007) 川西青杨组(Section Tacamahaca Spach)不同种的亲缘关系分析. 博士学位论文, 中国科学院成都生物研究所, 成都.] | |
[6] | Chen XM, He ZH, Shi JR, Xia LQ, Rick W, Zhou Y, Jiang GL (2003) Genetic diversity of high quality winter wheat varieties (lines) based on SSR markers. Acta Agronomica Sinica, 29, 13-19. (in Chinese with English abstract) |
[ 陈新民, 何中虎, 史建荣, 夏兰芹, Ward Rick, 周阳, 蒋国梁 (2003) 利用SSR标记进行优质冬小麦品种(系)的遗传多样性研究. 作物学报, 29, 13-19.] | |
[7] | Chen XY (2000) Effects of habitat fragmentation on genetic structure of plant populations and implications for the biodiversity conservation. Acta Ecologica Sinica, 20, 884-892. (in Chinese with English abstract) |
[ 陈小勇 (2000) 生境片断化对植物种群遗传结构的影响及植物遗传多样性保护. 生态学报, 20, 884-892.] | |
[8] | Crandall KA, Templeton AR (1993) Empirical tests of some predictions from coalescent theory with applications to intraspecific phylogeny reconstruction. Genetics, 134, 959-969. |
[9] | DiFazio S, Slavov G, Rodgers-Melnick E, Martin J, Schackwitz W, Priya R, Tuskan G (2011) Inferring the evolutionary history of Populus trichocarpa from whole genome resequencing data. BMC Proceedings, 5, O1. |
[10] |
Du QZ, Wang B, Wei ZZ, Zhang DQ, Li BL (2012) Genetic diversity and population structure of Chinese white poplar (Populus tomentosa) revealed by SSR markers. Journal of Heredity, 103, 853-862.
DOI URL |
[11] |
Ferradini N, Lancioni H, Torricelli R, Russi L, Ragione ID, Cardinali I, Marconi G, Gramaccia M, Concezzi L, Achilli A, Veronesi F, Albertini E (2017) Characterization and phylogenetic analysis of ancient Italian landraces of pear. Frontiers in Plant Science, 8, 751.
DOI URL |
[12] |
Golding GB (1987) The detection of deleterious selection using ancestors inferred from a phylogenetic history. Genetics Research, 49, 71-82.
DOI URL |
[13] | Gong GT (2004) The geographic distribution and origin of Populus L. Journal of Sichuan Forestry Science and Technology, 25(2), 25-30. (in Chinese with English abstract) |
[ 龚固堂 (2004) 杨属地理分布与起源初探. 四川林业科技, 25(2), 25-30.] | |
[14] |
Hamrick JL, Godt MJW, Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. New Forests, 6, 95-124.
DOI URL |
[15] | He CZ, Che PY, Peng CY, Zhou XT, Duan AA, Wang DX, Xin PY (2010) A survey of research progress on gene resources of Populus yunnanensis. Journal of Southwest Forestry University, 30(1), 83-88. (in Chinese with English abstract) |
[ 何承忠, 车鹏燕, 周修涛, 段安安, 王德新, 辛培尧 (2010) 滇杨基因资源及其研究概况. 西南林业大学学报, 30(1), 83-88.] | |
[16] | He CZ, Zhang ZY, Duan AA, Feng XL (2009) Genetic Diversity Analysis of Populus yunnanensis by AFLP Markers. China Forestry Publishing House, Beijing. (in Chinese) |
[ 何承忠, 张志毅, 段安安, 冯夏莲 (2009) 滇杨基因资源遗传多样性的AFLP分析. 中国林业出版社, 北京.] | |
[17] | Jia HX, Ji HJ, Hu JJ, Lu MZ (2015) Fingerprints of SSR markers and ploidy detection for new Populus varieties. Scientia Silvae Sinicae, 51(2), 69-79. (in Chinese with English abstract) |
[ 贾会霞, 姬慧娟, 胡建军, 卢孟柱 (2015) 杨树新品种的SSR指纹图谱构建和倍性检测. 林业科学, 51(2), 69-79.]
DOI |
|
[18] |
Jiang DC, Wu GL, Mao KS, Feng JJ (2015) Structure of genetic diversity in marginal populations of black poplar (Populus nigra L.). Biochemical Systematics and Ecology, 61, 297-302.
DOI URL |
[19] | Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genetics, 11, 94. |
[20] |
Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870-1874.
DOI URL |
[21] |
Peakall R, Smouse PE (2006) GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6, 288-295.
DOI URL |
[22] | Peng YH (2006) Population Genetic Survey of Populus cathayana Rehd. Originating from eastern edge of Qinghai-Tibetan Plateau of China. PhD dissertation, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu. (in Chinese with English abstract) |
[ 彭幼红 (2006) 青藏高原东缘青杨(Populus cathayana Rehd.)遗传多样性研究. 博士学位论文, 中国科学院研究生院成都生物研究所, 成都.] | |
[23] |
Polzin T, Daneshmand SV (2003) On Steiner trees and minimum spanning trees in hypergraphs. Operations Research Letters, 31, 12-20.
DOI URL |
[24] | Posada D, Crandall KA (2001) Intraspecific gene genealogies: Trees grafting into networks. Trends in Ecology & Evolution, 16 , 37-45. |
[25] |
Qiu YX, Fu CX, Comes HP (2011) Plant molecular phylogeography in China and adjacent regions: Tracing the genetic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora. Molecular Phylogenetics and Evolution, 59, 225-244.
DOI URL |
[26] | Retief JD (1999) Phylogenetic analysis using PHYLIP. Methods in Molecular Biology, 132, 243-258. |
[27] |
Roy JK, Lakshmikumaran MS, Balyan HS, Gupta PK (2004) AFLP-based genetic diversity and its comparison with diversity based on SSR, SAMPL, and phenotypic traits in bread wheat. Biochemical Genetics, 42, 43-59.
DOI URL |
[28] |
Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 19, 2496-2497.
DOI URL |
[29] | Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology, 18, 233-234. |
[30] | Semerikova SA, Semerikov VL (2014) Molecular phylogenetic analysis of the genus Abies (Pinaceae) based on the nucleotide sequence of chloroplast DNA. Genetika, 50, 12-25. |
[31] | Shang ZH, Yao AX (2002) Biological genetic diversity research methods and their protective measures. Journal of Ningxia Agricultural College, 23(1), 66-69. (in Chinese) |
[ 尚占环, 姚爱兴 (2002) 生物遗传多样性研究方法及其保护措施. 宁夏农学院学报, 23(1), 66-69.] | |
[32] |
Shen XF, Wu ML, Liao BS, Liu ZX, Bai R, Xiao SM, Li XW, Zhang BL, Xu J, Chen SL (2017) Complete chloroplast genome sequence and phylogenetic analysis of the medicinal plant Artemisia annua. Molecules, 22, 1330.
DOI URL |
[33] |
Tippmann HF (2004) Analysis for free: Comparing programs for sequence analysis. Briefings in Bioinformatics, 5, 82-87.
DOI URL |
[34] | Wan XQ, Zhang F, Zhong Y, Wang CL, Ding YH, Hu TX, Zhai MP, Qian ZL (2009) Conservation and application of the genetic resource of native poplars in Southwest China. Scientia Silvae Sinicae, 45(4), 139-144. (in Chinese with English abstract) |
[ 万雪琴, 张帆, 钟宇, 王长亮, 丁云海, 胡庭兴, 翟明普, 钱宗亮 (2009) 中国西南地区乡土杨树基因资源的保护与利用. 林业科学, 45(4), 139-144.]
DOI |
|
[35] |
Wang J, Li ZJ, Guo QH, Ren GP, Wu YX (2011) Genetic variation within and between populations of a desert poplar (Populus euphratica) revealed by SSR markers. Annals of Forest Science, 68, 1143-1149.
DOI URL |
[36] | Wang JL, Gao QB, Fu PC, Gulzar K, Chen SL, Zhang FQ (2014) Phylogeography of Spiraea mongolica (Rosaceae) on the Qinghai-Tibetan Plateau and adjacent highlands. Acta Botanica Boreali-Occidentalia Sinica, 10, 1981-1991. (in Chinese with English abstract) |
[ 王久利, 高庆波, 付鹏程, Gulzar K, 陈世龙, 张发起 (2014) 青藏高原及其毗邻山区蒙古绣线菊谱系地理学研究. 西北植物学报, 34, 1981-1991.] | |
[37] | Xu WY (1988) Poplar. Heilongjiang People’s Publishing House. Harbin. (in Chinese) |
[ 徐纬英 (1988) 杨树. 黑龙江人民出版社, 哈尔滨.] | |
[38] | Yan LQ, Li JM, Yuan T, Zhou AP, Zong D, Li D, Xin PY, He CZ (2016) Genetic diversity analysis of Populus yunnanensis by SRAP markers. Biotechnology Bulletin, 32, 159-167. (in Chinese with English abstract) |
[ 颜璐茜, 李佳蔓, 员涛, 周安佩, 纵丹, 李旦, 辛培尧, 何承忠 (2016) 滇杨遗传多样性的SRAP分析. 生物技术通报, 32, 159-167.] | |
[39] | Yu SQ, Liu J, Fu DR, Liu DJ, Liu YQ (2003) Characteristics of Tacamahaca genes in the Western Sichuan Plateau. Journal of Zhejiang Forestry College, 20, 27-31. (in Chinese with English abstract) |
[ 余树全, 刘军, 付达荣, 刘大健, 刘友全 (2003) 川西高原青杨派基因资源特点. 浙江林学院学报, 20(1), 27-31.] | |
[40] |
Závada T, Malik RJ, Kesseli RV (2017) Population structure in chicory (Cichorium intybus): A successful U. S. weed since the American revolutionary war. Ecology and Evolution, 7, 4209-4219.
DOI URL |
[41] |
Zeng YF, Zhang JG, Abuduhamiti B, Wang WT, Jia ZQ (2018) Phylogeographic patterns of the desert poplar in Northwest China shaped by both geology and climatic oscillations. BMC Evolutionary Biology, 18, 75.
DOI |
[42] | Zhao N, Liu J (1994) Taxonomic studies on Populus L. in Southwestern China (II). Journal of Wuhan Botanical Research, 9, 225-232. (in Chinese with English abstract) |
[ 赵能, 刘军 (1994) 中国西南地区杨属的分类学研究(II). 武汉植物科学学报, 9, 225-232.] | |
[43] | Zheng HL, Fan LQ, Milne RI, Zhang L, Wang YL, Mao KS (2017) Species delimitation and lineage separation history of a species complex of aspens in China. Frontiers in Plant Science, 8, 375. |
[44] | Zong D, Yuan T, Zhou AP, Liu DY, Zheng Y, Duan AA, He CZ (2014) Analysis of genetic background of 52 Populus yunnanensis superior trees by AFLP markers. Journal of Northwest Forestry University, 29, 103-108. (in Chinese with English abstract) |
[ 纵丹, 员涛, 周安佩, 刘东玉, 郑元, 段安安, 何承忠 (2014) 滇杨优树遗传多样性的AFLP分析. 西北林学院学报, 29, 103-108.] |
[1] | Kexin Cao, Jingwen Wang, Guo Zheng, Pengfeng Wu, Yingbin Li, Shuyan Cui. Effects of precipitation regime change and nitrogen deposition on soil nematode diversity in the grassland of northern China [J]. Biodiv Sci, 2024, 32(3): 23491-. |
[2] | Chen Feng, Jie Zhang, Hongwen Huang. Parallel situ conservation: A new plant conservation strategy to integrate in situ and ex situ conservation of plants [J]. Biodiv Sci, 2023, 31(9): 23184-. |
[3] | Qingduo Li, Dongmei Li. Analysis for the prevalence of global bat-borne Bartonella [J]. Biodiv Sci, 2023, 31(9): 23166-. |
[4] | Hailing Qi, Pengzhen Fan, Yuehua Wang, Jie Liu. Genetic diversity and population structure of Juglans regia from six provinces in northern China [J]. Biodiv Sci, 2023, 31(8): 23120-. |
[5] | Yuanyuan Xiao, Wei Feng, Yangui Qiao, Yuqing Zhang, Shugao Qin. Effects of soil microbial community characteristics on soil multifunctionality in sand-fixation shrublands [J]. Biodiv Sci, 2023, 31(4): 22585-. |
[6] | Fei Xiong, Hongyan Liu, Dongdong Zhai, Xinbin Duan, Huiwu Tian, Daqing Chen. Population genetic structure of Pelteobagrus vachelli in the upper Yangtze River based on genome re-sequencing [J]. Biodiv Sci, 2023, 31(4): 22391-. |
[7] | Yiyue He, Yuying Liu, Fubin Zhang, Qiang Qin, Yu Zeng, Zhenyu Lü, Kun Yang. Genetic diversity and population structure of Saurogobio dabryi under cascade water conservancy projects in the Jialing River [J]. Biodiv Sci, 2023, 31(11): 23160-. |
[8] | Weiyue Sun, Jiangping Shu, Yufeng Gu, Morigengaowa, Xiajin Du, Baodong Liu, Yuehong Yan. Conservation genomics analysis revealed the endangered mechanism of Adiantum nelumboides [J]. Biodiv Sci, 2022, 30(7): 21508-. |
[9] | Xiaoyan Jiang, Shengjie Gao, Yan Jiang, Yun Tian, Xin Jia, Tianshan Zha. Species diversity, functional diversity, and phylogenetic diversity in plant communities at different phases of vegetation restoration in the Mu Us sandy grassland [J]. Biodiv Sci, 2022, 30(5): 21387-. |
[10] | Togtokh Mongke, Dongyi Bai, Tugeqin Bao, Ruoyang Zhao, Tana An, Aertengqimike Tiemuqier, Baoyindeligeer Mongkejargal, Has Soyoltiin, Manglai Dugarjaviin, Haige Han. Assessment of SNPs-based genomic diversity in different populations of Eastern Asian landrace horses [J]. Biodiv Sci, 2022, 30(5): 21031-. |
[11] | Jing Cui, Mingfang Xu, Qun Zhang, Yao Li, Xiaoshu Zeng, Sha Li. Differences in genetic diversity of Pleuronichthys cornutus in the coastal water of China and Japan based on three mitochondrial markers [J]. Biodiv Sci, 2022, 30(5): 21485-. |
[12] | Xinyu Cai, Xiaowei Mao, Yiqiang Zhao. Methods and research progress on the origin of animal domestication [J]. Biodiv Sci, 2022, 30(4): 21457-. |
[13] | Jun Sun, Yuyao Song, Yifeng Shi, Jian Zhai, Wenzhuo Yan. Progress of marine biodiversity studies in China seas in the past decade [J]. Biodiv Sci, 2022, 30(10): 22526-. |
[14] | Dongmei Li, Weihong Yang, Qingduo Li, Xi Han, Xiuping Song, Hong Pan, Yun Feng. High prevalence and genetic variation of Bartonella species inhabiting the bats in southwestern Yunnan [J]. Biodiv Sci, 2021, 29(9): 1245-1255. |
[15] | Bo Chen, Lan Jiang, Ziyang Xie, Yangdi Li, Jiaxuan Li, Mengjia Li, Chensi Wei, Cong Xing, Jinfu Liu, Zhongsheng He. Taxonomic and phylogenetic diversity of plants in a Castanopsis kawakamiinatural forest [J]. Biodiv Sci, 2021, 29(4): 439-448. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn